Knowledge (XXG)

Agreeable subset

Source 📝

128:
As an example, suppose there are two objects - bread and wine, and two agents - Alice and George. The preference-relation of Alice is {bread,wine} > {bread} > {wine} > {}. If the preference-relation of George is the same, then there are two agreeable subsets: {bread,wine} and {bread}. But
38:
Another use case is when the citizens in some city want to elect a committee from a given pool of candidates, such that all citizens agree that the subset of elected candidates is at least as good as the subset of non-elected ones. Subject to that, the committee size should be as small as possible.
30:
An example situation in which this problem arises is when a family goes on a trip and has to decide which items to take. Since their car is limited in size, they cannot pick all items, so they have to agree on a subset of items which are most important. If they manage to find a subset of items such
1371:
Goldberg, Paul W.; Hollender, Alexandros; Igarashi, Ayumi; Manurangsi, Pasin; Suksompong, Warut (2020). "Consensus Halving for Sets of Items". In Chen, Xujin; Gravin, Nikolai; Hoefer, Martin; Mehta, Ruta (eds.).
508: 1101:. For any fixed of additive agents, there exists a pseudopolynomial time for this problem; but if the number of agents is not fixed, then the problem is strongly NP-hard. There exists a polynomial-time O(log 844: 779: 727: 445: 920: 987: 1045: 313: 275: 1058:
For agents with general monotone preferences, there is no algorithm that computes a smallest agreeable set using a polynomial number of queries. Moreover, for every constant
663: 853:≥ 3 agents with responsive preferences, a necessarily-agreeable subset of this size might not exist. However, there always exists a necessarily-agreeable subset of size 556: 227:
satisfies (*) for all agents, then it is necessarily-agreeable. The converse implication holds if the agents' preference relations on indivisible objects are strict.
23:
is a subset of items that is considered, by all people in a certain group, to be at least as good as its complement. Finding a small agreeable subset is a problem in
137:
If the agents' preference relations on the subsets are given, it is easy to check whether a subset is agreeable. But often, only the agents' preference relations on
1078:) of the minimum, even with only one agent. This is tight: there exists a polynomial-time algorithm that finds an agreeable subset with size at most O( 669:-coloring just defined, there are two adjacent vertices with the same color. In other words, there are two disjoint subsets such that, a single agent 447:, and it is tight (for some preferences this is the smallest size of an agreeable subset). The proof for two agents is constructive. The proof for 732:
When there are any number of agents with additive utilities, or a constant number of agents with monotone utilities, an agreeable subset of size
1401: 1200: 458: 1326:
Aziz, Haris; Gaspers, Serge; MacKenzie, Simon; Walsh, Toby (2015). "Fair assignment of indivisible objects under ordinal preferences".
800: 735: 683: 401: 1133: 926:
which is a power of 3, there exist ordinal preferences of 3 agents such that every necessarily-agreeable subset has size at least
129:
if George's preference-relation is {bread,wine} > {wine} > {bread} > {}, then the only agreeable subset is {bread,wine}.
1151:- a variant of fair division in which the pieces of the resource are given to pre-determined groups rather than to individuals. 31:
that all family members agree that it is at least as good as the subset of items remaining at home, then this subset is called
673:
prefers each of them to its complement. But this contradicts the above lemma. Hence there must be an agreeable subset of size
1475: 1470: 729:
can be computed in polynomial time, using polynomially-many queries of the form "which of these two subsets is better?".
856: 1480: 990: 24: 1148: 1378:. Lecture Notes in Computer Science. Vol. 12495. Cham: Springer International Publishing. pp. 384–397. 1128: 1055:
In many cases, there may exist an agreeable subset that is much smaller than the worst-case upper bound.
929: 142: 141:
are given. In this case, it is often assumed that the agents' preferences are not only monotone but also
1138: 1003: 680:
When there are at most three agents, and their preferences are responsive, an agreeable subset of size
284: 246: 1228: 997: 74: 609: 106: 1446: 1379: 1373: 1353: 1335: 1308: 1266: 1240: 1178: 1285: 517: 1438: 1397: 1258: 1196: 1098: 1430: 1389: 1345: 1300: 1250: 1188: 1090: 243:
Consider first a single agent. In some cases, an agreeable subset should contain at least
1175:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
1143: 782: 1286:"The undercut procedure: An algorithm for the envy-free division of indivisible items" 169:
according to the responsive set extension of their preferences on individual objects.
1464: 1450: 1312: 1270: 1170: 1114:
The agreeable subset problem was studied with additional constraint represented by a
281:
objects are identical. Moreover, there always exists an agreeable subset containing
1357: 599: 566:
objects, and two subsets are connected iff they are disjoint. If there is a vertex
452: 922:, and such a set can be computed in polynomial time. On the other hand, for every 1393: 1349: 1254: 1192: 1434: 1304: 1442: 1262: 1418: 1171:"Assigning a small agreeable set of indivisible items to multiple players" 586:. Otherwise, we can define a color for each agent and color each vertex 1115: 68:. Each agent is characterized by a preference-relation on subsets of 78:- an agent always weakly prefers a set to all its subsets. A subset 1384: 1245: 1183: 503:{\displaystyle k:={\bigg \lfloor }{\frac {m+n}{2}}{\bigg \rfloor }} 1340: 1066:
queries and finds an agreeable subset with expected size at most
839:{\displaystyle {\bigg \lfloor }{\frac {m+n}{2}}{\bigg \rfloor }} 774:{\displaystyle {\bigg \lfloor }{\frac {m+n}{2}}{\bigg \rfloor }} 722:{\displaystyle {\bigg \lfloor }{\frac {m+n}{2}}{\bigg \rfloor }} 440:{\displaystyle {\bigg \lfloor }{\frac {m+n}{2}}{\bigg \rfloor }} 1284:
Brams, Steven J.; Kilgour, D. Marc; Klamler, Christian (2011).
1093:, deciding whether there exists an agreeable subset of size 1097:/2 is NP-hard; the proof is by reduction from the balanced 1177:. IJCAI'16. New York, New York, USA: AAAI Press: 489–495. 793:
When there are two agents with responsive preferences, a
398:
objects, there always exists an agreeable subset of size
235:
What is the smallest agreeable subset that we can find?
558:, that is, the graph whose vertices are all subsets of 1229:"Computing a small agreeable set of indivisible items" 105:
If an agent's preference relation is represented by a
1006: 1000:
that computes a necessarily-agreeable subset of size
932: 859: 803: 738: 686: 612: 520: 461: 404: 287: 249: 1227:Manurangsi, Pasin; Suksompong, Warut (2019-03-01). 781:can be found in polynomial time using results from 16:
Concept in the field of computational social choice
1039: 981: 914: 838: 773: 721: 657: 550: 502: 439: 307: 269: 915:{\displaystyle m/2+(n+1)\lceil 4n\log {m}\rceil } 846:exists and can be computed in polynomial time. 831: 806: 766: 741: 714: 689: 495: 470: 432: 407: 315:objects. This follows from the following lemma: 216:; at least three of the five best objects in 8: 909: 889: 302: 288: 264: 250: 212:; at least two of the three best objects in 1419:"Agreeable sets with matroidal constraints" 1062:, there is no algorithm that makes at most 72:. The preference-relation is assumed to be 231:Worst-case bounds on agreeable subset size 172:A closely related property of subsets is: 1383: 1339: 1244: 1182: 1027: 1010: 1005: 971: 963: 954: 936: 931: 904: 863: 858: 830: 829: 811: 805: 804: 802: 765: 764: 746: 740: 739: 737: 713: 712: 694: 688: 687: 685: 611: 519: 494: 493: 475: 469: 468: 460: 431: 430: 412: 406: 405: 403: 294: 286: 256: 248: 1161: 64:agents who have to choose a subset of 1423:Journal of Combinatorial Optimization 1051:Computing a smallest agreeable subset 337:are disjoint, then at least one of S\ 7: 1222: 1220: 1218: 1216: 1214: 1212: 982:{\displaystyle m/2+(\log _{3}{m})/4} 204:To satisfy property (*), the subset 387:and the preferences are monotone). 1040:{\displaystyle m/2+O({\sqrt {m}})} 208:should contain the best object in 14: 1134:Participatory budgeting algorithm 600:chromatic number of Kneser graphs 390:This can be generalized: For any 308:{\displaystyle \lceil m/2\rceil } 270:{\displaystyle \lceil m/2\rceil } 1169:Suksompong, Warut (2016-07-09). 277:objects. An example is when all 113:, then for any agreeable subset 1417:Gourvès, Laurent (2019-04-01). 989:. Both proofs use theorems on 582:is an agreeable subset of size 1034: 1024: 968: 947: 886: 874: 658:{\displaystyle m-2(m-k)+2=n+1} 634: 622: 570:such that all agents prefer S\ 545: 527: 1: 789:Necessarily-agreeable subsets 1394:10.1007/978-3-030-64946-3_27 1350:10.1016/j.artint.2015.06.002 1255:10.1016/j.artint.2018.10.001 1193:10.1016/j.artint.2018.10.001 133:Necessarily-agreeable subset 1105:) approximation algorithm. 991:Discrepancy of permutations 598:to S\V. By the theorem on 25:computational social choice 1497: 1375:Web and Internet Economics 1149:Fair division among groups 797:-agreeable subset of size 665:; this means that, in the 602:, the chromatic number of 594:with an agent who prefers 1435:10.1007/s10878-018-0327-1 1305:10.1007/s00355-011-0599-1 1293:Social Choice and Welfare 1129:Envy-free item allocation 551:{\displaystyle KG(m,m-k)} 1328:Artificial Intelligence 1233:Artificial Intelligence 1041: 983: 916: 840: 775: 723: 659: 552: 504: 441: 309: 271: 1139:Multiwinner elections 1089:Even for agents with 1042: 984: 917: 841: 776: 724: 660: 553: 505: 442: 310: 272: 157:if all agents prefer 155:necessarily agreeable 90:if all agents prefer 1476:Social choice theory 1471:Fair item allocation 1004: 998:randomized algorithm 930: 857: 801: 736: 684: 610: 518: 514:be the Kneser graph 459: 402: 285: 247: 359:(this is because S\ 107:subadditive utility 60:objects. There are 1481:Discrepancy theory 1091:additive utilities 1086:) of the minimum. 1037: 979: 912: 836: 771: 719: 655: 548: 500: 437: 305: 267: 196:objects for agent 188:contains at least 139:individual objects 1403:978-3-030-64946-3 1202:978-1-57735-770-4 1144:Consensus halving 1099:partition problem 1032: 827: 783:consensus halving 762: 710: 491: 428: 239:Agreeable subsets 1488: 1455: 1454: 1414: 1408: 1407: 1387: 1368: 1362: 1361: 1343: 1323: 1317: 1316: 1290: 1281: 1275: 1274: 1248: 1224: 1207: 1206: 1186: 1166: 1046: 1044: 1043: 1038: 1033: 1028: 1014: 988: 986: 985: 980: 975: 967: 959: 958: 940: 921: 919: 918: 913: 908: 867: 845: 843: 842: 837: 835: 834: 828: 823: 812: 810: 809: 780: 778: 777: 772: 770: 769: 763: 758: 747: 745: 744: 728: 726: 725: 720: 718: 717: 711: 706: 695: 693: 692: 664: 662: 661: 656: 557: 555: 554: 549: 509: 507: 506: 501: 499: 498: 492: 487: 476: 474: 473: 446: 444: 443: 438: 436: 435: 429: 424: 413: 411: 410: 351:is agreeable to 323:, if two subses 319:For every agent 314: 312: 311: 306: 298: 276: 274: 273: 268: 260: 48:Agreeable subset 21:agreeable subset 1496: 1495: 1491: 1490: 1489: 1487: 1486: 1485: 1461: 1460: 1459: 1458: 1416: 1415: 1411: 1404: 1370: 1369: 1365: 1325: 1324: 1320: 1288: 1283: 1282: 1278: 1226: 1225: 1210: 1203: 1168: 1167: 1163: 1158: 1125: 1111: 1053: 1002: 1001: 996:There exists a 950: 928: 927: 855: 854: 849:When there are 813: 799: 798: 791: 748: 734: 733: 696: 682: 681: 608: 607: 516: 515: 477: 457: 456: 414: 400: 399: 386: 379: 372: 365: 350: 343: 336: 329: 283: 282: 245: 244: 241: 233: 192:/2 of the best 135: 52:There is a set 50: 45: 17: 12: 11: 5: 1494: 1492: 1484: 1483: 1478: 1473: 1463: 1462: 1457: 1456: 1429:(3): 866–888. 1409: 1402: 1363: 1318: 1276: 1208: 1201: 1160: 1159: 1157: 1154: 1153: 1152: 1146: 1141: 1136: 1131: 1124: 1121: 1120: 1119: 1110: 1107: 1052: 1049: 1036: 1031: 1026: 1023: 1020: 1017: 1013: 1009: 978: 974: 970: 966: 962: 957: 953: 949: 946: 943: 939: 935: 911: 907: 903: 900: 897: 894: 891: 888: 885: 882: 879: 876: 873: 870: 866: 862: 833: 826: 822: 819: 816: 808: 790: 787: 768: 761: 757: 754: 751: 743: 716: 709: 705: 702: 699: 691: 654: 651: 648: 645: 642: 639: 636: 633: 630: 627: 624: 621: 618: 615: 547: 544: 541: 538: 535: 532: 529: 526: 523: 497: 490: 486: 483: 480: 472: 467: 464: 451:agents uses a 434: 427: 423: 420: 417: 409: 384: 377: 370: 363: 357: 356: 348: 341: 334: 327: 304: 301: 297: 293: 290: 266: 263: 259: 255: 252: 240: 237: 232: 229: 202: 201: 176:(*) For every 134: 131: 49: 46: 44: 41: 15: 13: 10: 9: 6: 4: 3: 2: 1493: 1482: 1479: 1477: 1474: 1472: 1469: 1468: 1466: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1413: 1410: 1405: 1399: 1395: 1391: 1386: 1381: 1377: 1376: 1367: 1364: 1359: 1355: 1351: 1347: 1342: 1337: 1333: 1329: 1322: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1287: 1280: 1277: 1272: 1268: 1264: 1260: 1256: 1252: 1247: 1242: 1238: 1234: 1230: 1223: 1221: 1219: 1217: 1215: 1213: 1209: 1204: 1198: 1194: 1190: 1185: 1180: 1176: 1172: 1165: 1162: 1155: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1126: 1122: 1117: 1113: 1112: 1108: 1106: 1104: 1100: 1096: 1092: 1087: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1056: 1050: 1048: 1029: 1021: 1018: 1015: 1011: 1007: 999: 994: 992: 976: 972: 964: 960: 955: 951: 944: 941: 937: 933: 925: 905: 901: 898: 895: 892: 883: 880: 877: 871: 868: 864: 860: 852: 847: 824: 820: 817: 814: 796: 788: 786: 784: 759: 755: 752: 749: 730: 707: 703: 700: 697: 678: 676: 672: 668: 652: 649: 646: 643: 640: 637: 631: 628: 625: 619: 616: 613: 605: 601: 597: 593: 589: 585: 581: 577: 573: 569: 565: 561: 542: 539: 536: 533: 530: 524: 521: 513: 488: 484: 481: 478: 465: 462: 454: 450: 425: 421: 418: 415: 397: 393: 388: 383: 376: 369: 362: 354: 347: 340: 333: 326: 322: 318: 317: 316: 299: 295: 291: 280: 261: 257: 253: 238: 236: 230: 228: 226: 221: 219: 215: 211: 207: 199: 195: 191: 187: 184:, the subset 183: 179: 175: 174: 173: 170: 168: 164: 160: 156: 152: 148: 144: 140: 132: 130: 126: 124: 120: 116: 112: 108: 103: 101: 97: 93: 89: 85: 81: 77: 76: 71: 67: 63: 59: 55: 47: 42: 40: 36: 34: 28: 26: 22: 1426: 1422: 1412: 1374: 1366: 1331: 1327: 1321: 1299:(2–3): 615. 1296: 1292: 1279: 1236: 1232: 1174: 1164: 1102: 1094: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1057: 1054: 995: 923: 850: 848: 794: 792: 731: 679: 674: 670: 666: 603: 595: 591: 587: 583: 579: 575: 571: 567: 563: 559: 511: 453:Kneser graph 448: 395: 391: 389: 381: 374: 367: 360: 358: 352: 345: 338: 331: 324: 320: 278: 242: 234: 224: 223:If a subset 222: 217: 213: 209: 205: 203: 197: 193: 189: 185: 181: 177: 171: 166: 162: 158: 154: 150: 146: 138: 136: 127: 122: 118: 114: 110: 104: 99: 95: 91: 87: 83: 79: 73: 69: 65: 61: 57: 53: 51: 37: 32: 29: 20: 18: 795:necessarily 394:agents and 180:in 1, ..., 145:. A subset 56:containing 43:Definitions 1465:Categories 1385:2007.06754 1246:1606.08077 1239:: 96–114. 1184:1606.08077 1156:References 1109:Extensions 510:, and let 153:is called 143:responsive 86:is called 1451:254654045 1443:1573-2886 1341:1312.6546 1334:: 71–92. 1313:253844146 1271:124836295 1263:0004-3702 961:⁡ 910:⌉ 902:⁡ 890:⌈ 629:− 617:− 578:, then S\ 540:− 380:contains 366:contains 303:⌉ 289:⌈ 265:⌉ 251:⌈ 109:function 88:agreeable 33:agreeable 1123:See also 832:⌋ 807:⌊ 767:⌋ 742:⌊ 715:⌋ 690:⌊ 496:⌋ 471:⌊ 433:⌋ 408:⌊ 75:monotone 1358:1408197 1116:matroid 220:; etc. 1449:  1441:  1400:  1356:  1311:  1269:  1261:  1199:  1082:/ log 455:. Let 373:and S\ 121:) ≥ u( 1447:S2CID 1380:arXiv 1354:S2CID 1336:arXiv 1309:S2CID 1289:(PDF) 1267:S2CID 1241:arXiv 1179:arXiv 1047:. 344:or S\ 125:)/2. 1439:ISSN 1398:ISBN 1259:ISSN 1197:ISBN 1074:log 993:. 330:and 117:, u( 1431:doi 1390:doi 1346:doi 1332:227 1301:doi 1251:doi 1237:268 1189:doi 952:log 899:log 606:is 590:of 574:to 161:to 149:of 94:to 82:of 35:. 19:An 1467:: 1445:. 1437:. 1427:37 1425:. 1421:. 1396:. 1388:. 1352:. 1344:. 1330:. 1307:. 1297:39 1295:. 1291:. 1265:. 1257:. 1249:. 1235:. 1231:. 1211:^ 1195:. 1187:. 1173:. 1070:/( 785:. 677:. 466::= 102:. 27:. 1453:. 1433:: 1406:. 1392:: 1382:: 1360:. 1348:: 1338:: 1315:. 1303:: 1273:. 1253:: 1243:: 1205:. 1191:: 1181:: 1118:. 1103:n 1095:m 1084:m 1080:m 1076:m 1072:c 1068:m 1064:m 1060:c 1035:) 1030:m 1025:( 1022:O 1019:+ 1016:2 1012:/ 1008:m 977:4 973:/ 969:) 965:m 956:3 948:( 945:+ 942:2 938:/ 934:m 924:m 906:m 896:n 893:4 887:) 884:1 881:+ 878:n 875:( 872:+ 869:2 865:/ 861:m 851:n 825:2 821:n 818:+ 815:m 760:2 756:n 753:+ 750:m 708:2 704:n 701:+ 698:m 675:k 671:i 667:n 653:1 650:+ 647:n 644:= 641:2 638:+ 635:) 632:k 626:m 623:( 620:2 614:m 604:G 596:V 592:G 588:V 584:k 580:V 576:V 572:V 568:V 564:k 562:- 560:m 546:) 543:k 537:m 534:, 531:m 528:( 525:G 522:K 512:G 489:2 485:n 482:+ 479:m 463:k 449:n 426:2 422:n 419:+ 416:m 396:m 392:n 385:1 382:V 378:2 375:V 371:2 368:V 364:1 361:V 355:. 353:i 349:2 346:V 342:1 339:V 335:2 332:V 328:1 325:V 321:i 300:2 296:/ 292:m 279:m 262:2 258:/ 254:m 225:T 218:S 214:S 210:S 206:T 200:. 198:i 194:k 190:k 186:T 182:m 178:k 167:T 165:\ 163:S 159:T 151:S 147:T 123:S 119:T 115:T 111:u 100:T 98:\ 96:S 92:T 84:S 80:T 70:S 66:S 62:n 58:m 54:S

Index

computational social choice
monotone
subadditive utility
responsive
Kneser graph
chromatic number of Kneser graphs
consensus halving
Discrepancy of permutations
randomized algorithm
additive utilities
partition problem
matroid
Envy-free item allocation
Participatory budgeting algorithm
Multiwinner elections
Consensus halving
Fair division among groups
"Assigning a small agreeable set of indivisible items to multiple players"
arXiv
1606.08077
doi
10.1016/j.artint.2018.10.001
ISBN
978-1-57735-770-4





Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.