Knowledge (XXG)

Bastnäsite

Source 📝

801:(Molybdenum Corporation of America). The lanthanide composition of the ore included 0.1% europium oxide, which was needed by the color television industry, to provide the red phosphor, to maximize picture brightness. The composition of the lanthanides was about 49% cerium, 33% lanthanum, 12% neodymium, and 5% praseodymium, with some samarium and gadolinium, or distinctly more lanthanum and less neodymium and heavies as compared to commercial monazite. The europium content was at least double that of a typical monazite. Mountain Pass bastnäsite was the world's major source of lanthanides from the 1960s to the 1980s. Thereafter, China became an increasingly important rare earth supply. Chinese deposits of bastnäsite include several in 845:, and purify the other individual components of the ore. A further product included a lanthanide mix, depleted of much of the cerium, and essentially all of samarium and heavier lanthanides. The calcination of bastnäsite had driven off the carbon dioxide content, leaving an oxide-fluoride, in which the cerium content had become oxidized to the less basic quadrivalent state. However, the high temperature of the calcination gave less-reactive oxide, and the use of hydrochloric acid, which can cause reduction of quadrivalent cerium, led to an incomplete separation of cerium and the trivalent lanthanides. By contrast, in China, processing of bastnäsite, after concentration, starts with heating with 858: 532: 813:, which had been discovered early in the 20th century, but not exploited until much later. Bayan Obo is currently (2008) providing the majority of the world's lanthanides. Bayan Obo bastnäsite occurs in association with monazite (plus enough magnetite to sustain one of the largest steel mills in China), and unlike carbonatite bastnäsites, is relatively closer to monazite lanthanide compositions, with the exception of its generous 0.2% content of europium. 606: 32: 485: 355: 833:. Marketable products include each of the major intermediates of the ore dressing process: flotation concentrate, acid-washed flotation concentrate, calcined acid washed bastnäsite, and finally a cerium concentrate, which was the insoluble residue left after the calcined bastnäsite had been leached with 797:. This discovery alerted geologists to the existence of a whole new class of rare earth deposit: the rare earth containing carbonatite. Other examples were soon recognized, particularly in Africa and China. The exploitation of this deposit began in the mid-1960s after it had been purchased by 772:
OH crystals changes progressively to more complex spherulitic or dendritic morphologies. The development of these crystal morphologies has been suggested to be controlled by the level at which supersaturation is reached in the aqueous solution during the breakdown of the amorphous precursor. At
879:
Steam is consistently used to condition the ground ore, along with soda ash fluosilicate, and usually Tail Oil C-30. This is done to coat the various types of rare earth metals with either flocculent, collectors, or modifiers for easier separation in the next
520:
F. There is little difference in the three in terms of physical properties and most bastnäsite is bastnäsite-(Ce). Cerium in most natural bastnäsites usually dominates the others. Bastnäsite and the
589:
Bastnäsite forms a series with the minerals hydroxylbastnäsite-(Ce) and hydroxylbastnäsite-(Nd). The three are members of a substitution series that involves the possible substitution of
865:
Bastnäsite ore is typically used to produce rare-earth metals. The following steps and process flow diagram detail the rare-earth-metal extraction process from the ore.
777:) the amorphous precursor breaks down rapidly and the fast supersaturation promotes spherulitic growth. At a lower temperature (e.g., 165 °C) and slow heating (100 1264:
Vallina, B., Rodriguez-Blanco, J. D., Blanco, J. A. and Benning, L. G. (2014) The effect of heating on the morphology of crystalline neodymium hydroxycarbonate, NdCO
1314:
Dana's System of Mineralogy, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. (Seventh Edition)"
781:) the supersaturation levels are approached more slowly than required for spherulitic growth, and thus more regular triangular pyramidal shapes form. 673:
Although a scarce mineral and never in great concentrations, it is one of the more common rare-earth carbonates. Bastnäsite has been found in karst
1075: 857: 908:
Solvents are added (solvent type and concentration based on area, availability, and cost) to help separate Eu, Sm, and Gd from La, Nd, and Pr.
1163: 1129: 821:
At Mountain Pass, bastnäsite ore was finely ground, and subjected to flotation to separate the bulk of the bastnäsite from the accompanying
1355: 610: 414:
F. Some of the bastnäsites contain OH instead of F and receive the name of hydroxylbastnasite. Most bastnäsite is bastnäsite-(Ce), and
768:
OH) can also occur via the crystallization of a rare-earth bearing amorphous precursor. With increasing temperature, the habit of NdCO
582:) added to two formula units of bastnäsite. In fact, the two have been shown to alter back and forth with the addition or loss of CaCO 1269: 1105: 794: 88: 1186:
Sahlström, Fredrik; Jonsson, Erik; Högdahl, Karin; Troll, Valentin R.; Harris, Chris; Jolis, Ester M.; Weis, Franz (2019-10-23).
895:
Oxidizing roast further concentrates the solution to approximately 85% REO. This is done at ~100 °C and higher if necessary.
892:
Add HCl to solution to reduce pH to < 5. This enables certain REM (rare-earth metals) to become soluble (Ce is an example).
535:
Crystal structure of bastnäsite-(Ce). Color code: carbon, C, blue-gray; fluorine, F, green; cerium, Ce, white; oxygen, O, red.
195:
Tabular to equant striated crystals, deep grooves may resemble thin plates stack, oriented overgrowths, also granular, massive
1335: 244: 1283:
The Principal Rare Earth Elements Deposits of the United States -- A Summary of Domestic Deposits and a Global Perspective.
1188:"Interaction between high-temperature magmatic fluids and limestone explains 'Bastnäs-type' REE deposits in central Sweden" 790: 718: 277: 1330: 1281:
Long, Keith R., Bradley S. Van Gosen, Nora K. Foley, and Daniel Cordier. "Scientific Investigations Report 2010--5220".
1350: 1340: 452:. Bastnäsite also occurs as very high-quality specimens at the Zagi Mountains, Pakistan. Bastnäsite occurs in alkali 1345: 869:
After extraction, bastnasite ore is typically used in this process, with an average of 7% REO (rare-earth oxides).
103: 504:
in its generalized formula but officially the mineral is divided into three minerals based on the predominant
725:, US. At Mountain Pass, bastnäsite is the leading ore mineral. Some bastnäsite has been found in the unusual 642: 618: 78: 750: 234: 224: 1072: 1252: 1199: 995: 661:
in 1839. Hisinger, who was also the owner of the Bastnäs mine, chose to name one of the new minerals
650: 267: 257: 488:
Bastnäsite crystal from the Manitou District, El Paso County, Colorado, USA (size: 4.3×3.8×3.3 cm)
1013: 838: 830: 738: 505: 426: 210: 923:
Solvent is recycled into step 11. Additional solvent is added based on concentration and purity.
531: 1235: 1217: 1159: 1125: 1101: 834: 419: 149: 53: 1225: 1207: 1003: 802: 646: 638: 433: 305: 287: 200: 60: 1033: 861:
Process flow diagram for pyrometallurgy extraction of rare-earth metals from bastnasite ore
574:) and a different ratio of constituent ions. Parisite could be viewed as a formula unit of 418:
is by far the most common of the rare earths in this class of minerals. Bastnäsite and the
1079: 948:
typically added at a very high molarity (1–5 M), depending on La concentration and amount.
544: 883:
Flotation using the previous chemicals to separate the gangue from the rare-earth metals.
1203: 999: 1230: 1187: 810: 730: 630: 605: 445: 98: 837:. The lanthanides that dissolved as a result of the acid treatment were subjected to 1324: 1017: 846: 798: 329: 190: 110: 1048: 758: 626: 473: 441: 31: 1153: 1119: 873: 694: 690: 484: 465: 358: 339: 158: 133: 1212: 898:
Enables solution to concentrate further and filters out large particles again.
722: 622: 437: 121: 1221: 901:
Reduction agents (based on area) are used to remove Ce as Ce carbonate or CeO
637:. Ore from the Bastnäs Mine led to the discovery of several new minerals and 806: 773:
higher temperature (e.g., 220 °C) and after rapid heating (e.g. < 1
746: 702: 658: 571: 521: 497: 461: 399: 383: 1239: 789:
In 1949, the huge carbonatite-hosted bastnäsite deposit was discovered at
1294:
McIllree, Roderick. "Kvanefjeld Project – Major Technical Breakthrough".
842: 706: 594: 590: 540: 525: 422: 387: 1091:
Beatty, Richard; 2007; Th℮ Lanthanides; Publish℮d by Marshall Cavendish.
1008: 983: 354: 1121:
The history and use of our earth's chemical elements: a reference guide
826: 742: 726: 686: 678: 674: 575: 567: 501: 457: 453: 407: 37: 528:
are the two largest sources of cerium, an important industrial metal.
1298:. Greenland Minerals and Energy LTD, 23 Feb. 2012. Web. 03 Mar. 2014. 1060: 822: 778: 754: 734: 714: 710: 698: 682: 654: 634: 508:. There is bastnäsite-(Ce) with a more accurate formula of (Ce, La)CO 493: 469: 449: 415: 391: 1100:
Gupta, C. K. (2004) Extractive metallurgy of rare earths, CRC Press
911:
Reduction agents (based on area) are used to oxidize Eu, Sm, and Gd.
604: 530: 516:
F. And finally there is bastnäsite-(Y) with a formula of (Y, Ce)CO
483: 886:
Concentrate the rare-earth metals and filter out large particles.
774: 958:
Solvent from La, Nd, and Pr separation is recycled to step 11.
512:
F. There is also bastnäsite-(La) with a formula of (La, Ce)CO
955:. HCl is added at 1 M to 5 M depending on La concentration. 1152:
Adrian P. Jones; Frances Wall; C. Terry Williams (1996).
929:
Nd and Pr separated. SX goes on for recovery and recycle.
1155:
Rare earth minerals: chemistry, origin and ore deposits
1316:
John Wiley and Sons, Inc., New York, pp. 289–291.
432:
Bastnäsite was first described by the Swedish chemist
352:
Strongly piezoelectric; dark red cathodoluminescence,
539:
Bastnäsite is closely related to the mineral series
365: 348: 344:
Faint, E > O, colorless to pale yellow or orange
338: 328: 304: 296: 286: 276: 266: 256: 243: 233: 223: 209: 199: 189: 181: 176: 148: 132: 109: 97: 87: 77: 59: 49: 44: 21: 693:, a rare carbonate igneous intrusive rock, at the 951:Another method is to add HCl to La, creating LaCl 876:using rod mills, ball mills, or autogenous mills. 425:are the two largest sources of cerium and other 889:Remove excess water by heating to ~100 °C. 657:, which was described by Hisinger in 1803, and 1312:Palache, P.; Berman H.; Frondel, C. (1960). " 1082:. Mineral Galleries. Retrieved on 2011-10-14. 8: 1044: 1042: 665:when it was first described by him in 1838. 1268:OH. Mineralogical Magazine, 78, 1391–1397. 1029: 1027: 262:Vitreous, greasy, pearly on basal partings 30: 1229: 1211: 1007: 764:The formation of hydroxylbastnasite (NdCO 856: 653:. Among these are the chemical elements 974: 964:Pr is precipitated as an oxide product. 961:Nd is precipitated as an oxide product. 205:Dauphine law, Brazil law and Japan law 18: 729:of the Langesundsfjord area, Norway; 390:minerals, which includes bastnäsite-( 7: 984:"IMA–CNMNC approved mineral symbols" 932:One way to collect La is adding HNO 611:Federally Administered Tribal Areas 609:Bastnäsite crystal, Zagi Mountain, 1063:. Mindat. Retrieved on 2011-10-14. 617:Bastnäsite gets its name from its 14: 1270:DOI: 10.1180/minmag.2014.078.6.05 926:La separated from Nd, Pr, and SX. 914:Eu is precipitated and calcified. 795:San Bernardino County, California 761:sources have also been reported. 613:, Pakistan. Size: 1.5×1.5×0.3 cm. 353: 920:Sm is precipitated as an oxide. 917:Gd is precipitated as an oxide. 853:Extraction of rare-earth metals 1285:USGS, 2010. Web. 03 Mar. 2014. 1124:. Greenwood Publishing Group. 641:by Swedish scientists such as 543:. The two are both rare-earth 402:) with a formula of (La, Ce)CO 394:) with a formula of (Ce, La)CO 382:) is one of a family of three 361:if uranium and/or thorium-rich 215:Imperfect to indistinct on {10 1: 805:, and the massive deposit at 719:Mountain Pass rare earth mine 436:in 1838. It is named for the 410:) with a formula of (Y, Ce)CO 547:, but parisite's formula of 1356:Minerals in space group 190 185:Honey-yellow, reddish brown 1372: 1213:10.1038/s41598-019-49321-8 1078:November 13, 2007, at the 282:Transparent to translucent 1036:. Handbook of mineralogy. 586:in natural environments. 29: 1118:Robert E. Krebs (2006). 115:Ditrigonal dipyramidal ( 570:(and a small amount of 36:Bastnäsite from Gakara 988:Mineralogical Magazine 862: 689:region. Also found in 614: 536: 489: 1336:Radioactive gemstones 872:The ore goes through 860: 751:Northwest Territories 608: 534: 487: 349:Other characteristics 219:0}, parting on {0001} 89:Strunz classification 651:Carl Gustav Mosander 643:Jöns Jakob Berzelius 464:. It also occurs in 1331:Lanthanide minerals 1253:Fieldtrip guidebook 1204:2019NatSR...915203S 1009:10.1180/mgm.2021.43 1000:2021MinM...85..291W 982:Warr, L.N. (2021). 427:rare-earth elements 406:F, and bastnäsite-( 166:= 9.762(1) Å; 1351:Hexagonal minerals 1341:Carbonate minerals 1192:Scientific Reports 863: 839:solvent extraction 739:Mont Saint-Hilaire 615: 537: 506:rare-earth element 490: 468:and in associated 460:and in associated 297:Optical properties 16:Family of minerals 1346:Fluorine minerals 1317: 1296:ASX Announcements 1165:978-0-412-61030-1 1131:978-0-313-33438-2 841:, to capture the 835:hydrochloric acid 639:chemical elements 420:phosphate mineral 372: 371: 172:(bastnäsite-(Ce)) 54:Carbonate mineral 1363: 1311: 1299: 1292: 1286: 1279: 1273: 1262: 1256: 1250: 1244: 1243: 1233: 1215: 1183: 1177: 1176: 1174: 1172: 1149: 1143: 1142: 1140: 1138: 1115: 1109: 1098: 1092: 1089: 1083: 1070: 1064: 1058: 1052: 1046: 1037: 1031: 1022: 1021: 1011: 979: 936:, creating La(NO 803:Sichuan Province 647:Wilhelm Hisinger 565: 545:fluorocarbonates 434:Wilhelm Hisinger 357: 306:Refractive index 288:Specific gravity 249: 218: 157:= 7.118(1)  143: 127: 118: 66: 65:(repeating unit) 34: 19: 1371: 1370: 1366: 1365: 1364: 1362: 1361: 1360: 1321: 1320: 1308: 1303: 1302: 1293: 1289: 1280: 1276: 1267: 1263: 1259: 1251: 1247: 1185: 1184: 1180: 1170: 1168: 1166: 1151: 1150: 1146: 1136: 1134: 1132: 1117: 1116: 1112: 1099: 1095: 1090: 1086: 1080:Wayback Machine 1071: 1067: 1059: 1055: 1049:Bastnasite-(Ce) 1047: 1040: 1032: 1025: 981: 980: 976: 971: 954: 947: 943: 939: 935: 904: 855: 819: 787: 771: 767: 713:; Kizilcaoren, 709:; Kangankunde, 671: 603: 585: 581: 564: 560: 556: 552: 548: 519: 515: 511: 492:Bastnäsite has 482: 413: 405: 398:F, bastnäsite-( 397: 323: 317: 315: 247: 216: 171: 170: = 6 162: 141: 125: 120: 116: 72: 64: 63: 40: 17: 12: 11: 5: 1369: 1367: 1359: 1358: 1353: 1348: 1343: 1338: 1333: 1323: 1322: 1319: 1318: 1307: 1304: 1301: 1300: 1287: 1274: 1265: 1257: 1245: 1178: 1164: 1144: 1130: 1110: 1093: 1084: 1065: 1053: 1038: 1023: 994:(3): 291–320. 973: 972: 970: 967: 966: 965: 962: 959: 956: 952: 949: 945: 941: 937: 933: 930: 927: 924: 921: 918: 915: 912: 909: 906: 902: 899: 896: 893: 890: 887: 884: 881: 877: 870: 854: 851: 818: 817:Ore technology 815: 811:Inner Mongolia 786: 785:Mining history 783: 769: 765: 731:Kola Peninsula 670: 667: 602: 599: 593:(F) ions with 583: 579: 562: 558: 554: 550: 549:Ca(Ce, La, Nd) 517: 513: 509: 481: 478: 411: 403: 395: 370: 369: 367: 363: 362: 350: 346: 345: 342: 336: 335: 334:δ = 0.101 max. 332: 326: 325: 321: 313: 308: 302: 301: 298: 294: 293: 290: 284: 283: 280: 274: 273: 270: 264: 263: 260: 254: 253: 250: 241: 240: 237: 231: 230: 227: 221: 220: 213: 207: 206: 203: 197: 196: 193: 187: 186: 183: 179: 178: 177:Identification 174: 173: 152: 146: 145: 136: 130: 129: 113: 107: 106: 101: 99:Crystal system 95: 94: 91: 85: 84: 81: 75: 74: 70: 67: 57: 56: 51: 47: 46: 42: 41: 35: 27: 26: 15: 13: 10: 9: 6: 4: 3: 2: 1368: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1328: 1326: 1315: 1310: 1309: 1305: 1297: 1291: 1288: 1284: 1278: 1275: 1271: 1261: 1258: 1254: 1249: 1246: 1241: 1237: 1232: 1227: 1223: 1219: 1214: 1209: 1205: 1201: 1197: 1193: 1189: 1182: 1179: 1167: 1161: 1157: 1156: 1148: 1145: 1133: 1127: 1123: 1122: 1114: 1111: 1107: 1106:0-415-33340-7 1103: 1097: 1094: 1088: 1085: 1081: 1077: 1074: 1069: 1066: 1062: 1057: 1054: 1051:. Webmineral. 1050: 1045: 1043: 1039: 1035: 1030: 1028: 1024: 1019: 1015: 1010: 1005: 1001: 997: 993: 989: 985: 978: 975: 968: 963: 960: 957: 950: 931: 928: 925: 922: 919: 916: 913: 910: 907: 900: 897: 894: 891: 888: 885: 882: 878: 875: 871: 868: 867: 866: 859: 852: 850: 848: 847:sulfuric acid 844: 840: 836: 832: 828: 824: 816: 814: 812: 808: 804: 800: 796: 792: 791:Mountain Pass 784: 782: 780: 776: 762: 760: 756: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 712: 708: 704: 700: 696: 692: 688: 684: 680: 676: 668: 666: 664: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 620: 619:type locality 612: 607: 600: 598: 596: 592: 587: 577: 573: 569: 546: 542: 533: 529: 527: 523: 507: 503: 499: 495: 486: 479: 477: 475: 474:metasomatites 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 430: 428: 424: 421: 417: 409: 401: 393: 389: 385: 381: 377: 368: 364: 360: 356: 351: 347: 343: 341: 337: 333: 331: 330:Birefringence 327: 324:= 1.818–1.823 320: 316:= 1.717–1.722 312: 309: 307: 303: 299: 295: 291: 289: 285: 281: 279: 275: 271: 269: 265: 261: 259: 255: 251: 246: 242: 238: 236: 232: 228: 226: 222: 214: 212: 208: 204: 202: 198: 194: 192: 191:Crystal habit 188: 184: 180: 175: 169: 165: 160: 156: 153: 151: 147: 140: 137: 135: 131: 123: 114: 112: 111:Crystal class 108: 105: 102: 100: 96: 92: 90: 86: 82: 80: 76: 69:(La, Ce, Y)CO 68: 62: 58: 55: 52: 48: 43: 39: 33: 28: 25:, bastnaesite 24: 20: 1313: 1306:Bibliography 1295: 1290: 1282: 1277: 1260: 1248: 1198:(1): 15203. 1195: 1191: 1181: 1169:. Retrieved 1158:. Springer. 1154: 1147: 1135:. Retrieved 1120: 1113: 1096: 1087: 1068: 1056: 991: 987: 977: 905:, typically. 864: 820: 788: 763: 759:Hydrothermal 691:carbonatites 677:deposits in 672: 662: 627:Riddarhyttan 616: 588: 538: 491: 466:carbonatites 442:Riddarhyttan 431: 379: 375: 374:The mineral 373: 318: 310: 300:Uniaxial (+) 167: 163: 154: 138: 22: 874:comminution 695:Fen Complex 631:Västmanland 597:(OH) ions. 480:Composition 446:Västmanland 380:bastnaesite 359:Radioactive 340:Pleochroism 278:Diaphaneity 134:Space group 1325:Categories 1171:14 October 1137:14 October 1073:Bastnasite 1061:Bastnasite 1034:Bastnäsite 969:References 749:deposits, 723:California 669:Occurrence 472:and other 462:pegmatites 440:mine near 376:bastnäsite 366:References 245:Mohs scale 122:H-M symbol 79:IMA symbol 23:Bastnäsite 1255:mcgill.ca 1222:2045-2322 1018:235729616 807:Bayan Obo 747:Thor Lake 703:Bayan Obo 663:bastnäsit 659:lanthanum 572:neodymium 566:contains 522:phosphate 498:lanthanum 384:carbonate 150:Unit cell 104:Hexagonal 1240:31645579 1076:Archived 843:europium 831:dolomite 799:Molycorp 727:granites 717:and the 707:Mongolia 685:and the 595:hydroxyl 591:fluoride 541:parisite 526:monazite 524:mineral 423:monazite 388:fluoride 292:4.95–5.0 248:hardness 235:Tenacity 225:Fracture 211:Cleavage 201:Twinning 93:5.BD.20a 50:Category 1231:6811582 1200:Bibcode 996:Bibcode 827:calcite 743:Ontario 741:mines, 687:Balkans 679:Hungary 675:bauxite 623:Bastnäs 576:calcite 568:calcium 502:yttrium 470:fenites 458:syenite 454:granite 438:Bastnäs 239:Brittle 61:Formula 45:General 38:Burundi 1238:  1228:  1220:  1162:  1128:  1104:  1016:  829:, and 823:barite 755:Canada 745:, and 735:Russia 715:Turkey 711:Malawi 699:Norway 683:Greece 655:cerium 635:Sweden 625:Mine, 621:, the 494:cerium 450:Sweden 416:cerium 268:Streak 258:Luster 229:Uneven 1014:S2CID 944:. HNO 880:step. 578:(CaCO 272:White 182:Color 1236:PMID 1218:ISSN 1173:2011 1160:ISBN 1139:2011 1126:ISBN 1102:ISBN 649:and 601:Name 500:and 456:and 378:(or 119:m2) 1226:PMC 1208:doi 1004:doi 779:min 721:in 553:(CO 252:4–5 128:m2) 124:: ( 83:Bsn 1327:: 1234:. 1224:. 1216:. 1206:. 1194:. 1190:. 1041:^ 1026:^ 1012:. 1002:. 992:85 990:. 986:. 849:. 825:, 809:, 793:, 757:. 753:, 737:; 733:, 705:, 701:; 697:, 681:, 645:, 633:, 629:, 496:, 476:. 448:, 444:, 429:. 400:La 392:Ce 161:, 144:2c 1272:. 1266:3 1242:. 1210:: 1202:: 1196:9 1175:. 1141:. 1108:. 1020:. 1006:: 998:: 953:3 946:3 942:3 940:) 938:3 934:3 903:2 775:h 770:3 766:3 584:3 580:3 563:2 561:F 559:3 557:) 555:3 551:2 518:3 514:3 510:3 412:3 408:Y 404:3 396:3 386:- 322:ε 319:n 314:ω 311:n 217:1 168:Z 164:c 159:Å 155:a 142:6 139:P 126:6 117:6 73:F 71:3

Index


Burundi
Carbonate mineral
Formula
IMA symbol
Strunz classification
Crystal system
Hexagonal
Crystal class
H-M symbol
Space group
Unit cell
Å
Crystal habit
Twinning
Cleavage
Fracture
Tenacity
Mohs scale
Luster
Streak
Diaphaneity
Specific gravity
Refractive index
Birefringence
Pleochroism

Radioactive
carbonate
fluoride

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.