Knowledge

Block Wiedemann algorithm

Source 📝

2132: 1849: 1176:
in parallel for a number of vectors equal to the width of a machine word – indeed, it will normally take no longer to compute for that many vectors than for one. If you have several processors, you can compute the sequence S for a different set of random vectors in parallel on all the computers.
2127:{\displaystyle p\geq {\begin{cases}1/64,&{\text{if }}b=k+1{\text{ and }}q=2\\\left(1-{\frac {3}{2^{b-k}}}\right)^{2}\geq 1/16&{\text{if }}b\geq k+2{\text{ and }}q=2\\\left(1-{\frac {2}{q^{b-k}}}\right)^{2}\geq 1/9&{\text{if }}b\geq k+1{\text{ and }}q>2\end{cases}}} 1180:
It turns out, by a generalization of the Berlekamp–Massey algorithm to provide a sequence of small matrices, that you can take the sequence produced for a large number of vectors and generate a kernel vector of the original large matrix. You need to compute
1453: 1318: 1063: 1142: 659: 842: 1841: 567: 1371: 955: 1648: 1598: 203: 1229: 136: 753: 2269: 419: 1534: 91: 868: 270: 1741: 1675: 1507: 1480: 706: 476: 1761: 1715: 1695: 1162: 975: 888: 679: 496: 441: 330: 310: 290: 156: 65: 2210: 2390: 2415: 2240: = 4 used to compute a kernel vector of a 484603×484603 matrix of entries modulo 2−1, and hence to compute discrete logarithms in the field 1376: 1234: 2410: 2262: 444: 980: 2436: 2369: 2255: 1068: 2400: 572: 2327: 2204:
D. Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm, Math. Comp. 62 (1994), 333-350.
758: 712: 2359: 1766: 448: 501: 2199:
Wiedemann, D., "Solving sparse linear equations over finite fields," IEEE Trans. Inf. Theory IT-32, pp. 54-62, 1986.
2313: 1323: 893: 2364: 2226:-based algorithm for computing the vector generating polynomials, and describes a practical implementation with 2278: 1603: 1559: 161: 21: 1184: 1172:
The natural implementation of sparse matrix arithmetic on a computer makes it easy to compute the sequence
2223: 2220:
Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm
103: 2323: 1553: 718: 2153: 2318: 28: 1864: 2297: 2165: 335: 2219: 1512: 70: 2183: 847: 208: 2333: 2175: 1720: 1549: 2213:' (the cover material is in French but the content in English) is a reasonable description. 1653: 1485: 1458: 684: 454: 2374: 36: 2292: 1746: 1700: 1680: 1147: 960: 873: 664: 481: 426: 315: 295: 275: 141: 50: 2430: 2338: 93: 97: 32: 24: 1448:{\displaystyle t_{\max }>{\frac {d}{i_{\max }}}+{\frac {d}{j_{\max }}}+O(1)} 2179: 2187: 2354: 2247: 2211:
A study of Coppersmith's block Wiedemann algorithm using matrix polynomials
1313:{\displaystyle i=0\ldots i_{\max },j=0\ldots j_{\max },t=0\ldots t_{\max }} 2154:"Probabilistic analysis of block Wiedemann for leading invariant factors" 2405: 2395: 844:. Our hope is that this sequence, which by construction annihilates 2170: 2152:
Harrison, Gavin; Johnson, Jeremy; Saunders, B. David (2022-01-01).
1548:
The block Wiedemann algorithm can be used to calculate the leading
661:; so the minimal polynomial of the matrix annihilates the sequence 1482:
are a series of vectors of length n; but in practice you can take
2251: 1058:{\displaystyle M\sum _{i=0}^{L}q_{i}M^{i}x_{\mathrm {base} }=0} 451:
we know that this polynomial is of degree (which we will call
1509:
as a sequence of unit vectors and simply write out the first
1137:{\displaystyle \sum _{i=0}^{L}q_{i}M^{i}x_{\mathrm {base} }} 715:
allows us to calculate relatively efficiently some sequence
272:
obtained by repeatedly multiplying the vector by the matrix
2120: 654:{\displaystyle \sum _{r=0}^{n_{0}}y\cdot (p_{r}(M^{r}x))=0} 1168:
The block Wiedemann (or Coppersmith-Wiedemann) algorithm
837:{\displaystyle \sum _{i=0}^{L}q_{i}S_{y}=0\;\forall \;r} 957:. We then take advantage of the initial definition of 1852: 1769: 1749: 1723: 1703: 1683: 1656: 1606: 1562: 1515: 1488: 1461: 1379: 1326: 1237: 1187: 1150: 1071: 983: 963: 896: 876: 850: 761: 721: 687: 667: 575: 504: 484: 457: 429: 338: 332:, and consider the sequence of finite-field elements 318: 298: 278: 211: 164: 144: 106: 73: 53: 2383: 2347: 2306: 2285: 2126: 1836:{\displaystyle \sum _{i=0}^{2n-1}UM^{i}V^{T}x^{i}} 1835: 1755: 1735: 1709: 1689: 1669: 1642: 1592: 1528: 1501: 1474: 1447: 1365: 1312: 1223: 1156: 1136: 1057: 969: 949: 882: 862: 836: 747: 700: 673: 653: 561: 490: 470: 435: 413: 324: 304: 284: 264: 197: 150: 130: 85: 59: 1521: 1423: 1403: 1385: 1358: 1345: 1332: 1305: 1280: 1255: 562:{\displaystyle \sum _{r=0}^{n_{0}}p_{r}M^{r}=0} 2263: 1552:of the matrix, ie, the largest blocks of the 1366:{\displaystyle i_{\max },j_{\max },t_{\max }} 8: 950:{\displaystyle \sum _{i=0}^{L}q_{i}M^{i}x=0} 2270: 2256: 2248: 830: 826: 2169: 2103: 2083: 2073: 2061: 2042: 2033: 2003: 1983: 1973: 1961: 1942: 1933: 1903: 1883: 1870: 1859: 1851: 1827: 1817: 1807: 1785: 1774: 1768: 1748: 1722: 1702: 1682: 1661: 1655: 1628: 1623: 1605: 1578: 1573: 1561: 1520: 1514: 1493: 1487: 1466: 1460: 1422: 1413: 1402: 1393: 1384: 1378: 1357: 1344: 1331: 1325: 1304: 1279: 1254: 1236: 1215: 1205: 1192: 1186: 1149: 1144:is a hopefully non-zero kernel vector of 1118: 1117: 1107: 1097: 1087: 1076: 1070: 1033: 1032: 1022: 1012: 1002: 991: 982: 962: 932: 922: 912: 901: 895: 875: 849: 806: 797: 787: 777: 766: 760: 739: 726: 720: 692: 686: 666: 630: 617: 596: 591: 580: 574: 547: 537: 525: 520: 509: 503: 483: 462: 456: 428: 394: 343: 337: 317: 297: 277: 242: 210: 179: 178: 163: 143: 112: 111: 105: 72: 52: 1643:{\displaystyle U,V\in F_{q}^{b\times n}} 2401:Basic Linear Algebra Subprograms (BLAS) 2144: 39:of an algorithm due to Doug Wiedemann. 1593:{\displaystyle M\in F_{q}^{n\times n}} 198:{\displaystyle x=Mx_{\mathrm {base} }} 1536:entries in your vectors at each time 1224:{\displaystyle y_{i}\cdot M^{t}x_{j}} 7: 205:. Consider the sequence of vectors 131:{\displaystyle x_{\mathrm {base} }} 1128: 1125: 1122: 1119: 1043: 1040: 1037: 1034: 827: 189: 186: 183: 180: 122: 119: 116: 113: 14: 748:{\displaystyle q_{0}\ldots q_{L}} 2209:Villard's 1997 research report ' 2158:Journal of Symbolic Computation 1442: 1436: 817: 803: 642: 639: 623: 610: 312:be any other vector of length 1: 138:be a random vector of length 2222:' uses a more sophisticated 1544:Invariant Factor Calculation 414:{\displaystyle S_{y}=\left} 2453: 2314:System of linear equations 1677:is a finite field of size 713:Berlekamp–Massey algorithm 2365:Cache-oblivious algorithm 2180:10.1016/j.jsc.2021.06.005 1529:{\displaystyle i_{\max }} 86:{\displaystyle n\times n} 42: 18:block Wiedemann algorithm 2437:Numerical linear algebra 2416:General purpose software 2279:Numerical linear algebra 863:{\displaystyle y\cdot S} 423:We know that the matrix 870:, actually annihilates 449:Cayley–Hamilton theorem 265:{\displaystyle S=\left} 35:is a generalization by 2128: 1837: 1799: 1757: 1737: 1736:{\displaystyle k<b} 1711: 1691: 1671: 1644: 1594: 1530: 1503: 1476: 1449: 1367: 1314: 1225: 1158: 1138: 1092: 1059: 1007: 971: 951: 917: 884: 864: 838: 782: 749: 702: 675: 655: 603: 563: 532: 492: 472: 437: 415: 326: 306: 286: 266: 199: 152: 132: 87: 61: 2411:Specialized libraries 2324:Matrix multiplication 2319:Matrix decompositions 2129: 1838: 1770: 1758: 1743:invariant factors of 1738: 1712: 1692: 1672: 1670:{\displaystyle F_{q}} 1645: 1595: 1554:Frobenius normal form 1531: 1504: 1502:{\displaystyle y_{i}} 1477: 1475:{\displaystyle y_{i}} 1450: 1368: 1315: 1226: 1159: 1139: 1072: 1060: 987: 972: 952: 897: 885: 865: 839: 762: 750: 703: 701:{\displaystyle S_{y}} 676: 656: 576: 564: 505: 493: 473: 471:{\displaystyle n_{0}} 438: 416: 327: 307: 287: 267: 200: 153: 133: 88: 62: 43:Wiedemann's algorithm 1850: 1767: 1747: 1721: 1701: 1681: 1654: 1604: 1560: 1513: 1486: 1459: 1377: 1324: 1235: 1185: 1148: 1069: 981: 961: 894: 874: 848: 759: 719: 685: 665: 573: 502: 482: 455: 427: 336: 316: 296: 276: 209: 162: 142: 104: 71: 51: 2298:Numerical stability 1639: 1589: 2124: 2119: 1833: 1753: 1733: 1707: 1697:, the probability 1687: 1667: 1640: 1619: 1590: 1569: 1526: 1499: 1472: 1445: 1363: 1310: 1221: 1154: 1134: 1055: 967: 947: 880: 860: 834: 745: 698: 671: 651: 559: 488: 468: 445:minimal polynomial 433: 411: 322: 302: 282: 262: 195: 148: 128: 83: 57: 2424: 2423: 2106: 2086: 2054: 2006: 1986: 1954: 1906: 1886: 1763:are preserved in 1756:{\displaystyle M} 1717:that the leading 1710:{\displaystyle p} 1690:{\displaystyle q} 1550:invariant factors 1428: 1408: 1157:{\displaystyle M} 970:{\displaystyle x} 883:{\displaystyle S} 674:{\displaystyle S} 491:{\displaystyle n} 436:{\displaystyle M} 325:{\displaystyle n} 305:{\displaystyle y} 285:{\displaystyle M} 151:{\displaystyle n} 60:{\displaystyle M} 2444: 2334:Matrix splitting 2272: 2265: 2258: 2249: 2192: 2191: 2173: 2149: 2133: 2131: 2130: 2125: 2123: 2122: 2107: 2104: 2087: 2084: 2077: 2066: 2065: 2060: 2056: 2055: 2053: 2052: 2034: 2007: 2004: 1987: 1984: 1977: 1966: 1965: 1960: 1956: 1955: 1953: 1952: 1934: 1907: 1904: 1887: 1884: 1874: 1842: 1840: 1839: 1834: 1832: 1831: 1822: 1821: 1812: 1811: 1798: 1784: 1762: 1760: 1759: 1754: 1742: 1740: 1739: 1734: 1716: 1714: 1713: 1708: 1696: 1694: 1693: 1688: 1676: 1674: 1673: 1668: 1666: 1665: 1649: 1647: 1646: 1641: 1638: 1627: 1599: 1597: 1596: 1591: 1588: 1577: 1535: 1533: 1532: 1527: 1525: 1524: 1508: 1506: 1505: 1500: 1498: 1497: 1481: 1479: 1478: 1473: 1471: 1470: 1454: 1452: 1451: 1446: 1429: 1427: 1426: 1414: 1409: 1407: 1406: 1394: 1389: 1388: 1373:need to satisfy 1372: 1370: 1369: 1364: 1362: 1361: 1349: 1348: 1336: 1335: 1319: 1317: 1316: 1311: 1309: 1308: 1284: 1283: 1259: 1258: 1230: 1228: 1227: 1222: 1220: 1219: 1210: 1209: 1197: 1196: 1163: 1161: 1160: 1155: 1143: 1141: 1140: 1135: 1133: 1132: 1131: 1112: 1111: 1102: 1101: 1091: 1086: 1064: 1062: 1061: 1056: 1048: 1047: 1046: 1027: 1026: 1017: 1016: 1006: 1001: 976: 974: 973: 968: 956: 954: 953: 948: 937: 936: 927: 926: 916: 911: 889: 887: 886: 881: 869: 867: 866: 861: 843: 841: 840: 835: 816: 802: 801: 792: 791: 781: 776: 754: 752: 751: 746: 744: 743: 731: 730: 707: 705: 704: 699: 697: 696: 680: 678: 677: 672: 660: 658: 657: 652: 635: 634: 622: 621: 602: 601: 600: 590: 568: 566: 565: 560: 552: 551: 542: 541: 531: 530: 529: 519: 497: 495: 494: 489: 477: 475: 474: 469: 467: 466: 442: 440: 439: 434: 420: 418: 417: 412: 410: 406: 399: 398: 348: 347: 331: 329: 328: 323: 311: 309: 308: 303: 291: 289: 288: 283: 271: 269: 268: 263: 261: 257: 247: 246: 204: 202: 201: 196: 194: 193: 192: 157: 155: 154: 149: 137: 135: 134: 129: 127: 126: 125: 92: 90: 89: 84: 66: 64: 63: 58: 2452: 2451: 2447: 2446: 2445: 2443: 2442: 2441: 2427: 2426: 2425: 2420: 2379: 2375:Multiprocessing 2343: 2339:Sparse problems 2302: 2281: 2276: 2239: 2232: 2218:ThomĂ©'s paper ' 2196: 2195: 2151: 2150: 2146: 2141: 2136: 2118: 2117: 2105: and  2081: 2038: 2026: 2022: 2021: 2018: 2017: 2005: and  1981: 1938: 1926: 1922: 1921: 1918: 1917: 1905: and  1881: 1860: 1848: 1847: 1823: 1813: 1803: 1765: 1764: 1745: 1744: 1719: 1718: 1699: 1698: 1679: 1678: 1657: 1652: 1651: 1602: 1601: 1558: 1557: 1546: 1516: 1511: 1510: 1489: 1484: 1483: 1462: 1457: 1456: 1418: 1398: 1380: 1375: 1374: 1353: 1340: 1327: 1322: 1321: 1300: 1275: 1250: 1233: 1232: 1211: 1201: 1188: 1183: 1182: 1170: 1146: 1145: 1113: 1103: 1093: 1067: 1066: 1028: 1018: 1008: 979: 978: 959: 958: 928: 918: 892: 891: 872: 871: 846: 845: 793: 783: 757: 756: 735: 722: 717: 716: 688: 683: 682: 663: 662: 626: 613: 592: 571: 570: 543: 533: 521: 500: 499: 480: 479: 478:) no more than 458: 453: 452: 425: 424: 390: 356: 352: 339: 334: 333: 314: 313: 294: 293: 274: 273: 238: 222: 218: 207: 206: 174: 160: 159: 140: 139: 107: 102: 101: 69: 68: 49: 48: 45: 37:Don Coppersmith 12: 11: 5: 2450: 2448: 2440: 2439: 2429: 2428: 2422: 2421: 2419: 2418: 2413: 2408: 2403: 2398: 2393: 2387: 2385: 2381: 2380: 2378: 2377: 2372: 2367: 2362: 2357: 2351: 2349: 2345: 2344: 2342: 2341: 2336: 2331: 2321: 2316: 2310: 2308: 2304: 2303: 2301: 2300: 2295: 2293:Floating point 2289: 2287: 2283: 2282: 2277: 2275: 2274: 2267: 2260: 2252: 2246: 2245: 2237: 2230: 2215: 2214: 2206: 2205: 2201: 2200: 2194: 2193: 2143: 2142: 2140: 2137: 2121: 2116: 2113: 2110: 2102: 2099: 2096: 2093: 2090: 2082: 2080: 2076: 2072: 2069: 2064: 2059: 2051: 2048: 2045: 2041: 2037: 2032: 2029: 2025: 2020: 2019: 2016: 2013: 2010: 2002: 1999: 1996: 1993: 1990: 1982: 1980: 1976: 1972: 1969: 1964: 1959: 1951: 1948: 1945: 1941: 1937: 1932: 1929: 1925: 1920: 1919: 1916: 1913: 1910: 1902: 1899: 1896: 1893: 1890: 1882: 1880: 1877: 1873: 1869: 1866: 1865: 1863: 1858: 1855: 1845: 1830: 1826: 1820: 1816: 1810: 1806: 1802: 1797: 1794: 1791: 1788: 1783: 1780: 1777: 1773: 1752: 1732: 1729: 1726: 1706: 1686: 1664: 1660: 1637: 1634: 1631: 1626: 1622: 1618: 1615: 1612: 1609: 1587: 1584: 1581: 1576: 1572: 1568: 1565: 1545: 1542: 1523: 1519: 1496: 1492: 1469: 1465: 1444: 1441: 1438: 1435: 1432: 1425: 1421: 1417: 1412: 1405: 1401: 1397: 1392: 1387: 1383: 1360: 1356: 1352: 1347: 1343: 1339: 1334: 1330: 1307: 1303: 1299: 1296: 1293: 1290: 1287: 1282: 1278: 1274: 1271: 1268: 1265: 1262: 1257: 1253: 1249: 1246: 1243: 1240: 1218: 1214: 1208: 1204: 1200: 1195: 1191: 1169: 1166: 1153: 1130: 1127: 1124: 1121: 1116: 1110: 1106: 1100: 1096: 1090: 1085: 1082: 1079: 1075: 1054: 1051: 1045: 1042: 1039: 1036: 1031: 1025: 1021: 1015: 1011: 1005: 1000: 997: 994: 990: 986: 966: 946: 943: 940: 935: 931: 925: 921: 915: 910: 907: 904: 900: 879: 859: 856: 853: 833: 829: 825: 822: 819: 815: 812: 809: 805: 800: 796: 790: 786: 780: 775: 772: 769: 765: 742: 738: 734: 729: 725: 695: 691: 670: 650: 647: 644: 641: 638: 633: 629: 625: 620: 616: 612: 609: 606: 599: 595: 589: 586: 583: 579: 558: 555: 550: 546: 540: 536: 528: 524: 518: 515: 512: 508: 487: 465: 461: 432: 409: 405: 402: 397: 393: 389: 386: 383: 380: 377: 374: 371: 368: 365: 362: 359: 355: 351: 346: 342: 321: 301: 281: 260: 256: 253: 250: 245: 241: 237: 234: 231: 228: 225: 221: 217: 214: 191: 188: 185: 182: 177: 173: 170: 167: 147: 124: 121: 118: 115: 110: 82: 79: 76: 56: 44: 41: 20:for computing 13: 10: 9: 6: 4: 3: 2: 2449: 2438: 2435: 2434: 2432: 2417: 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2388: 2386: 2382: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2352: 2350: 2346: 2340: 2337: 2335: 2332: 2329: 2325: 2322: 2320: 2317: 2315: 2312: 2311: 2309: 2305: 2299: 2296: 2294: 2291: 2290: 2288: 2284: 2280: 2273: 2268: 2266: 2261: 2259: 2254: 2253: 2250: 2243: 2236: 2233: =  2229: 2225: 2221: 2217: 2216: 2212: 2208: 2207: 2203: 2202: 2198: 2197: 2189: 2185: 2181: 2177: 2172: 2167: 2163: 2159: 2155: 2148: 2145: 2138: 2135: 2114: 2111: 2108: 2100: 2097: 2094: 2091: 2088: 2078: 2074: 2070: 2067: 2062: 2057: 2049: 2046: 2043: 2039: 2035: 2030: 2027: 2023: 2014: 2011: 2008: 2000: 1997: 1994: 1991: 1988: 1978: 1974: 1970: 1967: 1962: 1957: 1949: 1946: 1943: 1939: 1935: 1930: 1927: 1923: 1914: 1911: 1908: 1900: 1897: 1894: 1891: 1888: 1878: 1875: 1871: 1867: 1861: 1856: 1853: 1844: 1828: 1824: 1818: 1814: 1808: 1804: 1800: 1795: 1792: 1789: 1786: 1781: 1778: 1775: 1771: 1750: 1730: 1727: 1724: 1704: 1684: 1662: 1658: 1635: 1632: 1629: 1624: 1620: 1616: 1613: 1610: 1607: 1585: 1582: 1579: 1574: 1570: 1566: 1563: 1555: 1551: 1543: 1541: 1539: 1517: 1494: 1490: 1467: 1463: 1439: 1433: 1430: 1419: 1415: 1410: 1399: 1395: 1390: 1381: 1354: 1350: 1341: 1337: 1328: 1301: 1297: 1294: 1291: 1288: 1285: 1276: 1272: 1269: 1266: 1263: 1260: 1251: 1247: 1244: 1241: 1238: 1216: 1212: 1206: 1202: 1198: 1193: 1189: 1178: 1175: 1167: 1165: 1151: 1114: 1108: 1104: 1098: 1094: 1088: 1083: 1080: 1077: 1073: 1052: 1049: 1029: 1023: 1019: 1013: 1009: 1003: 998: 995: 992: 988: 984: 964: 944: 941: 938: 933: 929: 923: 919: 913: 908: 905: 902: 898: 890:; so we have 877: 857: 854: 851: 831: 823: 820: 813: 810: 807: 798: 794: 788: 784: 778: 773: 770: 767: 763: 740: 736: 732: 727: 723: 714: 709: 693: 689: 668: 648: 645: 636: 631: 627: 618: 614: 607: 604: 597: 593: 587: 584: 581: 577: 556: 553: 548: 544: 538: 534: 526: 522: 516: 513: 510: 506: 485: 463: 459: 450: 446: 430: 421: 407: 403: 400: 395: 391: 387: 384: 381: 378: 375: 372: 369: 366: 363: 360: 357: 353: 349: 344: 340: 319: 299: 279: 258: 254: 251: 248: 243: 239: 235: 232: 229: 226: 223: 219: 215: 212: 175: 171: 168: 165: 145: 108: 99: 95: 94:square matrix 80: 77: 74: 54: 40: 38: 34: 30: 26: 23: 19: 2286:Key concepts 2241: 2234: 2227: 2161: 2157: 2147: 1846: 1547: 1537: 1179: 1173: 1171: 710: 422: 98:finite field 46: 33:finite field 17: 15: 2328:algorithms 2171:1803.03864 2164:: 98–116. 2139:References 681:and hence 158:, and let 96:over some 2355:CPU cache 2188:0747-7171 2092:≥ 2068:≥ 2047:− 2031:− 1992:≥ 1968:≥ 1947:− 1931:− 1857:≥ 1793:− 1772:∑ 1633:× 1617:∈ 1583:× 1567:∈ 1556:. Given 1298:… 1273:… 1248:… 1231:for some 1199:⋅ 1074:∑ 989:∑ 899:∑ 855:⋅ 828:∀ 764:∑ 733:… 608:⋅ 578:∑ 507:∑ 447:; by the 404:… 388:⋅ 373:⋅ 361:⋅ 255:… 78:× 2431:Category 2384:Software 2348:Hardware 2307:Problems 2085:if  1985:if  1885:if  711:But the 569:. Then 1065:and so 977:to say 100:F, let 31:over a 25:vectors 2406:LAPACK 2396:MATLAB 2186:  1650:where 1320:where 498:. Say 443:has a 292:; let 67:be an 29:matrix 22:kernel 2391:ATLAS 2166:arXiv 755:with 27:of a 2370:SIMD 2244:(2). 2184:ISSN 2112:> 1728:< 1600:and 1455:and 1391:> 47:Let 16:The 2360:TLB 2238:max 2231:max 2224:FFT 2176:doi 2162:108 1843:is 1522:max 1424:max 1404:max 1386:max 1359:max 1346:max 1333:max 1306:max 1281:max 1256:max 2433:: 2242:GF 2182:. 2174:. 2160:. 2156:. 2134:. 1979:16 1876:64 1540:. 1164:. 708:. 2330:) 2326:( 2271:e 2264:t 2257:v 2235:j 2228:i 2190:. 2178:: 2168:: 2115:2 2109:q 2101:1 2098:+ 2095:k 2089:b 2079:9 2075:/ 2071:1 2063:2 2058:) 2050:k 2044:b 2040:q 2036:2 2028:1 2024:( 2015:2 2012:= 2009:q 2001:2 1998:+ 1995:k 1989:b 1975:/ 1971:1 1963:2 1958:) 1950:k 1944:b 1940:2 1936:3 1928:1 1924:( 1915:2 1912:= 1909:q 1901:1 1898:+ 1895:k 1892:= 1889:b 1879:, 1872:/ 1868:1 1862:{ 1854:p 1829:i 1825:x 1819:T 1815:V 1809:i 1805:M 1801:U 1796:1 1790:n 1787:2 1782:0 1779:= 1776:i 1751:M 1731:b 1725:k 1705:p 1685:q 1663:q 1659:F 1636:n 1630:b 1625:q 1621:F 1614:V 1611:, 1608:U 1586:n 1580:n 1575:q 1571:F 1564:M 1538:t 1518:i 1495:i 1491:y 1468:i 1464:y 1443:) 1440:1 1437:( 1434:O 1431:+ 1420:j 1416:d 1411:+ 1400:i 1396:d 1382:t 1355:t 1351:, 1342:j 1338:, 1329:i 1302:t 1295:0 1292:= 1289:t 1286:, 1277:j 1270:0 1267:= 1264:j 1261:, 1252:i 1245:0 1242:= 1239:i 1217:j 1213:x 1207:t 1203:M 1194:i 1190:y 1174:S 1152:M 1129:e 1126:s 1123:a 1120:b 1115:x 1109:i 1105:M 1099:i 1095:q 1089:L 1084:0 1081:= 1078:i 1053:0 1050:= 1044:e 1041:s 1038:a 1035:b 1030:x 1024:i 1020:M 1014:i 1010:q 1004:L 999:0 996:= 993:i 985:M 965:x 945:0 942:= 939:x 934:i 930:M 924:i 920:q 914:L 909:0 906:= 903:i 878:S 858:S 852:y 832:r 824:0 821:= 818:] 814:r 811:+ 808:i 804:[ 799:y 795:S 789:i 785:q 779:L 774:0 771:= 768:i 741:L 737:q 728:0 724:q 694:y 690:S 669:S 649:0 646:= 643:) 640:) 637:x 632:r 628:M 624:( 619:r 615:p 611:( 605:y 598:0 594:n 588:0 585:= 582:r 557:0 554:= 549:r 545:M 539:r 535:p 527:0 523:n 517:0 514:= 511:r 486:n 464:0 460:n 431:M 408:] 401:x 396:2 392:M 385:y 382:, 379:x 376:M 370:y 367:, 364:x 358:y 354:[ 350:= 345:y 341:S 320:n 300:y 280:M 259:] 252:, 249:x 244:2 240:M 236:, 233:x 230:M 227:, 224:x 220:[ 216:= 213:S 190:e 187:s 184:a 181:b 176:x 172:M 169:= 166:x 146:n 123:e 120:s 117:a 114:b 109:x 81:n 75:n 55:M

Index

kernel
vectors
matrix
finite field
Don Coppersmith
square matrix
finite field
minimal polynomial
Cayley–Hamilton theorem
Berlekamp–Massey algorithm
invariant factors
Frobenius normal form
"Probabilistic analysis of block Wiedemann for leading invariant factors"
arXiv
1803.03864
doi
10.1016/j.jsc.2021.06.005
ISSN
0747-7171
A study of Coppersmith's block Wiedemann algorithm using matrix polynomials
Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm
FFT
v
t
e
Numerical linear algebra
Floating point
Numerical stability
System of linear equations
Matrix decompositions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑