Knowledge (XXG)

Camera resectioning

Source 📝

2327: 2784: 1477: 2720: 2016: 2393: 514: 2322:{\displaystyle {\begin{aligned}x_{1}&={\textbf {H}}I={\begin{bmatrix}h_{1}&h_{2}&h_{3}\end{bmatrix}}{\begin{bmatrix}1\\j\\0\end{bmatrix}}=h_{1}+jh_{2}\\x_{2}&={\textbf {H}}J={\begin{bmatrix}h_{1}&h_{2}&h_{3}\end{bmatrix}}{\begin{bmatrix}1\\-j\\0\end{bmatrix}}=h_{1}-jh_{2}\end{aligned}}} 1507:
Zhang's method is a camera calibration method that uses traditional calibration techniques (known calibration points) and self-calibration techniques (correspondence between the calibration points when they are in different positions). To perform a full calibration by the Zhang method, at least three
1121:
are also important although they cannot be included in the linear camera model described by the intrinsic parameter matrix. Many modern camera calibration algorithms estimate these intrinsic parameters as well in the form of non-linear optimisation techniques. This is done in the form of optimising
2814:
Selby's camera calibration method addresses the auto-calibration of X-ray camera systems. X-ray camera systems, consisting of the X-ray generating tube and a solid state detector can be modelled as pinhole camera systems, comprising 9 intrinsic and extrinsic camera parameters. Intensity based
2715:{\displaystyle {\begin{aligned}x_{1}^{T}\omega x_{1}&=\left(h_{1}+jh_{2}\right)^{T}\omega \left(h_{1}+jh_{2}\right)\\&=\left(h_{1}^{T}+jh_{2}^{T}\right)\omega \left(h_{1}+jh_{2}\right)\\&=h_{1}^{T}\omega h_{1}+j\left(h_{2}^{T}\omega h_{2}\right)\\&=0\end{aligned}}} 1508:
different images of the calibration target/gauge are required, either by moving the gauge or the camera itself. If some of the intrinsic parameters are given as data (orthogonality of the image or optical center coordinates), the number of images required can be reduced to two.
304: 833: 2756:. This involves calculating the camera's position and orientation relative to a known object in the scene. The process typically requires identifying specific points in the calibration pattern and solving for the camera's rotation and translation vectors. 2730:
Tsai's algorithm, a significant method in camera calibration, involves several detailed steps for accurately determining a camera's orientation and position in 3D space. The procedure, while technical, can be generally broken down into three main stages:
1238: 2768:. In this stage, the algorithm refines the lens distortion coefficients, addressing radial and tangential distortions. Further optimization of internal and external camera parameters is performed to enhance the calibration accuracy. 2815:
registration based on an arbitrary X-ray image and a reference model (as a tomographic dataset) can then be used to determine the relative camera parameters without the need of a special calibration body or any ground-truth data.
2743:
stage, where a series of images are captured by the camera. These images, often featuring a known calibration pattern like a checkerboard, are used to estimate intrinsic camera parameters such as focal length and optical center.
105:
The camera projection matrix is derived from the intrinsic and extrinsic parameters of the camera, and is often represented by the series of transformations; e.g., a matrix of camera intrinsic parameters, a 3 × 3
1808: 1434:
is used, light from the environment is focused on an image plane and captured. This process reduces the dimensions of the data taken in by the camera from three to two (light from a 3D scene is stored on a 2D image). Each
509:{\displaystyle {\begin{bmatrix}wu\\wv\\w\end{bmatrix}}=K\,{\begin{bmatrix}R&T\end{bmatrix}}{\begin{bmatrix}x_{w}\\y_{w}\\z_{w}\\1\end{bmatrix}}=M{\begin{bmatrix}x_{w}\\y_{w}\\z_{w}\\1\end{bmatrix}}} 568: 724: 2398: 2021: 960: 914: 2008: 1957: 1136: 2946: 1394: 1882: 1855: 691: 2771:
This structured approach has positioned Tsai's Algorithm as a pivotal technique in both academic research and practical applications within robotics and industrial metrology.
693:
are the coordinates of the source of the light ray which hits the camera sensor in world coordinates, relative to the origin of the world. By dividing the matrix product by
1668: 1271:
which denote the coordinate system transformations from 3D world coordinates to 3D camera coordinates. Equivalently, the extrinsic parameters define the position of the
1695: 1906: 1058: 2385: 2358: 1112: 1085: 1014: 987: 1828: 1715: 1535:. Subsequently, self-calibration techniques are applied to obtain the image of the absolute conic matrix. The main contribution of Zhang's method is how to, given 638: 237: 161: 1265: 594: 1735: 1633: 1613: 1593: 1573: 1553: 1529: 1414: 1333: 1313: 1293: 1034: 856: 711: 614: 288: 1743: 110:, and a translation vector. The camera projection matrix can be used to associate points in a camera's image space with locations in 3D world space. 2906: 3001:
Roger Y. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,"
2933:, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 432–437, Fort Collins, CO, USA, June 1999 2926: 1447:
There are many different approaches to calculate the intrinsic and extrinsic parameters for a specific camera setup. The most common ones are:
38: 3058: 3018: 2953:", Proceedings of the Symposium on Close-Range Photogrammetry (pp. 1-18), Falls Church, VA: American Society of Photogrammetry, (1971) 97:
where the camera projection matrices of two cameras are used to calculate the 3D world coordinates of a point viewed by both cameras.
2943: 2887: 1295:
is the position of the origin of the world coordinate system expressed in coordinates of the camera-centered coordinate system.
522: 2859: 867: 828:{\displaystyle K={\begin{bmatrix}\alpha _{x}&\gamma &u_{0}\\0&\alpha _{y}&v_{0}\\0&0&1\end{bmatrix}}} 73: 247:(i.e. they have an additional last component, which is initially, by convention, a 1), which is the most common notation in 3068: 1644: 1532: 1451: 3042: 2944:
Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry
1233:{\displaystyle {}{\begin{bmatrix}R_{3\times 3}&T_{3\times 1}\\0_{1\times 3}&1\end{bmatrix}}_{4\times 4}} 2913:, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.11, pages 1330–1334, 2000 919: 873: 1962: 1911: 244: 89: 3063: 53: 2903: 3025:, Australasian Physical & Engineering Science in Medicine, Vol.34, No.3, pages 391–400, 2011 2839: 1338: 1860: 1833: 643: 2923: 2849: 2834: 264: 23: 2854: 1649: 1118: 2824: 26:
approximating the camera that produced a given photograph or video; it determines which incoming
87:
The classic camera calibration requires special objects in the scene, which is not required in
2984: 2883: 2829: 1673: 1123: 863: 3037: 1891: 1043: 2976: 31: 30:
is associated with each pixel on the resulting image. Basically, the process determines the
2363: 2336: 1090: 1063: 992: 965: 3022: 2950: 2930: 2910: 1813: 1700: 1424: 1417: 619: 170: 121: 107: 2965:"Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices" 1244: 858:
contains 5 intrinsic parameters of the specific camera model. These parameters encompass
573: 84:
refer to the determination of only the extrinsic and intrinsic parameters, respectively.
1720: 1618: 1598: 1578: 1558: 1538: 1514: 1399: 1318: 1298: 1278: 1019: 841: 696: 599: 273: 2924:"On plane-based camera calibration: a general algorithm, singularities, applications'" 2783: 1476: 1439:
on the image plane therefore corresponds to a shaft of light from the original scene.
3052: 2844: 1272: 268: 94: 43: 3016:"Patient positioning with X-ray detector self-calibration for image guided therapy" 1037: 859: 1803:{\displaystyle I,J={\begin{bmatrix}1&\pm j&0\end{bmatrix}}^{\mathrm {T} }} 1114:
represent the principal point, which would be ideally in the center of the image.
1016:
are the inverses of the width and height of a pixel on the projection plane and
1122:
the camera and distortion parameters in the form of what is generally known as
3015: 2980: 1060:
represents the skew coefficient between the x and the y axis, and is often 0.
252: 61:
specify the camera image format (focal length, pixel size, and image origin).
2988: 27: 2964: 1315:
is often mistakenly considered the position of the camera. The position,
248: 37:
Usually, the camera parameters are represented in a 3 × 4
1555:
poses of the calibration target, extract a constrained intrinsic matrix
1531:
between the calibration target and the image plane is determined using
596:
by convention are the x and y coordinates of the pixel in the camera,
76:
or be restricted for the estimation of the intrinsic parameters only.
1511:
In a first step, an approximation of the estimated projection matrix
1431: 1436: 713:, the theoretical value for the pixel coordinates can be found. 2778: 1471: 16:
Process of estimating the parameters of a pinhole camera model
563:{\displaystyle M=K\,{\begin{bmatrix}R&T\end{bmatrix}}} 93:. Camera resectioning is often used in the application of 2752:
Following initial calibration, the algorithm undertakes
2795: 1488: 2255: 2205: 2109: 2059: 1765: 1423:
Camera calibration is often used as an early stage in
1148: 739: 541: 450: 383: 359: 313: 2396: 2366: 2339: 2019: 1965: 1914: 1894: 1863: 1836: 1816: 1746: 1723: 1703: 1676: 1652: 1621: 1601: 1581: 1561: 1541: 1517: 1402: 1341: 1321: 1301: 1281: 1247: 1139: 1093: 1066: 1046: 1022: 995: 968: 922: 876: 844: 727: 699: 646: 622: 602: 576: 525: 307: 276: 173: 124: 243:
coordinates. In both cases, they are represented in
3045:- Augmented reality lecture at TU Muenchen, Germany 2904:"A flexible new technique for camera calibration'" 2714: 2379: 2352: 2321: 2002: 1951: 1900: 1876: 1849: 1822: 1802: 1729: 1709: 1689: 1662: 1627: 1607: 1587: 1567: 1547: 1523: 1408: 1388: 1335:, of the camera expressed in world coordinates is 1327: 1307: 1287: 1259: 1232: 1106: 1079: 1052: 1028: 1008: 981: 954: 908: 850: 827: 705: 685: 632: 608: 588: 562: 508: 282: 231: 155: 1884:of course means they are also projected onto the 962:represent focal length in terms of pixels, where 22:is the process of estimating the parameters of a 2882:. Cambridge University Press. pp. 155–157. 616:is the intrinsic matrix as described below, and 3038:Zhang's Camera Calibration Method with Software 1275:and the camera's heading in world coordinates. 640:form the extrinsic matrix as described below. 2878:Richard Hartley and Andrew Zisserman (2003). 8: 290:is used to denote a projective mapping from 239:is used to represent a 3D point position in 2963:Luong, Q.-T.; Faugeras, O.D. (1997-03-01). 2774: 2360:while substituting our new expression for 2880:Multiple View Geometry in Computer Vision 2684: 2671: 2666: 2645: 2632: 2627: 2602: 2586: 2563: 2558: 2542: 2537: 2507: 2491: 2473: 2462: 2446: 2423: 2410: 2405: 2397: 2395: 2371: 2365: 2344: 2338: 2309: 2293: 2250: 2236: 2224: 2212: 2200: 2188: 2187: 2174: 2160: 2144: 2104: 2090: 2078: 2066: 2054: 2042: 2041: 2028: 2020: 2018: 1988: 1975: 1970: 1964: 1937: 1924: 1919: 1913: 1893: 1868: 1862: 1841: 1835: 1815: 1793: 1792: 1760: 1745: 1722: 1702: 1681: 1675: 1654: 1653: 1651: 1620: 1600: 1580: 1560: 1540: 1516: 1401: 1377: 1355: 1340: 1320: 1300: 1280: 1246: 1218: 1193: 1173: 1155: 1143: 1140: 1138: 1098: 1092: 1071: 1065: 1045: 1021: 1000: 994: 973: 967: 946: 927: 921: 900: 881: 875: 843: 794: 782: 763: 746: 734: 726: 698: 677: 664: 651: 645: 626: 621: 601: 575: 536: 535: 524: 485: 471: 457: 445: 418: 404: 390: 378: 354: 353: 308: 306: 275: 223: 207: 194: 181: 172: 147: 123: 2969:International Journal of Computer Vision 955:{\displaystyle \alpha _{y}=f\cdot m_{y}} 909:{\displaystyle \alpha _{x}=f\cdot m_{x}} 3003:IEEE Journal of Robotics and Automation 2870: 2003:{\displaystyle x_{2}^{T}\omega x_{2}=0} 1952:{\displaystyle x_{1}^{T}\omega x_{1}=0} 1117:Nonlinear intrinsic parameters such as 72:, although that term may also refer to 57:(position and orientation) while the 7: 163:to represent a 2D point position in 2189: 2043: 1655: 2775:Selby's method (for X-ray cameras) 2010:. The circular points project as 1869: 1865: 1842: 1838: 1794: 1463:Selby's method (for X-ray cameras) 1389:{\displaystyle C=-R^{-1}T=-R^{T}T} 14: 1877:{\displaystyle \Omega _{\infty }} 1850:{\displaystyle \Omega _{\infty }} 686:{\displaystyle x_{w},y_{w},z_{w}} 2942:Abdel-Aziz, Y.I., Karara, H.M. " 2782: 1475: 2860:Rational polynomial coefficient 3005:, Vol. RA-3, No.4, August 1987 220: 174: 144: 125: 74:photometric camera calibration 1: 1663:{\displaystyle {\textbf {H}}} 64:This process is often called 2739:The process begins with the 1888:of the absolute conic (IAC) 1810:lie on both our probe plane 1452:Direct linear transformation 66:geometric camera calibration 3059:Geometry in computer vision 3085: 3014:Boris Peter Selby et al., 1830:and on the absolute conic 2922:P. Sturm and S. Maybank, 2725: 2766:refinement of parameters 2760:Refinement of Parameters 1690:{\displaystyle x_{\pi }} 1635:calibration parameters. 118:In this context, we use 2981:10.1023/A:1007982716991 2764:The final phase is the 2333:We can actually ignore 1901:{\displaystyle \omega } 1053:{\displaystyle \gamma } 245:homogeneous coordinates 114:Homogeneous coordinates 90:camera auto-calibration 34:of the pinhole camera. 2716: 2381: 2354: 2323: 2004: 1953: 1902: 1878: 1851: 1824: 1804: 1731: 1711: 1691: 1664: 1629: 1609: 1589: 1569: 1549: 1525: 1467: 1410: 1390: 1329: 1309: 1289: 1261: 1234: 1108: 1081: 1054: 1040:in terms of distance. 1030: 1010: 983: 956: 910: 868:camera principal point 852: 829: 707: 687: 634: 610: 590: 564: 510: 284: 233: 157: 2840:Eight-point algorithm 2717: 2382: 2380:{\displaystyle x_{1}} 2355: 2353:{\displaystyle x_{2}} 2324: 2005: 1954: 1903: 1879: 1852: 1825: 1805: 1732: 1712: 1692: 1665: 1630: 1610: 1590: 1570: 1550: 1526: 1411: 1391: 1330: 1310: 1290: 1262: 1235: 1109: 1107:{\displaystyle v_{0}} 1082: 1080:{\displaystyle u_{0}} 1055: 1031: 1011: 1009:{\displaystyle m_{y}} 984: 982:{\displaystyle m_{x}} 957: 911: 853: 830: 708: 688: 635: 611: 591: 565: 511: 285: 234: 158: 3069:Stereophotogrammetry 2850:Pinhole camera model 2835:Augmented virtuality 2394: 2364: 2337: 2017: 1963: 1912: 1892: 1861: 1834: 1823:{\displaystyle \pi } 1814: 1744: 1740:The circular points 1721: 1710:{\displaystyle \pi } 1701: 1674: 1650: 1619: 1599: 1579: 1559: 1539: 1515: 1400: 1339: 1319: 1299: 1279: 1269:extrinsic parameters 1245: 1137: 1130:Extrinsic parameters 1091: 1064: 1044: 1020: 993: 966: 920: 874: 842: 725: 717:Intrinsic parameters 697: 644: 633:{\displaystyle R\,T} 620: 600: 574: 523: 305: 274: 265:pinhole camera model 232:{\displaystyle ^{T}} 171: 156:{\displaystyle ^{T}} 122: 82:interior orientation 78:Exterior orientation 59:intrinsic parameters 49:extrinsic parameters 24:pinhole camera model 2855:Perspective-n-Point 2741:initial calibration 2735:Initial Calibration 2676: 2637: 2568: 2547: 2415: 1980: 1929: 1697:on a "probe plane" 1260:{\displaystyle R,T} 870:. The parameters 864:image sensor format 589:{\displaystyle u,v} 20:Camera resectioning 3043:Camera Calibration 3021:2023-11-10 at the 2949:2019-08-02 at the 2929:2016-03-04 at the 2909:2015-12-03 at the 2825:3D pose estimation 2794:. You can help by 2712: 2710: 2662: 2623: 2554: 2533: 2401: 2377: 2350: 2319: 2317: 2280: 2244: 2131: 2098: 2000: 1966: 1949: 1915: 1898: 1874: 1847: 1820: 1800: 1786: 1727: 1707: 1687: 1660: 1625: 1605: 1585: 1565: 1545: 1521: 1487:. You can help by 1406: 1386: 1325: 1305: 1285: 1257: 1230: 1212: 1104: 1077: 1050: 1026: 1006: 979: 952: 906: 848: 825: 819: 703: 683: 630: 606: 586: 560: 554: 506: 500: 433: 372: 341: 280: 229: 153: 70:camera calibration 51:define the camera 2830:Augmented reality 2812: 2811: 2191: 2045: 1730:{\displaystyle x} 1670:that maps points 1657: 1643:Assume we have a 1628:{\displaystyle T} 1608:{\displaystyle R} 1588:{\displaystyle n} 1568:{\displaystyle K} 1548:{\displaystyle n} 1524:{\displaystyle H} 1505: 1504: 1409:{\displaystyle R} 1328:{\displaystyle C} 1308:{\displaystyle T} 1288:{\displaystyle T} 1124:bundle adjustment 1029:{\displaystyle f} 851:{\displaystyle K} 706:{\displaystyle w} 609:{\displaystyle K} 283:{\displaystyle M} 263:Referring to the 215: 202: 189: 139: 133: 39:projection matrix 3076: 3026: 3012: 3006: 2999: 2993: 2992: 2960: 2954: 2940: 2934: 2920: 2914: 2900: 2894: 2893: 2875: 2807: 2804: 2786: 2779: 2726:Tsai's algorithm 2721: 2719: 2718: 2713: 2711: 2698: 2694: 2690: 2689: 2688: 2675: 2670: 2650: 2649: 2636: 2631: 2616: 2612: 2608: 2607: 2606: 2591: 2590: 2573: 2569: 2567: 2562: 2546: 2541: 2521: 2517: 2513: 2512: 2511: 2496: 2495: 2478: 2477: 2472: 2468: 2467: 2466: 2451: 2450: 2428: 2427: 2414: 2409: 2386: 2384: 2383: 2378: 2376: 2375: 2359: 2357: 2356: 2351: 2349: 2348: 2328: 2326: 2325: 2320: 2318: 2314: 2313: 2298: 2297: 2285: 2284: 2249: 2248: 2241: 2240: 2229: 2228: 2217: 2216: 2193: 2192: 2179: 2178: 2165: 2164: 2149: 2148: 2136: 2135: 2103: 2102: 2095: 2094: 2083: 2082: 2071: 2070: 2047: 2046: 2033: 2032: 2009: 2007: 2006: 2001: 1993: 1992: 1979: 1974: 1958: 1956: 1955: 1950: 1942: 1941: 1928: 1923: 1907: 1905: 1904: 1899: 1883: 1881: 1880: 1875: 1873: 1872: 1856: 1854: 1853: 1848: 1846: 1845: 1829: 1827: 1826: 1821: 1809: 1807: 1806: 1801: 1799: 1798: 1797: 1791: 1790: 1736: 1734: 1733: 1728: 1716: 1714: 1713: 1708: 1696: 1694: 1693: 1688: 1686: 1685: 1669: 1667: 1666: 1661: 1659: 1658: 1634: 1632: 1631: 1626: 1614: 1612: 1611: 1606: 1594: 1592: 1591: 1586: 1574: 1572: 1571: 1566: 1554: 1552: 1551: 1546: 1530: 1528: 1527: 1522: 1500: 1497: 1479: 1472: 1415: 1413: 1412: 1407: 1395: 1393: 1392: 1387: 1382: 1381: 1363: 1362: 1334: 1332: 1331: 1326: 1314: 1312: 1311: 1306: 1294: 1292: 1291: 1286: 1266: 1264: 1263: 1258: 1239: 1237: 1236: 1231: 1229: 1228: 1217: 1216: 1204: 1203: 1184: 1183: 1166: 1165: 1141: 1113: 1111: 1110: 1105: 1103: 1102: 1086: 1084: 1083: 1078: 1076: 1075: 1059: 1057: 1056: 1051: 1035: 1033: 1032: 1027: 1015: 1013: 1012: 1007: 1005: 1004: 988: 986: 985: 980: 978: 977: 961: 959: 958: 953: 951: 950: 932: 931: 915: 913: 912: 907: 905: 904: 886: 885: 857: 855: 854: 849: 834: 832: 831: 826: 824: 823: 799: 798: 787: 786: 768: 767: 751: 750: 712: 710: 709: 704: 692: 690: 689: 684: 682: 681: 669: 668: 656: 655: 639: 637: 636: 631: 615: 613: 612: 607: 595: 593: 592: 587: 569: 567: 566: 561: 559: 558: 515: 513: 512: 507: 505: 504: 490: 489: 476: 475: 462: 461: 438: 437: 423: 422: 409: 408: 395: 394: 377: 376: 346: 345: 289: 287: 286: 281: 238: 236: 235: 230: 228: 227: 213: 212: 211: 200: 199: 198: 187: 186: 185: 167:coordinates and 162: 160: 159: 154: 152: 151: 137: 131: 3084: 3083: 3079: 3078: 3077: 3075: 3074: 3073: 3049: 3048: 3034: 3029: 3023:Wayback Machine 3013: 3009: 3000: 2996: 2962: 2961: 2957: 2951:Wayback Machine 2941: 2937: 2931:Wayback Machine 2921: 2917: 2911:Wayback Machine 2901: 2897: 2890: 2877: 2876: 2872: 2868: 2821: 2808: 2802: 2799: 2792:needs expansion 2777: 2762: 2754:pose estimation 2750: 2748:Pose Estimation 2737: 2728: 2709: 2708: 2696: 2695: 2680: 2661: 2657: 2641: 2614: 2613: 2598: 2582: 2581: 2577: 2532: 2528: 2519: 2518: 2503: 2487: 2486: 2482: 2458: 2442: 2441: 2437: 2436: 2429: 2419: 2392: 2391: 2367: 2362: 2361: 2340: 2335: 2334: 2316: 2315: 2305: 2289: 2279: 2278: 2272: 2271: 2262: 2261: 2251: 2243: 2242: 2232: 2230: 2220: 2218: 2208: 2201: 2180: 2170: 2167: 2166: 2156: 2140: 2130: 2129: 2123: 2122: 2116: 2115: 2105: 2097: 2096: 2086: 2084: 2074: 2072: 2062: 2055: 2034: 2024: 2015: 2014: 1984: 1961: 1960: 1933: 1910: 1909: 1890: 1889: 1864: 1859: 1858: 1837: 1832: 1831: 1812: 1811: 1785: 1784: 1779: 1771: 1761: 1759: 1742: 1741: 1719: 1718: 1699: 1698: 1677: 1672: 1671: 1648: 1647: 1641: 1617: 1616: 1597: 1596: 1577: 1576: 1557: 1556: 1537: 1536: 1513: 1512: 1501: 1495: 1492: 1485:needs expansion 1470: 1445: 1425:computer vision 1418:rotation matrix 1398: 1397: 1373: 1351: 1337: 1336: 1317: 1316: 1297: 1296: 1277: 1276: 1243: 1242: 1211: 1210: 1205: 1189: 1186: 1185: 1169: 1167: 1151: 1144: 1142: 1135: 1134: 1132: 1119:lens distortion 1094: 1089: 1088: 1067: 1062: 1061: 1042: 1041: 1018: 1017: 996: 991: 990: 969: 964: 963: 942: 923: 918: 917: 896: 877: 872: 871: 840: 839: 818: 817: 812: 807: 801: 800: 790: 788: 778: 776: 770: 769: 759: 757: 752: 742: 735: 723: 722: 719: 695: 694: 673: 660: 647: 642: 641: 618: 617: 598: 597: 572: 571: 553: 552: 547: 537: 521: 520: 499: 498: 492: 491: 481: 478: 477: 467: 464: 463: 453: 446: 432: 431: 425: 424: 414: 411: 410: 400: 397: 396: 386: 379: 371: 370: 365: 355: 340: 339: 333: 332: 323: 322: 309: 303: 302: 294:coordinates to 272: 271: 261: 219: 203: 190: 177: 169: 168: 143: 120: 119: 116: 108:rotation matrix 103: 17: 12: 11: 5: 3082: 3080: 3072: 3071: 3066: 3061: 3051: 3050: 3047: 3046: 3040: 3033: 3032:External links 3030: 3028: 3027: 3007: 2994: 2975:(3): 261–289. 2955: 2935: 2915: 2895: 2888: 2869: 2867: 2864: 2863: 2862: 2857: 2852: 2847: 2842: 2837: 2832: 2827: 2820: 2817: 2810: 2809: 2789: 2787: 2776: 2773: 2761: 2758: 2749: 2746: 2736: 2733: 2727: 2724: 2723: 2722: 2707: 2704: 2701: 2699: 2697: 2693: 2687: 2683: 2679: 2674: 2669: 2665: 2660: 2656: 2653: 2648: 2644: 2640: 2635: 2630: 2626: 2622: 2619: 2617: 2615: 2611: 2605: 2601: 2597: 2594: 2589: 2585: 2580: 2576: 2572: 2566: 2561: 2557: 2553: 2550: 2545: 2540: 2536: 2531: 2527: 2524: 2522: 2520: 2516: 2510: 2506: 2502: 2499: 2494: 2490: 2485: 2481: 2476: 2471: 2465: 2461: 2457: 2454: 2449: 2445: 2440: 2435: 2432: 2430: 2426: 2422: 2418: 2413: 2408: 2404: 2400: 2399: 2374: 2370: 2347: 2343: 2331: 2330: 2312: 2308: 2304: 2301: 2296: 2292: 2288: 2283: 2277: 2274: 2273: 2270: 2267: 2264: 2263: 2260: 2257: 2256: 2254: 2247: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2206: 2204: 2199: 2196: 2186: 2183: 2181: 2177: 2173: 2169: 2168: 2163: 2159: 2155: 2152: 2147: 2143: 2139: 2134: 2128: 2125: 2124: 2121: 2118: 2117: 2114: 2111: 2110: 2108: 2101: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2060: 2058: 2053: 2050: 2040: 2037: 2035: 2031: 2027: 2023: 2022: 1999: 1996: 1991: 1987: 1983: 1978: 1973: 1969: 1948: 1945: 1940: 1936: 1932: 1927: 1922: 1918: 1897: 1871: 1867: 1844: 1840: 1819: 1796: 1789: 1783: 1780: 1778: 1775: 1772: 1770: 1767: 1766: 1764: 1758: 1755: 1752: 1749: 1737:on the image. 1726: 1706: 1684: 1680: 1640: 1637: 1624: 1604: 1584: 1564: 1544: 1520: 1503: 1502: 1482: 1480: 1469: 1468:Zhang's method 1466: 1465: 1464: 1461: 1458: 1457:Zhang's method 1455: 1444: 1441: 1405: 1385: 1380: 1376: 1372: 1369: 1366: 1361: 1358: 1354: 1350: 1347: 1344: 1324: 1304: 1284: 1256: 1253: 1250: 1227: 1224: 1221: 1215: 1209: 1206: 1202: 1199: 1196: 1192: 1188: 1187: 1182: 1179: 1176: 1172: 1168: 1164: 1161: 1158: 1154: 1150: 1149: 1147: 1131: 1128: 1101: 1097: 1074: 1070: 1049: 1025: 1003: 999: 976: 972: 949: 945: 941: 938: 935: 930: 926: 903: 899: 895: 892: 889: 884: 880: 847: 836: 835: 822: 816: 813: 811: 808: 806: 803: 802: 797: 793: 789: 785: 781: 777: 775: 772: 771: 766: 762: 758: 756: 753: 749: 745: 741: 740: 738: 733: 730: 718: 715: 702: 680: 676: 672: 667: 663: 659: 654: 650: 629: 625: 605: 585: 582: 579: 557: 551: 548: 546: 543: 542: 540: 534: 531: 528: 517: 516: 503: 497: 494: 493: 488: 484: 480: 479: 474: 470: 466: 465: 460: 456: 452: 451: 449: 444: 441: 436: 430: 427: 426: 421: 417: 413: 412: 407: 403: 399: 398: 393: 389: 385: 384: 382: 375: 369: 366: 364: 361: 360: 358: 352: 349: 344: 338: 335: 334: 331: 328: 325: 324: 321: 318: 315: 314: 312: 279: 260: 257: 226: 222: 218: 210: 206: 197: 193: 184: 180: 176: 150: 146: 142: 136: 130: 127: 115: 112: 102: 99: 15: 13: 10: 9: 6: 4: 3: 2: 3081: 3070: 3067: 3065: 3064:Mixed reality 3062: 3060: 3057: 3056: 3054: 3044: 3041: 3039: 3036: 3035: 3031: 3024: 3020: 3017: 3011: 3008: 3004: 2998: 2995: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2959: 2956: 2952: 2948: 2945: 2939: 2936: 2932: 2928: 2925: 2919: 2916: 2912: 2908: 2905: 2899: 2896: 2891: 2889:0-521-54051-8 2885: 2881: 2874: 2871: 2865: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2845:Mixed reality 2843: 2841: 2838: 2836: 2833: 2831: 2828: 2826: 2823: 2822: 2818: 2816: 2806: 2797: 2793: 2790:This section 2788: 2785: 2781: 2780: 2772: 2769: 2767: 2759: 2757: 2755: 2747: 2745: 2742: 2734: 2732: 2705: 2702: 2700: 2691: 2685: 2681: 2677: 2672: 2667: 2663: 2658: 2654: 2651: 2646: 2642: 2638: 2633: 2628: 2624: 2620: 2618: 2609: 2603: 2599: 2595: 2592: 2587: 2583: 2578: 2574: 2570: 2564: 2559: 2555: 2551: 2548: 2543: 2538: 2534: 2529: 2525: 2523: 2514: 2508: 2504: 2500: 2497: 2492: 2488: 2483: 2479: 2474: 2469: 2463: 2459: 2455: 2452: 2447: 2443: 2438: 2433: 2431: 2424: 2420: 2416: 2411: 2406: 2402: 2390: 2389: 2388: 2372: 2368: 2345: 2341: 2310: 2306: 2302: 2299: 2294: 2290: 2286: 2281: 2275: 2268: 2265: 2258: 2252: 2245: 2237: 2233: 2225: 2221: 2213: 2209: 2202: 2197: 2194: 2184: 2182: 2175: 2171: 2161: 2157: 2153: 2150: 2145: 2141: 2137: 2132: 2126: 2119: 2112: 2106: 2099: 2091: 2087: 2079: 2075: 2067: 2063: 2056: 2051: 2048: 2038: 2036: 2029: 2025: 2013: 2012: 2011: 1997: 1994: 1989: 1985: 1981: 1976: 1971: 1967: 1946: 1943: 1938: 1934: 1930: 1925: 1920: 1916: 1895: 1887: 1817: 1787: 1781: 1776: 1773: 1768: 1762: 1756: 1753: 1750: 1747: 1738: 1724: 1704: 1682: 1678: 1646: 1638: 1636: 1622: 1602: 1595:instances of 1582: 1575:, along with 1562: 1542: 1534: 1518: 1509: 1499: 1496:December 2008 1490: 1486: 1483:This section 1481: 1478: 1474: 1473: 1462: 1460:Tsai's method 1459: 1456: 1453: 1450: 1449: 1448: 1442: 1440: 1438: 1433: 1428: 1426: 1421: 1419: 1403: 1383: 1378: 1374: 1370: 1367: 1364: 1359: 1356: 1352: 1348: 1345: 1342: 1322: 1302: 1282: 1274: 1273:camera center 1270: 1254: 1251: 1248: 1240: 1225: 1222: 1219: 1213: 1207: 1200: 1197: 1194: 1190: 1180: 1177: 1174: 1170: 1162: 1159: 1156: 1152: 1145: 1129: 1127: 1125: 1120: 1115: 1099: 1095: 1072: 1068: 1047: 1039: 1023: 1001: 997: 974: 970: 947: 943: 939: 936: 933: 928: 924: 901: 897: 893: 890: 887: 882: 878: 869: 865: 861: 845: 820: 814: 809: 804: 795: 791: 783: 779: 773: 764: 760: 754: 747: 743: 736: 731: 728: 721: 720: 716: 714: 700: 678: 674: 670: 665: 661: 657: 652: 648: 627: 623: 603: 583: 580: 577: 555: 549: 544: 538: 532: 529: 526: 501: 495: 486: 482: 472: 468: 458: 454: 447: 442: 439: 434: 428: 419: 415: 405: 401: 391: 387: 380: 373: 367: 362: 356: 350: 347: 342: 336: 329: 326: 319: 316: 310: 301: 300: 299: 298:coordinates. 297: 293: 277: 270: 269:camera matrix 266: 258: 256: 254: 250: 246: 242: 224: 216: 208: 204: 195: 191: 182: 178: 166: 148: 140: 134: 128: 113: 111: 109: 100: 98: 96: 95:stereo vision 92: 91: 85: 83: 79: 75: 71: 67: 62: 60: 56: 55: 50: 46: 45: 44:camera matrix 40: 35: 33: 29: 25: 21: 3010: 3002: 2997: 2972: 2968: 2958: 2938: 2918: 2898: 2879: 2873: 2813: 2803:October 2011 2800: 2796:adding to it 2791: 2770: 2765: 2763: 2753: 2751: 2740: 2738: 2729: 2387:as follows: 2332: 1885: 1857:. Lying on 1739: 1642: 1510: 1506: 1493: 1489:adding to it 1484: 1454:(DLT) method 1446: 1429: 1422: 1268: 1241: 1133: 1116: 1038:focal length 860:focal length 837: 518: 295: 291: 262: 255:transforms. 240: 164: 117: 104: 88: 86: 81: 77: 69: 65: 63: 58: 52: 48: 42: 36: 19: 18: 101:Formulation 41:called the 3053:Categories 2902:Z. Zhang, 2866:References 1717:to points 1645:homography 1639:Derivation 1533:DLT method 1443:Algorithms 259:Projection 253:rigid body 68:or simply 2989:1573-1405 2678:ω 2639:ω 2575:ω 2480:ω 2417:ω 2300:− 2266:− 1982:ω 1931:ω 1896:ω 1870:∞ 1866:Ω 1843:∞ 1839:Ω 1818:π 1774:± 1705:π 1683:π 1371:− 1357:− 1349:− 1223:× 1198:× 1178:× 1160:× 1048:γ 940:⋅ 925:α 894:⋅ 879:α 780:α 755:γ 744:α 28:light ray 3019:Archived 2947:Archived 2927:Archived 2907:Archived 2819:See also 1267:are the 249:robotics 1908:, thus 1430:When a 1396:(since 1036:is the 2987:  2886:  1432:camera 866:, and 519:where 214:  201:  188:  138:  132:  47:. The 1886:image 1437:pixel 1416:is a 296:pixel 292:world 241:world 165:pixel 2985:ISSN 2884:ISBN 1959:and 1615:and 1087:and 989:and 916:and 838:The 267:, a 251:and 80:and 54:pose 32:pose 2977:doi 2798:. 1491:. 1420:). 3055:: 2983:. 2973:22 2971:. 2967:. 1427:. 1126:. 862:, 570:. 2991:. 2979:: 2892:. 2805:) 2801:( 2706:0 2703:= 2692:) 2686:2 2682:h 2673:T 2668:2 2664:h 2659:( 2655:j 2652:+ 2647:1 2643:h 2634:T 2629:1 2625:h 2621:= 2610:) 2604:2 2600:h 2596:j 2593:+ 2588:1 2584:h 2579:( 2571:) 2565:T 2560:2 2556:h 2552:j 2549:+ 2544:T 2539:1 2535:h 2530:( 2526:= 2515:) 2509:2 2505:h 2501:j 2498:+ 2493:1 2489:h 2484:( 2475:T 2470:) 2464:2 2460:h 2456:j 2453:+ 2448:1 2444:h 2439:( 2434:= 2425:1 2421:x 2412:T 2407:1 2403:x 2373:1 2369:x 2346:2 2342:x 2329:. 2311:2 2307:h 2303:j 2295:1 2291:h 2287:= 2282:] 2276:0 2269:j 2259:1 2253:[ 2246:] 2238:3 2234:h 2226:2 2222:h 2214:1 2210:h 2203:[ 2198:= 2195:J 2190:H 2185:= 2176:2 2172:x 2162:2 2158:h 2154:j 2151:+ 2146:1 2142:h 2138:= 2133:] 2127:0 2120:j 2113:1 2107:[ 2100:] 2092:3 2088:h 2080:2 2076:h 2068:1 2064:h 2057:[ 2052:= 2049:I 2044:H 2039:= 2030:1 2026:x 1998:0 1995:= 1990:2 1986:x 1977:T 1972:2 1968:x 1947:0 1944:= 1939:1 1935:x 1926:T 1921:1 1917:x 1795:T 1788:] 1782:0 1777:j 1769:1 1763:[ 1757:= 1754:J 1751:, 1748:I 1725:x 1679:x 1656:H 1623:T 1603:R 1583:n 1563:K 1543:n 1519:H 1498:) 1494:( 1404:R 1384:T 1379:T 1375:R 1368:= 1365:T 1360:1 1353:R 1346:= 1343:C 1323:C 1303:T 1283:T 1255:T 1252:, 1249:R 1226:4 1220:4 1214:] 1208:1 1201:3 1195:1 1191:0 1181:1 1175:3 1171:T 1163:3 1157:3 1153:R 1146:[ 1100:0 1096:v 1073:0 1069:u 1024:f 1002:y 998:m 975:x 971:m 948:y 944:m 937:f 934:= 929:y 902:x 898:m 891:f 888:= 883:x 846:K 821:] 815:1 810:0 805:0 796:0 792:v 784:y 774:0 765:0 761:u 748:x 737:[ 732:= 729:K 701:w 679:w 675:z 671:, 666:w 662:y 658:, 653:w 649:x 628:T 624:R 604:K 584:v 581:, 578:u 556:] 550:T 545:R 539:[ 533:K 530:= 527:M 502:] 496:1 487:w 483:z 473:w 469:y 459:w 455:x 448:[ 443:M 440:= 435:] 429:1 420:w 416:z 406:w 402:y 392:w 388:x 381:[ 374:] 368:T 363:R 357:[ 351:K 348:= 343:] 337:w 330:v 327:w 320:u 317:w 311:[ 278:M 225:T 221:] 217:1 209:w 205:z 196:w 192:y 183:w 179:x 175:[ 149:T 145:] 141:1 135:v 129:u 126:[

Index

pinhole camera model
light ray
pose
projection matrix
camera matrix
pose
photometric camera calibration
camera auto-calibration
stereo vision
rotation matrix
homogeneous coordinates
robotics
rigid body
pinhole camera model
camera matrix
focal length
image sensor format
camera principal point
focal length
lens distortion
bundle adjustment
camera center
rotation matrix
computer vision
camera
pixel
Direct linear transformation

adding to it
DLT method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.