Knowledge

Bulirsch–Stoer algorithm

Source 📝

95:
because rational functions are able to approximate functions with poles rather well (compared to polynomial functions), given that there are enough higher-power terms in the denominator to account for nearby poles. While a polynomial interpolation or extrapolation only yields good results if the
103:. However, it has the advantage of requiring only one derivative evaluation per substep (asymptotically for a large number of substeps), and, in addition, as discovered by Gragg, the error of a modified midpoint step of size 96:
nearest pole is rather far outside a circle around the known data points in the complex plane, rational function interpolation or extrapolation can have remarkable accuracy even in the presence of nearby poles.
131:. This makes the modified midpoint method extremely useful to the Bulirsch–Stoer method as the accuracy increases two orders at a time when the results of separate attempts to cross the interval 145:). Furthermore, the modified midpoint method is a modification of the regular midpoint method to make it more stable, but because of the extrapolation this does not really matter ( 463: 410: 377: 369: 332: 360: 141:, p. 228), in their discussion of the method, say that rational extrapolation in this case is nearly never an improvement over polynomial interpolation ( 543: 428: 25: 252: 229: 319:, implementation of the Bulirsch–Stoer algorithm by Ernst Hairer and Gerhard Wanner (for other routines and license conditions, see their 353: 99:
The modified midpoint method by itself is a second-order method, and therefore generally inferior to fourth-order methods like the
496: 481: 240: 346: 37: 326: 64:
The idea of Richardson extrapolation is to consider a numerical calculation whose accuracy depends on the used stepsize
33: 395: 506: 400: 29: 476: 100: 80:, fitting a (chosen) analytic function to the resulting points, and then evaluating the fitting function for 486: 491: 471: 522: 390: 338: 433: 52:
because of the importance of a result about the error function of the modified midpoint method, due to
501: 453: 84: = 0, thus trying to approximate the result of the calculation with infinitely fine steps. 36:
in Richardson-type applications, and the modified midpoint method, to obtain numerical solutions to
448: 92: 418: 298: 204: 17: 91:
as fitting functions for Richardson extrapolation in numerical integration is superior to using
290: 248: 225: 196: 88: 69: 273:
Shampine, Lawrence F.; Baca, Lorraine S. (1983), "Smoothing the extrapolated midpoint rule",
443: 282: 188: 53: 40:(ODEs) with high accuracy and comparatively little computational effort. It is named after 438: 423: 221: 41: 537: 302: 208: 385: 316: 258: 179:
Deuflhard, Peter (1983), "Order and stepsize control in extrapolation methods",
45: 294: 200: 320: 166: 286: 192: 241:"Section 17.3. Richardson Extrapolation and the Bulirsch-Stoer Method" 342: 239:
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007).
76:, performing the numerical calculation with various values of 216:
Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993),
218:
Solving ordinary differential equations I: Nonstiff problems
247:(3rd ed.). New York: Cambridge University Press. 167:"Modified Midpoint Method — XMDS2 3.1.0 documentation" 370:
Numerical methods for ordinary differential equations
26:
numerical solution of ordinary differential equations
515: 462: 409: 376: 138: 245:Numerical Recipes: The Art of Scientific Computing 135:with increasing numbers of substeps are combined. 354: 8: 146: 361: 347: 339: 142: 123:each, and expressed as a power series in 87:Bulirsch and Stoer recognized that using 158: 28:which combines three powerful ideas: 7: 50:Gragg–Bulirsch–Stoer (GBS) algorithm 544:Numerical integration (quadrature) 139:Hairer, Nørsett & Wanner (1993 14: 497:Backward differentiation formula 127:, contains only even powers of 101:fourth-order Runge–Kutta method 38:ordinary differential equations 34:rational function extrapolation 1: 48:. It is sometimes called the 482:List of Runge–Kutta methods 560: 335:, implementation in Java. 329:, implementation in C++. 321:Fortran and Matlab Codes 147:Shampine & Baca 1983 30:Richardson extrapolation 22:Bulirsch–Stoer algorithm 487:Linear multistep method 492:General linear methods 472:Exponential integrator 523:Symplectic integrator 507:Gauss–Legendre method 275:Numerische Mathematik 181:Numerische Mathematik 464:Higher-order methods 454:Leapfrog integration 411:Second-order methods 220:, Berlin, New York: 93:polynomial functions 24:is a method for the 477:Runge–Kutta methods 449:Newmark-beta method 396:Semi-implicit Euler 378:First-order methods 333:Apache Commons Math 434:Beeman's algorithm 419:Verlet integration 287:10.1007/BF01390211 193:10.1007/BF01418332 89:rational functions 18:numerical analysis 531: 530: 401:Exponential Euler 254:978-0-521-88068-8 231:978-3-540-56670-0 111:substeps of size 70:analytic function 551: 429:Trapezoidal rule 363: 356: 349: 340: 305: 269: 267: 266: 257:. Archived from 234: 211: 171: 170: 163: 107:, consisting of 72:of the stepsize 68:as an (unknown) 60:Underlying ideas 54:William B. Gragg 559: 558: 554: 553: 552: 550: 549: 548: 534: 533: 532: 527: 511: 458: 439:Midpoint method 424:Velocity Verlet 405: 372: 367: 313: 272: 264: 262: 255: 238: 232: 222:Springer-Verlag 215: 178: 175: 174: 165: 164: 160: 155: 62: 42:Roland Bulirsch 12: 11: 5: 557: 555: 547: 546: 536: 535: 529: 528: 526: 525: 519: 517: 513: 512: 510: 509: 504: 499: 494: 489: 484: 479: 474: 468: 466: 460: 459: 457: 456: 451: 446: 441: 436: 431: 426: 421: 415: 413: 407: 406: 404: 403: 398: 393: 391:Backward Euler 388: 382: 380: 374: 373: 368: 366: 365: 358: 351: 343: 337: 336: 330: 324: 312: 311:External links 309: 308: 307: 281:(2): 165–175, 270: 253: 236: 230: 213: 187:(3): 399–422, 173: 172: 157: 156: 154: 151: 143:Deuflhard 1983 61: 58: 13: 10: 9: 6: 4: 3: 2: 556: 545: 542: 541: 539: 524: 521: 520: 518: 514: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 469: 467: 465: 461: 455: 452: 450: 447: 445: 444:Heun's method 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 416: 414: 412: 408: 402: 399: 397: 394: 392: 389: 387: 384: 383: 381: 379: 375: 371: 364: 359: 357: 352: 350: 345: 344: 341: 334: 331: 328: 327:BOOST library 325: 322: 318: 315: 314: 310: 304: 300: 296: 292: 288: 284: 280: 276: 271: 261:on 2011-08-11 260: 256: 250: 246: 242: 237: 233: 227: 223: 219: 214: 210: 206: 202: 198: 194: 190: 186: 182: 177: 176: 168: 162: 159: 152: 150: 148: 144: 140: 136: 134: 130: 126: 122: 118: 114: 110: 106: 102: 97: 94: 90: 85: 83: 79: 75: 71: 67: 59: 57: 55: 51: 47: 43: 39: 35: 32:, the use of 31: 27: 23: 19: 386:Euler method 278: 274: 263:. Retrieved 259:the original 244: 217: 184: 180: 161: 137: 132: 128: 124: 120: 116: 112: 108: 104: 98: 86: 81: 77: 73: 65: 63: 49: 21: 15: 46:Josef Stoer 265:2011-08-17 153:References 303:121097742 295:0029-599X 209:121911947 201:0029-599X 538:Category 502:Yoshida 516:Theory 323:page). 317:ODEX.F 301:  293:  251:  228:  207:  199:  20:, the 299:S2CID 205:S2CID 291:ISSN 249:ISBN 226:ISBN 197:ISSN 44:and 283:doi 189:doi 149:). 16:In 540:: 297:, 289:, 279:41 277:, 243:. 224:, 203:, 195:, 185:41 183:, 115:= 56:. 362:e 355:t 348:v 306:. 285:: 268:. 235:. 212:. 191:: 169:. 133:H 129:h 125:h 121:n 119:/ 117:H 113:h 109:n 105:H 82:h 78:h 74:h 66:h

Index

numerical analysis
numerical solution of ordinary differential equations
Richardson extrapolation
rational function extrapolation
ordinary differential equations
Roland Bulirsch
Josef Stoer
William B. Gragg
analytic function
rational functions
polynomial functions
fourth-order Runge–Kutta method
Hairer, Nørsett & Wanner (1993
Deuflhard 1983
Shampine & Baca 1983
"Modified Midpoint Method — XMDS2 3.1.0 documentation"
doi
10.1007/BF01418332
ISSN
0029-599X
S2CID
121911947
Springer-Verlag
ISBN
978-3-540-56670-0
"Section 17.3. Richardson Extrapolation and the Bulirsch-Stoer Method"
ISBN
978-0-521-88068-8
the original
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.