Knowledge (XXG)

CD28 family receptor

Source 📝

142:
as well as CD8 cells. As a result, there are reduced levels of CD8 cells, which express CD28, in individuals with HIV. With regards to subjects with both Hepatitis C Virus (HCV) and HIV, levels of CD8 cells are also reduced. CD28 signaling has a large role in the adaptive response to HCV and can increase morbidity for HCV/HIV coinfection within a subject. CD28 induces IL-2 secretion that increases IL-2 mRNA stability. CD28 costimulation influences the expression of key genes expressed in T cell differentiation. Tat, a regulatory protein that regulates viral transcription, increases the transcription of the HIV dsDNA. CD28 costimulation with the Tat protein can contribute to chronic immune hyperactivation seen among HIV-infected individuals. Thus, CD28 is an essential part of therapeutics for the infection and pathogenesis of HIV.
86:
receptors causes epigenetic, transcriptional and post-translational alterations in T cells. Specifically, CD28 costimulation controls many aspects within T cells, one being the expression of proinflammatory cytokine genes. A particular cytokine gene encodes for IL-2, which influences T cell proliferation, survival, and differentiation. The absence of CD28 costimulation results in the loss of IL-2 production causing the T cells to be anergic. Additionally, CD28 ligation causes arginine-methylation for many proteins. CD28 also drives transcription within T cells and produce signals that lead to IL-2 production and Bcl-xL regulation, an antiapoptotic protein, which are essential for T cell survival. CD28 receptors can be seen on 80% of human CD4+ and 50% of CD8+ T cells, in which this percentage decreases with age.
133:
antiapoptotic gene, and secrete cytokines with the help of CD28 expression. When introduced to mice with pre-existing tumors, these T cells remove the tumors completely. The CD137 presence within the cells maintains the persistence of the engineered T cells. This interaction between engineered T cells with CD28 and CD137 are essential for immunotherapy, and show promise for directing T lymphocytes to tumor antigens and altering the tumor microenvironment for mesothelin.
20: 150:
Binding CD28 to superantigens can induce an overexpression of inflammatory cytokines which may be harmful. When CD28 interacts with coligand B7-2, these superantigens elicit T-cell hyperactivation. Superantigens can form this overexpression by controlling interactions between MHC-II and TCRs as well
141:
The CD28 pathway is targeted by the human immunodeficiency virus (HIV) as the virus infects large numbers of normal cells. CD28 has effects on the transcription and stability of interleukin-2 and IFN-γ, cytokines that are important for immunity and stimulating NK cells. HIV alters the CD28 signaling
85:
CD28 receptors aid in other T cell processes such as cytoskeletal remodeling, production of cytokines and chemokines and intracellular biochemical reactions (i.e. phosphorylation, transcriptional signaling, and metabolism) that are key for T cell proliferation and differentiation. Ligation of CD28
76:
CD28 receptors play a role in the development and proliferation of T cells. The CD28 receptors enhance signals from the T cell receptors (TCR) in order to stimulate an immune response and an anti-inflammatory response on regulatory T cells. Through the promotion of T cell function, CD28 receptors
132:
Additionally, genetically engineered T cells containing CD28 and CD137 can be used in a molecularly targeted therapy response to a type of carcinomas called mesothelin. These T cells have a high affinity for human mesothelin. Upon mesothelin stimulation, the T cells proliferate, express an
653:
Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, et al. (March 1997). "Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway".
151:
as increasing the B7-2 and CD28 costimulatory interactions. This is dangerous because the overexpression of inflammatory cytokines can cause toxic shock in an individual.
77:
allow effector T cells to combat regulatory T cell-mediated suppression from adaptive immunity. CD28 receptors also elicit the prevention of spontaneous autoimmunity.
270:
Wakamatsu E, Omori H, Ohtsuka S, Ogawa S, Green JM, Abe R (September 2018). "Regulatory T cell subsets are differentially dependent on CD28 for their proliferation".
773: 23:
The left image is a visual of CD28 attached to a T cell interacting in costimulation with B7 to activate the T cell and promote an immune response.
235:
Carreno BM, Collins M (2002). "The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses".
184: 846: 766: 759: 555:"Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains" 782: 173:"Chapter 16: Costimulatory molecules in T-cell activation and transplantation: Section 2: The CD28 receptor family" 39: 698:"Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction" 31: 709: 566: 126: 118: 751: 851: 315:"In the absence of its cytosolic domain, the CD28 molecule still contributes to T cell activation" 841: 678: 295: 101: 313:
Morin SO, Giroux V, Favre C, Bechah Y, Auphan-Anezin N, Roncagalli R, et al. (July 2015).
200:
Carreno BM, Collins M (October 2003). "BTLA: a new inhibitory receptor with a B7-like ligand".
737: 670: 635: 594: 553:
Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. (March 2009).
535: 483: 434: 385: 344: 287: 252: 217: 180: 172: 19: 614:"HIV coinfection impairs CD28-mediated costimulation of hepatitis C virus-specific CD8 cells" 248: 727: 717: 662: 625: 612:
Yonkers NL, Rodriguez B, Post AB, Asaad R, Jones L, Lederman MM, et al. (August 2006).
584: 574: 525: 517: 473: 465: 424: 416: 375: 334: 326: 279: 244: 209: 122: 696:
Levy R, Rotfogel Z, Hillman D, Popugailo A, Arad G, Supper E, et al. (October 2016).
713: 570: 732: 697: 589: 554: 530: 505: 478: 453: 429: 404: 339: 314: 506:"The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy" 835: 682: 299: 105:
of B7 ligands that bind to inhibitory CD28 family member receptors on immune cells.
666: 469: 420: 283: 380: 363: 35: 702:
Proceedings of the National Academy of Sciences of the United States of America
559:
Proceedings of the National Academy of Sciences of the United States of America
364:"Signals from CD28 induce stable epigenetic modification of the IL-2 promoter" 330: 106: 521: 213: 722: 579: 70: 741: 639: 598: 539: 487: 438: 389: 348: 291: 256: 221: 674: 810: 110: 62: 54: 99:
Some cancer cells evade destruction by the immune system through an
630: 613: 452:
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (May 2016).
403:
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (May 2016).
815: 50: 18: 820: 805: 800: 114: 69:
act as inhibitors. Ligands for the CD28 receptor family include
66: 58: 46: 755: 793: 454:"CD28 Costimulation: From Mechanism to Therapy" 405:"CD28 Costimulation: From Mechanism to Therapy" 38:. The CD28 family in turn is a subgroup of the 767: 8: 499: 497: 179:. Boston, MA: Springer US. pp. 292–8. 166: 164: 774: 760: 752: 16:Group of regulatory cell surface receptors 731: 721: 629: 588: 578: 529: 477: 428: 379: 362:Thomas RM, Gao L, Wells AD (April 2005). 338: 249:10.1146/annurev.immunol.20.091101.091806 160: 177:Immunobiology of Organ Transplantation 175:. In Burlingham WJ, Wilkes DS (eds.). 109:directed against CD28 family members 7: 319:Cellular and Molecular Life Sciences 146:Hyper-induced inflammatory cytokines 618:The Journal of Infectious Diseases 117:, or their B7 ligands function as 14: 504:Leung J, Suh WK (December 2014). 53:, act as positive regulators of 57:function while another three, 1: 667:10.1126/science.275.5305.1481 470:10.1016/j.immuni.2016.04.020 421:10.1016/j.immuni.2016.04.020 284:10.1016/j.molimm.2018.05.021 381:10.4049/jimmunol.174.8.4639 237:Annual Review of Immunology 125:and are clinically used in 868: 847:Immunoglobulin superfamily 783:Immunoglobulin superfamily 171:Arch RH, Green JM (2012). 40:immunoglobulin superfamily 30:are a group of regulatory 331:10.1007/s00018-015-1873-7 522:10.4110/in.2014.14.6.265 214:10.1016/j.it.2003.08.005 723:10.1073/pnas.1603321113 580:10.1073/pnas.0813101106 100: 32:cell surface receptors 24: 787:CD28 family receptors 368:Journal of Immunology 119:checkpoint inhibitors 90:Clinical significance 28:CD28 family receptors 22: 272:Molecular Immunology 202:Trends in Immunology 127:cancer immunotherapy 45:Two family members, 714:2016PNAS..113E6437L 708:(42): E6437–E6446. 571:2009PNAS..106.3360C 121:to overcome tumor 25: 829: 828: 186:978-1-4419-8999-4 859: 776: 769: 762: 753: 746: 745: 735: 725: 693: 687: 686: 661:(5305): 1481–5. 650: 644: 643: 633: 609: 603: 602: 592: 582: 550: 544: 543: 533: 501: 492: 491: 481: 449: 443: 442: 432: 400: 394: 393: 383: 359: 353: 352: 342: 310: 304: 303: 267: 261: 260: 232: 226: 225: 197: 191: 190: 168: 123:immune tolerance 867: 866: 862: 861: 860: 858: 857: 856: 832: 831: 830: 825: 789: 780: 750: 749: 695: 694: 690: 652: 651: 647: 611: 610: 606: 552: 551: 547: 503: 502: 495: 451: 450: 446: 402: 401: 397: 361: 360: 356: 325:(14): 2739–48. 312: 311: 307: 269: 268: 264: 234: 233: 229: 199: 198: 194: 187: 170: 169: 162: 157: 148: 139: 97: 92: 83: 17: 12: 11: 5: 865: 863: 855: 854: 849: 844: 834: 833: 827: 826: 824: 823: 818: 813: 808: 803: 797: 795: 791: 790: 781: 779: 778: 771: 764: 756: 748: 747: 688: 645: 631:10.1086/505582 624:(3): 391–400. 604: 545: 510:Immune Network 493: 444: 395: 374:(8): 4639–46. 354: 305: 262: 227: 192: 185: 159: 158: 156: 153: 147: 144: 138: 135: 102:overexpression 96: 93: 91: 88: 82: 79: 15: 13: 10: 9: 6: 4: 3: 2: 864: 853: 850: 848: 845: 843: 840: 839: 837: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 798: 796: 792: 788: 784: 777: 772: 770: 765: 763: 758: 757: 754: 743: 739: 734: 729: 724: 719: 715: 711: 707: 703: 699: 692: 689: 684: 680: 676: 672: 668: 664: 660: 656: 649: 646: 641: 637: 632: 627: 623: 619: 615: 608: 605: 600: 596: 591: 586: 581: 576: 572: 568: 565:(9): 3360–5. 564: 560: 556: 549: 546: 541: 537: 532: 527: 523: 519: 516:(6): 265–76. 515: 511: 507: 500: 498: 494: 489: 485: 480: 475: 471: 467: 464:(5): 973–88. 463: 459: 455: 448: 445: 440: 436: 431: 426: 422: 418: 415:(5): 973–88. 414: 410: 406: 399: 396: 391: 387: 382: 377: 373: 369: 365: 358: 355: 350: 346: 341: 336: 332: 328: 324: 320: 316: 309: 306: 301: 297: 293: 289: 285: 281: 277: 273: 266: 263: 258: 254: 250: 246: 242: 238: 231: 228: 223: 219: 215: 211: 208:(10): 524–7. 207: 203: 196: 193: 188: 182: 178: 174: 167: 165: 161: 154: 152: 145: 143: 136: 134: 130: 128: 124: 120: 116: 112: 108: 104: 103: 94: 89: 87: 80: 78: 74: 72: 68: 64: 60: 56: 52: 48: 43: 41: 37: 34:expressed on 33: 29: 21: 786: 705: 701: 691: 658: 654: 648: 621: 617: 607: 562: 558: 548: 513: 509: 461: 457: 447: 412: 408: 398: 371: 367: 357: 322: 318: 308: 275: 271: 265: 240: 236: 230: 205: 201: 195: 176: 149: 140: 131: 98: 84: 75: 44: 36:immune cells 27: 26: 73:proteins. 852:Immunology 836:Categories 278:: 92–101. 155:References 107:Antibodies 842:Receptors 794:receptors 243:: 29–53. 71:B7 family 742:27708164 683:42857507 640:16826489 599:19211796 540:25550693 488:27192564 458:Immunity 439:27192564 409:Immunity 390:15814687 349:25725801 300:49474303 292:29909367 257:11861596 222:14552835 81:Function 733:5081635 710:Bibcode 675:9045614 655:Science 590:2651342 567:Bibcode 531:4275384 479:4932896 430:4932896 340:4826669 811:CTLA-4 740:  730:  681:  673:  638:  597:  587:  538:  528:  486:  476:  437:  427:  388:  347:  337:  298:  290:  255:  220:  183:  111:CTLA-4 95:Cancer 63:CTLA-4 55:T cell 679:S2CID 296:S2CID 821:PD-1 816:ICOS 806:CD28 801:BTLA 738:PMID 671:PMID 636:PMID 595:PMID 536:PMID 484:PMID 435:PMID 386:PMID 345:PMID 288:PMID 253:PMID 218:PMID 181:ISBN 115:PD-1 67:PD-1 65:and 59:BTLA 51:ICOS 49:and 47:CD28 728:PMC 718:doi 706:113 663:doi 659:275 626:doi 622:194 585:PMC 575:doi 563:106 526:PMC 518:doi 474:PMC 466:doi 425:PMC 417:doi 376:doi 372:174 335:PMC 327:doi 280:doi 276:101 245:doi 210:doi 137:HIV 42:. 838:: 785:: 736:. 726:. 716:. 704:. 700:. 677:. 669:. 657:. 634:. 620:. 616:. 593:. 583:. 573:. 561:. 557:. 534:. 524:. 514:14 512:. 508:. 496:^ 482:. 472:. 462:44 460:. 456:. 433:. 423:. 413:44 411:. 407:. 384:. 370:. 366:. 343:. 333:. 323:72 321:. 317:. 294:. 286:. 274:. 251:. 241:20 239:. 216:. 206:24 204:. 163:^ 129:. 113:, 61:, 775:e 768:t 761:v 744:. 720:: 712:: 685:. 665:: 642:. 628:: 601:. 577:: 569:: 542:. 520:: 490:. 468:: 441:. 419:: 392:. 378:: 351:. 329:: 302:. 282:: 259:. 247:: 224:. 212:: 189:.

Index


cell surface receptors
immune cells
immunoglobulin superfamily
CD28
ICOS
T cell
BTLA
CTLA-4
PD-1
B7 family
overexpression
Antibodies
CTLA-4
PD-1
checkpoint inhibitors
immune tolerance
cancer immunotherapy


"Chapter 16: Costimulatory molecules in T-cell activation and transplantation: Section 2: The CD28 receptor family"
ISBN
978-1-4419-8999-4
doi
10.1016/j.it.2003.08.005
PMID
14552835
doi
10.1146/annurev.immunol.20.091101.091806
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.