Knowledge (XXG)

Cannon–Thurston map

Source 📝

1933:(2009), (2011), and others. In particular, Bowditch's 2013 paper introduced the notion of a "stack" of Gromov-hyperbolic metric spaces and developed an alternative framework to that of Mj for proving various results about Cannon–Thurston maps. 993: 311: 2275: 2681: 3542: 1912: 1364: 1139: 4387: 4143: 5743: 5497: 2595: 4667: 4629: 614: 567: 427: 4061: 2000: 1632: 4937:
as subgroups of other relatively hyperbolic groups in many instances also induce equivariant continuous maps between their Bowditch boundaries; such maps are also referred to as Cannon–Thurston maps.
2997: 3592: 1706: 1284: 679: 516: 4748: 3852: 4300: 1521: 4451: 3451: 3356: 3292: 3243: 3182: 3133: 3061: 2134: 5010:
Pal obtained a generalization of Mitra's earlier result, about the existence of the Cannon–Thurston map for short exact sequences of word-hyperbolic groups, to relatively hyperbolic contex.
1408: 4925: 4332: 1467: 1082: 898: 5055: 4844: 4790: 4513: 4252: 3976: 2415: 2739: 3721: 3627: 4569: 2468: 2373: 5128:(2007), 1315–1355; 'This influential paper dates from the mid-1980's. Indeed, preprint versions are referenced in more than 30 published articles, going back as early as 1990.' 2316: 4880: 2206: 2066: 1849: 1800: 1230: 1201: 1168: 724: 376: 175: 139: 3778: 1575: 1038: 850: 808: 6125: 2949: 1742: 907: 201: 107: 4088: 3882: 463: 347: 237: 4474: 3410: 3387: 2157: 741:
After the paper of Cannon and Thurston generated a large amount of follow-up work, with other researchers analyzing the existence or non-existence of analogs of the map
3666: 5594: 5392:
Brian H. Bowditch (2013). "Stacks of hyperbolic spaces and ends of 3-manifolds". In Craig D. Hodgson; William H. Jaco; Martin G. Scharlemann; Stephan Tillmann (eds.).
4687: 2037: 1771: 4209: 4189: 4169: 4003: 3936: 58:
called "Group-invariant Peano curves". The preprint remained unpublished until 2007, but in the meantime had generated numerous follow-up works by other researchers.
5015:
Mj and Rafi used the Cannon–Thurston map to study which subgroups are quasiconvex in extensions of free groups and surface groups by convex cocompact subgroups of
2910: 2086: 1652: 1820: 5209: 242: 4853:
Leininger, Long and Reid used Cannon–Thurston maps to show that any finitely generated torsion-free nonfree Kleinian group with limit set equal to
4800:
with one puncture, such that this map, in a precise sense, encodes all the Cannon–Thurston maps corresponding to arbitrary ending laminations on
2215: 6486: 5977: 5401: 6256: 2600: 4580:
As an application of the result about the existence of Cannon–Thurston maps for Kleinian surface group representations, Mj proved that if
3471: 1854: 1296: 3135:
does not exist. Later Matsuda and Oguni generalized the Baker–Riley approach and showed that every non-elementary word-hyperbolic group
1090: 5201: 4337: 4093: 6172:
Christopher J. Leininger; Mahan Mj; Saul Schleimer (2011). "The universal Cannon–Thurston map and the boundary of the curve complex".
2541: 6174: 5910: 6415: 6207: 5640: 4634: 3789: 5586: 4583: 572: 525: 388: 6520: 4008: 1948: 1580: 4968:(if such a map exists) is also referred to as a Cannon–Thurston map. Of particular interest in this setting is the case where 4212: 2954: 3547: 1661: 1239: 634: 471: 4699: 3806: 6129: 5995: 5689: 5258: 4260: 1472: 4415: 3415: 3320: 3256: 3207: 3146: 3097: 3025: 6515: 5993:
Spencer Dowdall; Ilya Kapovich; Samuel J. Taylor (2016). "Cannon–Thurston maps for hyperbolic free group extensions".
5004: 4934: 2095: 5861: 3002:
By combining and iterating these constructions, Mitra produced examples of hyperbolic subgroups of hyperbolic groups
1369: 4885: 6510: 4305: 3468:
It the context of the original Cannon–Thurston paper, and for many generalizations for the Kleinin representations
1428: 1043: 859: 379: 5018: 4807: 4753: 5352: 4479: 4218: 3942: 2430: 5301: 2815:.) The original Cannon–Thurston theorem about fibered hyperbolic 3-manifolds is a special case of this result. 2378: 2705: 5797: 21: 5792: 3682: 3597: 6475:
Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures
5966:
Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures
5451: 5084: 4526: 901: 6505: 5687:
Owen Baker; Timothy R. Riley (2020). "Cannon–Thurston maps, subgroup distortion, and hyperbolic hydra".
5147: 3676: 2769: 2491: 2475: 2436: 2321: 2007: 66: 2280: 4856: 2182: 2042: 1825: 1776: 1206: 1177: 1144: 700: 352: 151: 115: 5751: 5505: 5310: 5121: 4090:
is word-hyperbolic. In this setting Dowdall, Kapovich and Taylor proved that the Cannon–Thurston map
988:{\displaystyle \rho :H\to \mathbb {P} SL(2,\mathbb {C} )=\operatorname {Isom} _{+}(\mathbb {H} ^{3})} 39: 1413:
For Kleinian representations of surface groups, the most general result in this direction is due to
35:"Group-invariant Peano curves" (eventually published in 2007) about fibered hyperbolic 3-manifolds. 6314: 3741: 3068: 3011: 1538: 1001: 813: 771: 625: 6312:
Mahan Mj; Abhijit Pal (2011). "Relative hyperbolicity, trees of spaces and Cannon–Thurston maps".
6108: 2915: 1715: 180: 83: 6450: 6424: 6395: 6349: 6323: 6291: 6265: 6216: 6154: 6087: 6061: 6030: 6004: 5945: 5919: 5870: 5832: 5806: 5724: 5698: 5649: 5635: 5548: 5226: 5182: 5156: 4389:
is uniformly finite-to-one, with a bound on the cardinality of point preimages depending only on
4066: 3860: 432: 316: 206: 4930:
Jeon and Ohshika used Cannon–Thurston maps to establish measurable rigidity for Kleinian groups.
4456: 3392: 3369: 2139: 6105:
Pritam Ghosh (2020). "Limits of conjugacy classes under iterates of hyperbolic elements of Out(
3632: 1425:
is a surface without boundary, with a finite (possibly empty) set of cusps. Then one still has
624:, so that it provides a continuous onto function from the circle onto the 2-sphere, that is, a 6482: 5973: 5397: 4945: 4672: 4520: 3359: 3306: 2772:. However, it turns out that the Cannon–Thurston map exists in many other situations as well. 2013: 1747: 682: 4194: 4174: 4148: 3982: 3921: 1941:
In a 2017 paper Mj proved the existence of the Cannon–Thurston map in the following setting:
1851:. One of important applications of this result is that in the above situation the limit set 6434: 6379: 6370:
Abhijitn Pal (2010). "Relatively hyperbolic extensions of groups and Cannon–Thurston maps".
6333: 6275: 6226: 6138: 6071: 6014: 5929: 5880: 5816: 5760: 5708: 5659: 5603: 5557: 5514: 5361: 5318: 5267: 5218: 5166: 5093: 146: 110: 55: 32: 6446: 6391: 6345: 6287: 6240: 6187: 6150: 6083: 6048:
Ilya Kapovich and Martin Lustig (2015). "Cannon–Thurston fibers for iwip automorphisms of F
6026: 5941: 5894: 5828: 5774: 5720: 5673: 5617: 5571: 5528: 5464: 5375: 5332: 5281: 5238: 5178: 5107: 5003:
Mj and Pal obtained a generalization of Mitra's earlier result for graphs of groups to the
4882:, which is not a lattice and contains no parabolic elements, has discrete commensurator in 2888: 2071: 1637: 1040:
also acts by isometries, properly discontinuously and co-compactly, on the universal cover
6442: 6387: 6341: 6283: 6236: 6183: 6146: 6079: 6022: 5937: 5890: 5824: 5770: 5716: 5669: 5613: 5567: 5524: 5460: 5371: 5328: 5277: 5234: 5174: 5103: 3078:
In a 2013 paper, Baker and Riley constructed the first example of a word-hyperbolic group
2878: 2788: 2160: 1922: 78: 51: 28: 5124:, Review of: J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 5314: 3888:) is convex-cocompact. In this case, by Mitra's general result, the Cannon–Thurston map 1917:
This result of Mj was preceded by numerous other results in the same direction, such as
5478:
Mahan Mj (2011). "Cannon–Thurston maps, i-bounded geometry and a theorem of McMullen".
4847: 2882: 2881:, where all vertex and edge groups are word-hyperbolic, and the edge-monomorphisms are 2753: 1926: 1805: 762: 750: 5562: 5543: 5272: 5253: 4171:. This result was first proved by Kapovich and Lustig under the extra assumption that 3723:
is a short exact sequence of three infinite torsion-free word-hyperbolic groups, then
20:
is any of a number of continuous group-equivariant maps between the boundaries of two
6499: 6295: 6158: 6034: 5949: 5836: 5728: 5431: 5296: 5186: 4793: 3728: 766: 6454: 6399: 6091: 2846:
is also word-hyperbolic. In this setting Mitra also described the fibers of the map
306:{\displaystyle {\tilde {S}}=\mathbb {H} ^{2}\subseteq \mathbb {H} ^{3}={\tilde {M}}} 6353: 3453:
exists and is non-injective, then there always exists a non-conical limit point of
5608: 3245:
exists and is injective. Moreover, it is known that the converse is also true: If
6254:
Woojin Jeon; Ken'ichi Ohshika (2016). "Measurable rigidity for Kleinian groups".
5449:
Mahan Mj (2009). "Cannon–Thurston maps for pared manifolds of bounded geometry".
5396:. Contemporary Mathematics, 597. American Mathematical Society. pp. 65–138. 6413:
Mahan Mj; Kasra Rafi (2018). "Algebraic ending laminations and quasiconvexity".
5480:
Actes du Séminaire de Théorie Spectrale et Géometrie. Volume 28. Année 2009–2010
5170: 2791:
word-hyperbolic subgroup, then the Cannon–Thurston map exists. (In this case if
2417:). In the same paper Mj obtains a more general version of this result, allowing 1918: 1170:. The Cannon–Thurston result can be interpreted as saying that these actions of 6383: 6337: 6018: 5933: 5366: 5347: 5297:"Local connectivity, Kleinian groups and geodesics on the blowup of the torus" 3732: 3675:
In general, it is known, as a consequence of the JSJ-decomposition theory for
3083: 621: 6438: 5664: 6231: 6202: 5855:
Woojin Jeon; Ilya Kapovich; Christopher Leininger; Ken'ichi Ohshika (2016).
5098: 5079: 2700: 2172: 1085: 2270:{\displaystyle J:G\cup \partial G\to \mathbb {H} ^{3}\cup \mathbb {S} ^{2}} 61:
In their paper Cannon and Thurston considered the following situation. Let
6075: 5820: 4393:. (However, Ghosh's result does not provide an explicit bound in terms of 3022:
is an arbitrarily high tower of exponentials, and the Cannon–Thurston map
1634:
be a discrete faithful representation without accidental parabolics. Then
761:
The original example of Cannon and Thurston can be thought of in terms of
6279: 3668:
is a finite set with cardinality bounded by a constant depending only on
2873:
In another paper Mitra considered the case where a word-hyperbolic group
2538:. Here "extends" means that the map between hyperbolic compactifications 1930: 1414: 5908:
Victor Gerasimov (2012). "Floyd maps for relatively hyperbolic groups".
3594:
is known to be uniformly finite-to-one. That means that for every point
385:
Nevertheless, Cannon and Thurston proved that this distorted inclusion
5885: 5856: 5765: 5519: 5323: 5230: 5202:"On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds" 4476:
is finite-to-one. However, it is known that in this setting for every
3939: 6142: 5712: 3196:
is a quasi-isometrically embedded subgroup of a word-hyperbolic group
5654: 5482:. Seminar on Spectral Theory and Geometry, vol. 28. Univ. Grenoble I. 5418:
Semiconjugacies between actions of topologically tame Kleinian groups
5161: 2676:{\displaystyle {\hat {i}}|_{H}=i,{\hat {i}}|_{\partial H}=\partial i} 24:
extending a discrete isometric actions of the group on those spaces.
5222: 4145:
is uniformly finite-to-one, with point preimages having cardinality
3537:{\displaystyle \rho :\pi _{1}(S)\to \mathbb {P} SL(2,\mathbb {C} ),} 1907:{\displaystyle \Lambda \rho (\pi _{1}(S))\subseteq \mathbb {S} ^{2}} 6429: 6009: 3788:
are described by the theory of "convex cocompact" subgroups of the
1712:
Here the "without accidental parabolics" assumption means that for
1359:{\displaystyle \rho :\pi _{1}(S)\to \mathbb {P} SL(2,\mathbb {C} )} 6328: 6270: 6221: 6066: 5924: 5875: 5811: 5703: 1527:
has some cusps). In this setting Mj proved the following theorem:
1134:{\displaystyle \Lambda H\subseteq \partial H^{2}=\mathbb {S} ^{1}} 745:
in various other set-ups motivated by the Cannon–Thurston result.
681:, via collapsing stable and unstable laminations of the monodromy 50:
The Cannon–Thurston map first appeared in a mid-1980s preprint of
6473: 5964: 4696:, constructed a 'universal' Cannon–Thurston map from a subset of 4382:{\displaystyle \partial i:\partial F_{n}\to \partial E_{\Gamma }} 4138:{\displaystyle \partial i:\partial F_{n}\to \partial E_{\Gamma }} 2421:
to contain parabolics, under some extra technical assumptions on
1535:
be a complete connected finite volume hyperbolic surface and let
697:
is uniformly finite-to-one, with the pre-image of every point of
3800:) determines, via the Birman short exact sequence, an extension 38:
Cannon–Thurston maps provide many natural geometric examples of
6201:
Christopher J. Leininger; Darren D. Long; Alan W. Reid (2011).
4692:
Leininger, Mj and Schleimer, given a closed hyperbolic surface
4631:
is a finitely generated Kleinian group such that the limit set
3063:
exists. Later Barker and Riley showed that one can arrange for
2590:{\displaystyle {\hat {i}}:H\cup \partial H\to G\cup \partial G} 1421:
be a complete connected finite volume hyperbolic surface. Thus
6203:"Commensurators of finitely generated nonfree Kleinian groups" 5254:"The boundary of the Gieseking tree in hyperbolic three-space" 5636:"Cannon–Thurston maps for trees of hyperbolic metric spaces" 5145:
Mahan Mj (2014). "Cannon–Thurston maps for surface groups".
4816: 4762: 4662:{\displaystyle \Lambda \subseteq \partial \mathbb {H} ^{3}} 2885:. In this setting Mitra proved that for every vertex group 313:. This inclusion is highly distorted because the action of 5793:"On Cannon–Thurston maps for relatively hyperbolic groups" 4624:{\displaystyle \Gamma \leq \mathbb {P} SL(2,\mathbb {C} )} 2756:(i.e. quasiconvex) subgroup, then the Cannon–Thurston map 609:{\displaystyle \mathbb {S} ^{2}=\partial \mathbb {H} ^{3}} 562:{\displaystyle \mathbb {S} ^{1}=\partial \mathbb {H} ^{2}} 422:{\displaystyle \mathbb {H} ^{2}\subseteq \mathbb {H} ^{3}} 4408:
is a word-hyperbolic subgroup of a word-hyperbolic group
4056:{\displaystyle 1\to F_{n}\to E_{\Gamma }\to \Gamma \to 1} 3313:
is a word-hyperbolic subgroup of a word-hyperbolic group
3249:
is a word-hyperbolic subgroup of a word-hyperbolic group
1995:{\displaystyle \rho :G\to \mathbb {P} SL(2,\mathbb {C} )} 1627:{\displaystyle \rho :H\to \mathbb {P} SL(2,\mathbb {C} )} 3911:
determined by Γ. This description implies that map
3780:
is the fundamental group of a closed hyperbolic surface
3907:
are described by a collection of ending laminations on
2992:{\displaystyle \partial i:\partial A_{v}\to \partial G} 693:. In particular, this description implies that the map 27:
The notion originated from a seminal 1980s preprint of
6481:. World Sci. Publ., Hackensack, NJ. pp. 885–917. 5972:. World Sci. Publ., Hackensack, NJ. pp. 885–917. 5544:"Cannon–Thurston maps for hyperbolic group extensions" 5348:"The Cannon–Thurston map for punctured-surface groups" 3587:{\displaystyle j:\mathbb {S} ^{1}\to \mathbb {S} ^{2}} 1701:{\displaystyle j:\mathbb {S} ^{1}\to \mathbb {S} ^{2}} 1279:{\displaystyle j:\mathbb {S} ^{1}\to \mathbb {S} ^{2}} 674:{\displaystyle j:\mathbb {S} ^{1}\to \mathbb {S} ^{2}} 631:
Cannon and Thurston also explicitly described the map
511:{\displaystyle j:\mathbb {S} ^{1}\to \mathbb {S} ^{2}} 6111: 5021: 4888: 4859: 4810: 4756: 4743:{\displaystyle \partial \pi _{1}(S)=\mathbb {S} ^{1}} 4702: 4675: 4637: 4586: 4529: 4482: 4459: 4418: 4340: 4308: 4263: 4221: 4197: 4177: 4151: 4096: 4069: 4011: 3985: 3945: 3924: 3863: 3847:{\displaystyle 1\to H\to E_{\Gamma }\to \Gamma \to 1} 3809: 3744: 3685: 3635: 3600: 3550: 3474: 3418: 3395: 3372: 3323: 3259: 3210: 3149: 3100: 3028: 2957: 2918: 2891: 2708: 2603: 2544: 2439: 2381: 2324: 2283: 2218: 2185: 2142: 2098: 2074: 2045: 2016: 1951: 1857: 1828: 1808: 1779: 1750: 1718: 1664: 1640: 1583: 1541: 1475: 1431: 1372: 1299: 1242: 1209: 1180: 1147: 1093: 1046: 1004: 910: 862: 816: 774: 703: 637: 575: 528: 474: 435: 391: 355: 319: 245: 209: 183: 154: 118: 86: 4295:{\displaystyle \phi \in \operatorname {Out} (F_{n})} 3884:
is word-hyperbolic if and only if Γ ≤ Mod(
1516:{\displaystyle \Lambda \pi _{1}(S)=\mathbb {S} ^{1}} 5252:Roger C. Alperin; Warren Dicks; Joan Porti (1999). 4446:{\displaystyle \partial i:\partial H\to \partial G} 3938:is a convex-cocompact purely atoroidal subgroup of 3446:{\displaystyle \partial i:\partial H\to \partial G} 3351:{\displaystyle \partial i:\partial H\to \partial G} 3287:{\displaystyle \partial i:\partial H\to \partial G} 3238:{\displaystyle \partial i:\partial H\to \partial G} 3177:{\displaystyle \partial i:\partial H\to \partial G} 3128:{\displaystyle \partial i:\partial H\to \partial G} 3056:{\displaystyle \partial i:\partial H\to \partial G} 6119: 5857:"Conical limit points and the Cannon–Thurston map" 5049: 4919: 4874: 4838: 4784: 4742: 4681: 4661: 4623: 4563: 4507: 4468: 4445: 4381: 4326: 4294: 4246: 4203: 4183: 4163: 4137: 4082: 4055: 3997: 3970: 3930: 3876: 3846: 3772: 3715: 3660: 3621: 3586: 3536: 3445: 3404: 3381: 3350: 3286: 3237: 3176: 3127: 3055: 2991: 2943: 2904: 2733: 2675: 2589: 2462: 2425:. He also provided a description of the fibers of 2409: 2367: 2310: 2269: 2200: 2151: 2128: 2080: 2060: 2031: 1994: 1906: 1843: 1814: 1794: 1765: 1736: 1700: 1646: 1626: 1569: 1515: 1461: 1402: 1358: 1278: 1224: 1195: 1162: 1133: 1076: 1032: 987: 892: 844: 802: 718: 673: 608: 561: 510: 457: 421: 370: 341: 305: 231: 195: 169: 133: 101: 4575:Generalizations, applications and related results 1929:(2007) and (2013), Miyachi (2002), Souto (2006), 6472:Mahan Mj, Mahan (2018). "Cannon–Thurston maps". 5963:Mahan Mj, Mahan (2018). "Cannon–Thurston maps". 5595:Proceedings of the American Mathematical Society 4334:to be convex cocompact) the Cannon–Thurston map 3204:is word-hyperbolic, and the Cannon–Thurston map 2834:then, by a result of Mosher, the quotient group 2129:{\displaystyle j:\partial G\to \mathbb {S} ^{2}} 3727:is isomorphic to a free product of some closed 1403:{\displaystyle j:\Lambda H\to \mathbb {S} ^{2}} 77:itself is a closed hyperbolic surface, and its 4920:{\displaystyle \mathbb {P} SL(2,\mathbb {C} )} 3139:can be embedded in some word-hyperbolic group 2858:in terms of "algebraic ending laminations" on 2530:between their hyperbolic boundaries, the map 5587:"A hyperbolic-by-hyperbolic hyperbolic group" 5078:James W. Cannon; William P. Thurston (2007). 4327:{\displaystyle \Gamma =\langle \phi \rangle } 4257:Ghosh proved that for an arbitrary atoroidal 2683:, is continuous. In this setting, if the map 1462:{\displaystyle \mathbb {H} ^{2}={\tilde {S}}} 1077:{\displaystyle \mathbb {H} ^{2}={\tilde {S}}} 893:{\displaystyle \mathbb {H} ^{3}={\tilde {M}}} 8: 5432:"Cannon–Thurston maps for thick free groups" 5210:Journal of the American Mathematical Society 5120:Darryl McCullough, MR2326947 (2008i:57016), 5050:{\displaystyle \operatorname {Out} t(F_{n})} 4839:{\displaystyle \partial {\mathcal {C}}(S,z)} 4785:{\displaystyle \partial {\mathcal {C}}(S,z)} 4321: 4315: 2002:be a discrete faithful representation where 1366:, if there exists an induced continuous map 5791:Yoshifumi Matsuda; Shin-ichi Oguni (2014). 4508:{\displaystyle p\in \Lambda _{\partial G}H} 4247:{\displaystyle \operatorname {Out} (F_{n})} 3971:{\displaystyle \operatorname {Out} (F_{n})} 3143:in such a way that the Cannon–Thurston map 6054:Journal of the London Mathematical Society 5744:"Cannon–Thurston maps do not always exist" 5629: 5627: 5498:"Cannon–Thurston maps for Kleinian groups" 2506:is also word-hyperbolic. If the inclusion 904:. Thus one gets a discrete representation 757:Kleinian representations of surface groups 6428: 6327: 6269: 6230: 6220: 6113: 6112: 6110: 6065: 6008: 5923: 5884: 5874: 5810: 5764: 5702: 5663: 5653: 5607: 5561: 5518: 5365: 5322: 5271: 5160: 5097: 5038: 5020: 4910: 4909: 4890: 4889: 4887: 4866: 4862: 4861: 4858: 4815: 4814: 4809: 4761: 4760: 4755: 4734: 4730: 4729: 4710: 4701: 4674: 4653: 4649: 4648: 4636: 4614: 4613: 4594: 4593: 4585: 4543: 4528: 4493: 4481: 4458: 4417: 4373: 4357: 4339: 4307: 4283: 4262: 4235: 4220: 4196: 4176: 4150: 4129: 4113: 4095: 4074: 4068: 4035: 4022: 4010: 3984: 3959: 3944: 3923: 3868: 3862: 3826: 3808: 3755: 3743: 3684: 3640: 3634: 3613: 3609: 3608: 3599: 3578: 3574: 3573: 3563: 3559: 3558: 3549: 3524: 3523: 3504: 3503: 3485: 3473: 3417: 3394: 3371: 3322: 3258: 3209: 3148: 3099: 3027: 2974: 2956: 2929: 2917: 2896: 2890: 2713: 2707: 2655: 2650: 2638: 2637: 2622: 2617: 2605: 2604: 2602: 2546: 2545: 2543: 2452: 2446: 2442: 2441: 2438: 2410:{\displaystyle x_{0}\in \mathbb {H} ^{3}} 2401: 2397: 2396: 2386: 2380: 2347: 2323: 2293: 2288: 2282: 2261: 2257: 2256: 2246: 2242: 2241: 2217: 2192: 2188: 2187: 2184: 2141: 2120: 2116: 2115: 2097: 2073: 2052: 2048: 2047: 2044: 2015: 1985: 1984: 1965: 1964: 1950: 1921:(1994), Alperin, Dicks and Porti (1999), 1898: 1894: 1893: 1871: 1856: 1835: 1831: 1830: 1827: 1807: 1786: 1782: 1781: 1778: 1749: 1717: 1692: 1688: 1687: 1677: 1673: 1672: 1663: 1639: 1617: 1616: 1597: 1596: 1582: 1552: 1540: 1507: 1503: 1502: 1483: 1474: 1448: 1447: 1438: 1434: 1433: 1430: 1394: 1390: 1389: 1371: 1349: 1348: 1329: 1328: 1310: 1298: 1270: 1266: 1265: 1255: 1251: 1250: 1241: 1216: 1212: 1211: 1208: 1187: 1183: 1182: 1179: 1154: 1150: 1149: 1146: 1125: 1121: 1120: 1110: 1092: 1063: 1062: 1053: 1049: 1048: 1045: 1015: 1003: 976: 972: 971: 958: 944: 943: 924: 923: 909: 879: 878: 869: 865: 864: 861: 827: 815: 785: 773: 710: 706: 705: 702: 665: 661: 660: 650: 646: 645: 636: 600: 596: 595: 582: 578: 577: 574: 553: 549: 548: 535: 531: 530: 527: 502: 498: 497: 487: 483: 482: 473: 440: 434: 413: 409: 408: 398: 394: 393: 390: 362: 358: 357: 354: 324: 318: 292: 291: 282: 278: 277: 267: 263: 262: 247: 246: 244: 214: 208: 182: 161: 157: 156: 153: 125: 121: 120: 117: 88: 87: 85: 6307: 6305: 2734:{\displaystyle \Lambda _{\partial G}(H)} 1289:One can ask, given a hyperbolic surface 5850: 5848: 5846: 5491: 5489: 5387: 5385: 5067: 4005:) then for the corresponding extension 3188:Multiplicity of the Cannon–Thurston map 2862:, parameterized by the boundary points 69:that fibers over the circle with fiber 6365: 6363: 5140: 5138: 5136: 5134: 5073: 5071: 2879:fundamental group of a graph of groups 5786: 5784: 5742:Owen Baker; Timothy R. Riley (2013). 4804:. As an application, they prove that 3716:{\displaystyle 1\to H\to G\to Q\to 1} 3622:{\displaystyle p\in \mathbb {S} ^{2}} 7: 6257:Ergodic Theory and Dynamical Systems 4564:{\displaystyle (\partial i)^{-1}(p)} 3796:). Every subgroup Γ ≤ Mod( 2039:contains no parabolic isometries of 141:. Similarly, the universal cover of 3412:. However, the converse fails: If 2826:are two word-hyperbolic groups and 2482:Existence and non-existence results 4811: 4757: 4703: 4676: 4644: 4638: 4587: 4533: 4494: 4490: 4460: 4437: 4428: 4419: 4412:such that the Cannon–Thurston map 4401:bound always holds in this case.) 4397:, and it is still unknown if the 2 4374: 4366: 4350: 4341: 4309: 4198: 4191:is infinite cyclic, that is, that 4178: 4130: 4122: 4106: 4097: 4075: 4044: 4036: 3925: 3903:does exist. The fibers of the map 3869: 3835: 3827: 3437: 3428: 3419: 3396: 3373: 3342: 3333: 3324: 3317:such that the Cannon–Thurston map 3298:is uasi-isometrically embedded in 3278: 3269: 3260: 3253:such that the Cannon–Thurston map 3229: 3220: 3211: 3168: 3159: 3150: 3119: 3110: 3101: 3094:such that the Cannon–Thurston map 3047: 3038: 3029: 2983: 2967: 2958: 2714: 2710: 2667: 2656: 2581: 2566: 2463:{\displaystyle \mathbb {H} ^{3}/G} 2368:{\displaystyle J(g)=gx_{0},g\in G} 2294: 2231: 2212:Here "induces" means that the map 2143: 2105: 1858: 1476: 1379: 1103: 1094: 900:by isometries, and this action is 591: 544: 14: 6372:Proc. Indian Acad. Sci. Math. Sci 6175:Commentarii Mathematici Helvetici 5911:Geometric and Functional Analysis 2311:{\displaystyle J|_{\partial G}=j} 616:. Moreover, in this case the map 6416:Algebraic and Geometric Topology 6208:Algebraic and Geometric Topology 5641:Journal of Differential Geometry 5394:Geometry and topology down under 4944:is a group acting as a discrete 4875:{\displaystyle \mathbb {S} ^{2}} 3784:, such hyperbolic extensions of 3461:with exactly one preimage under 3389:has exactly one pre-image under 2201:{\displaystyle \mathbb {S} ^{2}} 2061:{\displaystyle \mathbb {H} ^{3}} 1844:{\displaystyle \mathbb {H} ^{2}} 1795:{\displaystyle \mathbb {H} ^{3}} 1225:{\displaystyle \mathbb {H} ^{3}} 1196:{\displaystyle \mathbb {H} ^{2}} 1163:{\displaystyle \mathbb {S} ^{1}} 719:{\displaystyle \mathbb {S} ^{2}} 371:{\displaystyle \mathbb {H} ^{3}} 170:{\displaystyle \mathbb {H} ^{3}} 134:{\displaystyle \mathbb {H} ^{2}} 5862:Conformal Geometry and Dynamics 3082:and a word-hyperbolic (in fact 5080:"Group invariant Peano curves" 5044: 5031: 4980:is the hyperbolic boundary of 4914: 4900: 4833: 4821: 4779: 4767: 4722: 4716: 4618: 4604: 4558: 4552: 4540: 4530: 4434: 4363: 4289: 4276: 4241: 4228: 4119: 4047: 4041: 4028: 4015: 3965: 3952: 3838: 3832: 3819: 3813: 3767: 3761: 3707: 3701: 3695: 3689: 3655: 3649: 3569: 3528: 3514: 3500: 3497: 3491: 3434: 3339: 3305:It is known, for more general 3294:exists and is injective, then 3275: 3226: 3165: 3116: 3044: 2980: 2935: 2728: 2722: 2651: 2643: 2618: 2610: 2572: 2551: 2334: 2328: 2289: 2237: 2111: 2026: 2020: 1989: 1975: 1961: 1886: 1883: 1877: 1864: 1760: 1754: 1683: 1621: 1607: 1593: 1564: 1558: 1495: 1489: 1453: 1385: 1353: 1339: 1325: 1322: 1316: 1293:and a discrete representation 1261: 1068: 1027: 1021: 982: 967: 948: 934: 920: 884: 839: 833: 797: 791: 656: 493: 452: 446: 336: 330: 297: 252: 226: 220: 93: 1: 6130:Groups, Geometry and Dynamics 5996:Israel Journal of Mathematics 5690:Groups, Geometry and Dynamics 5609:10.1090/S0002-9939-97-04249-4 5563:10.1016/S0040-9383(97)00036-0 5273:10.1016/S0166-8641(97)00270-8 5259:Topology and Its Applications 4988:is relatively hyperbolic and 4404:It remains unknown, whenever 4211:is generated by an atoroidal 3773:{\displaystyle H=\pi _{1}(S)} 1570:{\displaystyle H=\pi _{1}(S)} 1033:{\displaystyle H=\pi _{1}(S)} 845:{\displaystyle G=\pi _{1}(M)} 803:{\displaystyle H=\pi _{1}(S)} 6120:{\displaystyle \mathbb {F} } 5057:and of mapping class groups. 4996:is the Bowditch boundary of 4935:relatively hyperbolic groups 3915:is uniformly finite-to-one. 2944:{\displaystyle i:A_{v}\to G} 2754:quasi-isometrically embedded 2691:-equivariant, and the image 2518:extends to a continuous map 1737:{\displaystyle 1\neq h\in H} 726:having cardinality at most 2 196:{\displaystyle S\subseteq M} 102:{\displaystyle {\tilde {S}}} 5752:Forum of Mathematics, Sigma 5634:Mahan Mitra, Mahan (1998). 5295:Curtis T. McMullen (2001). 5171:10.4007/annals.2014.179.1.1 4948:on two metrizable compacta 4850:and locally path-connected. 4083:{\displaystyle E_{\Gamma }} 3877:{\displaystyle E_{\Gamma }} 1822:is a parabolic isometry of 1773:is a parabolic isometry of 683:pseudo-Anosov homeomorphism 458:{\displaystyle \pi _{1}(S)} 342:{\displaystyle \pi _{1}(S)} 232:{\displaystyle \pi _{1}(S)} 145:can be identified with the 109:can be identified with the 6537: 5346:Brian H. Bowditch (2007). 4469:{\displaystyle \partial i} 3405:{\displaystyle \partial i} 3382:{\displaystyle \partial G} 2883:quasi-isometric embeddings 2152:{\displaystyle \partial G} 6384:10.1007/s12044-010-0009-0 6338:10.1007/s10711-010-9519-2 6019:10.1007/s11856-016-1426-2 5934:10.1007/s00039-012-0175-6 5367:10.1007/s00209-006-0012-4 5353:Mathematische Zeitschrift 3661:{\displaystyle j^{-1}(p)} 3067:to have arbitrarily high 2687:exists, it is unique and 2474:Cannon–Thurston maps and 2167:, and where the image of 749:Cannon–Thurston maps and 6439:10.2140/agt.2018.18.1883 5506:Forum of Mathematics, Pi 5302:Inventiones Mathematicae 4682:{\displaystyle \Lambda } 3544:the Cannon–Thurston map 2951:the Cannon–Thurston map 2912:, for the inclusion map 2502:be a subgroup such that 2032:{\displaystyle \rho (G)} 1766:{\displaystyle \rho (h)} 429:extends to a continuous 22:hyperbolic metric spaces 6232:10.2140/agt.2011.11.605 5798:Journal of Group Theory 5452:Geometry & Topology 5099:10.2140/gt.2007.11.1315 5085:Geometry & Topology 4972:is word-hyperbolic and 4204:{\displaystyle \Gamma } 4184:{\displaystyle \Gamma } 4164:{\displaystyle \leq 2n} 3998:{\displaystyle n\geq 3} 3931:{\displaystyle \Gamma } 2779:is word-hyperbolic and 1937:General Kleinian groups 765:representations of the 6521:Geometric group theory 6121: 5665:10.4310/jdg/1214460609 5051: 4921: 4876: 4840: 4786: 4744: 4683: 4663: 4625: 4565: 4509: 4470: 4447: 4383: 4328: 4296: 4248: 4205: 4185: 4165: 4139: 4084: 4057: 3999: 3972: 3932: 3878: 3848: 3774: 3717: 3677:word-hyperbolic groups 3662: 3623: 3588: 3538: 3447: 3406: 3383: 3358:exists then for every 3352: 3288: 3239: 3178: 3129: 3057: 2993: 2945: 2906: 2811:is not quasiconvex in 2775:Mitra proved that if 2735: 2677: 2591: 2476:word-hyperbolic groups 2464: 2411: 2369: 2312: 2271: 2202: 2153: 2130: 2082: 2062: 2033: 1996: 1914:is locally connected. 1908: 1845: 1816: 1796: 1767: 1738: 1702: 1648: 1628: 1571: 1517: 1463: 1404: 1360: 1280: 1226: 1197: 1164: 1135: 1078: 1034: 989: 902:properly discontinuous 894: 846: 804: 720: 689:for this fibration of 675: 610: 563: 512: 459: 423: 372: 343: 307: 233: 197: 171: 135: 103: 6122: 5821:10.1515/jgt-2013-0024 5148:Annals of Mathematics 5052: 5005:relatively hyperbolic 4922: 4877: 4841: 4787: 4745: 4689:is locally connected. 4684: 4664: 4626: 4566: 4510: 4471: 4448: 4384: 4329: 4297: 4249: 4206: 4186: 4166: 4140: 4085: 4058: 4000: 3973: 3933: 3879: 3849: 3775: 3718: 3663: 3629:, the full pre-image 3624: 3589: 3539: 3448: 3407: 3384: 3353: 3289: 3240: 3179: 3130: 3058: 2994: 2946: 2907: 2905:{\displaystyle A_{v}} 2770:topological embedding 2736: 2678: 2592: 2492:word-hyperbolic group 2465: 2412: 2370: 2313: 2277:is continuous, where 2272: 2203: 2154: 2131: 2088:induces a continuous 2083: 2081:{\displaystyle \rho } 2063: 2034: 2008:word-hyperbolic group 1997: 1909: 1846: 1817: 1797: 1768: 1739: 1703: 1654:induces a continuous 1649: 1647:{\displaystyle \rho } 1629: 1572: 1518: 1464: 1405: 1361: 1281: 1227: 1198: 1165: 1136: 1079: 1035: 990: 895: 847: 805: 734:is the genus of  721: 676: 611: 564: 513: 460: 424: 373: 344: 308: 239:-invariant inclusion 234: 198: 172: 136: 104: 67:hyperbolic 3-manifold 6280:10.1017/etds.2015.15 6109: 5542:Mahan Mitra (1998). 5200:Yair Minsky (1994). 5122:Mathematical Reviews 5019: 4886: 4857: 4808: 4754: 4700: 4673: 4635: 4584: 4527: 4480: 4457: 4453:exists, if the map 4416: 4338: 4306: 4261: 4219: 4195: 4175: 4149: 4094: 4067: 4009: 3983: 3943: 3922: 3861: 3857:Moreover, the group 3807: 3742: 3683: 3633: 3598: 3548: 3472: 3416: 3393: 3370: 3321: 3257: 3208: 3147: 3098: 3026: 2955: 2916: 2889: 2706: 2601: 2542: 2437: 2379: 2375:(for some basepoint 2322: 2281: 2216: 2183: 2140: 2096: 2072: 2043: 2014: 1949: 1855: 1826: 1806: 1777: 1748: 1716: 1662: 1638: 1581: 1539: 1473: 1429: 1370: 1297: 1240: 1232:induce a continuous 1207: 1178: 1145: 1091: 1044: 1002: 908: 860: 814: 772: 701: 635: 573: 526: 472: 433: 389: 380:geometrically finite 353: 317: 243: 207: 181: 152: 116: 84: 40:space-filling curves 6315:Geometriae Dedicata 6076:10.1112/jlms/jdu069 5585:Lee Mosher (1997). 5430:Juan Souto (2006). 5315:2001InMat.146...35M 4940:More generally, if 4669:is connected, then 4571:has cardinality 1. 4521:conical limit point 4302:(without requiring 3790:mapping class group 3360:conical limit point 3192:As noted above, if 3069:primitive recursive 3012:subgroup distortion 2536:Cannon–Thurston map 810:. As a subgroup of 626:space-filling curve 18:Cannon–Thurston map 6516:Geometric topology 6117: 5766:10.1017/fms.2013.4 5520:10.1017/fmp.2017.2 5324:10.1007/PL00005809 5047: 4917: 4872: 4836: 4782: 4740: 4679: 4659: 4621: 4561: 4505: 4466: 4443: 4379: 4324: 4292: 4244: 4201: 4181: 4161: 4135: 4080: 4053: 3995: 3968: 3928: 3874: 3844: 3770: 3713: 3658: 3619: 3584: 3534: 3443: 3402: 3379: 3348: 3307:convergence groups 3284: 3235: 3174: 3125: 3053: 2989: 2941: 2902: 2807:are infinite then 2731: 2699:) is equal to the 2673: 2587: 2460: 2431:ending laminations 2407: 2365: 2308: 2267: 2198: 2149: 2126: 2078: 2058: 2029: 1992: 1904: 1841: 1812: 1792: 1763: 1734: 1698: 1644: 1624: 1567: 1513: 1459: 1400: 1356: 1276: 1222: 1193: 1160: 1131: 1074: 1030: 985: 890: 842: 800: 716: 671: 606: 559: 508: 465:-equivariant map 455: 419: 368: 339: 303: 229: 193: 167: 147:hyperbolic 3-space 131: 99: 16:In mathematics, a 6511:Dynamical systems 6488:978-981-3272-91-0 5979:978-981-3272-91-0 5602:(12): 3447–3455. 5496:Mahan Mj (2017). 5403:978-0-8218-8480-5 4960:-equivariant map 4946:convergence group 4213:fully irreducible 3309:reasons, that if 2646: 2613: 2554: 2092:-equivariant map 1815:{\displaystyle h} 1658:-equivariant map 1456: 1236:-equivariant map 1071: 887: 300: 255: 96: 6528: 6492: 6480: 6459: 6458: 6432: 6423:(4): 1883–1916. 6410: 6404: 6403: 6367: 6358: 6357: 6331: 6309: 6300: 6299: 6273: 6264:(8): 2498–2511. 6251: 6245: 6244: 6234: 6224: 6198: 6192: 6191: 6169: 6163: 6162: 6126: 6124: 6123: 6118: 6116: 6102: 6096: 6095: 6069: 6045: 6039: 6038: 6012: 5990: 5984: 5983: 5971: 5960: 5954: 5953: 5927: 5918:(5): 1361–1399. 5905: 5899: 5898: 5888: 5886:10.1090/ecgd/294 5878: 5852: 5841: 5840: 5814: 5788: 5779: 5778: 5768: 5748: 5739: 5733: 5732: 5706: 5684: 5678: 5677: 5667: 5657: 5631: 5622: 5621: 5611: 5591: 5582: 5576: 5575: 5565: 5539: 5533: 5532: 5522: 5502: 5493: 5484: 5483: 5475: 5469: 5468: 5446: 5440: 5439: 5427: 5421: 5420:, 2002, preprint 5416:Hideki Miyachi, 5414: 5408: 5407: 5389: 5380: 5379: 5369: 5343: 5337: 5336: 5326: 5292: 5286: 5285: 5275: 5249: 5243: 5242: 5206: 5197: 5191: 5190: 5164: 5142: 5129: 5118: 5112: 5111: 5101: 5092:(3): 1315–1356. 5075: 5056: 5054: 5053: 5048: 5043: 5042: 4926: 4924: 4923: 4918: 4913: 4893: 4881: 4879: 4878: 4873: 4871: 4870: 4865: 4845: 4843: 4842: 4837: 4820: 4819: 4791: 4789: 4788: 4783: 4766: 4765: 4750:to the boundary 4749: 4747: 4746: 4741: 4739: 4738: 4733: 4715: 4714: 4688: 4686: 4685: 4680: 4668: 4666: 4665: 4660: 4658: 4657: 4652: 4630: 4628: 4627: 4622: 4617: 4597: 4570: 4568: 4567: 4562: 4551: 4550: 4514: 4512: 4511: 4506: 4501: 4500: 4475: 4473: 4472: 4467: 4452: 4450: 4449: 4444: 4388: 4386: 4385: 4380: 4378: 4377: 4362: 4361: 4333: 4331: 4330: 4325: 4301: 4299: 4298: 4293: 4288: 4287: 4253: 4251: 4250: 4245: 4240: 4239: 4210: 4208: 4207: 4202: 4190: 4188: 4187: 4182: 4170: 4168: 4167: 4162: 4144: 4142: 4141: 4136: 4134: 4133: 4118: 4117: 4089: 4087: 4086: 4081: 4079: 4078: 4062: 4060: 4059: 4054: 4040: 4039: 4027: 4026: 4004: 4002: 4001: 3996: 3977: 3975: 3974: 3969: 3964: 3963: 3937: 3935: 3934: 3929: 3883: 3881: 3880: 3875: 3873: 3872: 3853: 3851: 3850: 3845: 3831: 3830: 3779: 3777: 3776: 3771: 3760: 3759: 3722: 3720: 3719: 3714: 3667: 3665: 3664: 3659: 3648: 3647: 3628: 3626: 3625: 3620: 3618: 3617: 3612: 3593: 3591: 3590: 3585: 3583: 3582: 3577: 3568: 3567: 3562: 3543: 3541: 3540: 3535: 3527: 3507: 3490: 3489: 3452: 3450: 3449: 3444: 3411: 3409: 3408: 3403: 3388: 3386: 3385: 3380: 3357: 3355: 3354: 3349: 3293: 3291: 3290: 3285: 3244: 3242: 3241: 3236: 3184:does not exist. 3183: 3181: 3180: 3175: 3134: 3132: 3131: 3126: 3062: 3060: 3059: 3054: 2998: 2996: 2995: 2990: 2979: 2978: 2950: 2948: 2947: 2942: 2934: 2933: 2911: 2909: 2908: 2903: 2901: 2900: 2768:exists and is a 2740: 2738: 2737: 2732: 2721: 2720: 2682: 2680: 2679: 2674: 2663: 2662: 2654: 2648: 2647: 2639: 2627: 2626: 2621: 2615: 2614: 2606: 2596: 2594: 2593: 2588: 2556: 2555: 2547: 2469: 2467: 2466: 2461: 2456: 2451: 2450: 2445: 2416: 2414: 2413: 2408: 2406: 2405: 2400: 2391: 2390: 2374: 2372: 2371: 2366: 2352: 2351: 2317: 2315: 2314: 2309: 2301: 2300: 2292: 2276: 2274: 2273: 2268: 2266: 2265: 2260: 2251: 2250: 2245: 2207: 2205: 2204: 2199: 2197: 2196: 2191: 2158: 2156: 2155: 2150: 2135: 2133: 2132: 2127: 2125: 2124: 2119: 2087: 2085: 2084: 2079: 2067: 2065: 2064: 2059: 2057: 2056: 2051: 2038: 2036: 2035: 2030: 2001: 1999: 1998: 1993: 1988: 1968: 1913: 1911: 1910: 1905: 1903: 1902: 1897: 1876: 1875: 1850: 1848: 1847: 1842: 1840: 1839: 1834: 1821: 1819: 1818: 1813: 1801: 1799: 1798: 1793: 1791: 1790: 1785: 1772: 1770: 1769: 1764: 1743: 1741: 1740: 1735: 1707: 1705: 1704: 1699: 1697: 1696: 1691: 1682: 1681: 1676: 1653: 1651: 1650: 1645: 1633: 1631: 1630: 1625: 1620: 1600: 1576: 1574: 1573: 1568: 1557: 1556: 1522: 1520: 1519: 1514: 1512: 1511: 1506: 1488: 1487: 1468: 1466: 1465: 1460: 1458: 1457: 1449: 1443: 1442: 1437: 1409: 1407: 1406: 1401: 1399: 1398: 1393: 1365: 1363: 1362: 1357: 1352: 1332: 1315: 1314: 1285: 1283: 1282: 1277: 1275: 1274: 1269: 1260: 1259: 1254: 1231: 1229: 1228: 1223: 1221: 1220: 1215: 1202: 1200: 1199: 1194: 1192: 1191: 1186: 1169: 1167: 1166: 1161: 1159: 1158: 1153: 1140: 1138: 1137: 1132: 1130: 1129: 1124: 1115: 1114: 1083: 1081: 1080: 1075: 1073: 1072: 1064: 1058: 1057: 1052: 1039: 1037: 1036: 1031: 1020: 1019: 994: 992: 991: 986: 981: 980: 975: 963: 962: 947: 927: 899: 897: 896: 891: 889: 888: 880: 874: 873: 868: 851: 849: 848: 843: 832: 831: 809: 807: 806: 801: 790: 789: 725: 723: 722: 717: 715: 714: 709: 680: 678: 677: 672: 670: 669: 664: 655: 654: 649: 615: 613: 612: 607: 605: 604: 599: 587: 586: 581: 568: 566: 565: 560: 558: 557: 552: 540: 539: 534: 517: 515: 514: 509: 507: 506: 501: 492: 491: 486: 464: 462: 461: 456: 445: 444: 428: 426: 425: 420: 418: 417: 412: 403: 402: 397: 377: 375: 374: 369: 367: 366: 361: 348: 346: 345: 340: 329: 328: 312: 310: 309: 304: 302: 301: 293: 287: 286: 281: 272: 271: 266: 257: 256: 248: 238: 236: 235: 230: 219: 218: 202: 200: 199: 194: 177:. The inclusion 176: 174: 173: 168: 166: 165: 160: 140: 138: 137: 132: 130: 129: 124: 111:hyperbolic plane 108: 106: 105: 100: 98: 97: 89: 56:William Thurston 33:William Thurston 6536: 6535: 6531: 6530: 6529: 6527: 6526: 6525: 6496: 6495: 6489: 6478: 6471: 6468: 6466:Further reading 6463: 6462: 6412: 6411: 6407: 6369: 6368: 6361: 6311: 6310: 6303: 6253: 6252: 6248: 6200: 6199: 6195: 6171: 6170: 6166: 6143:10.4171/GGD/540 6107: 6106: 6104: 6103: 6099: 6051: 6047: 6046: 6042: 5992: 5991: 5987: 5980: 5969: 5962: 5961: 5957: 5907: 5906: 5902: 5854: 5853: 5844: 5790: 5789: 5782: 5746: 5741: 5740: 5736: 5713:10.4171/ggd/543 5686: 5685: 5681: 5633: 5632: 5625: 5589: 5584: 5583: 5579: 5541: 5540: 5536: 5500: 5495: 5494: 5487: 5477: 5476: 5472: 5448: 5447: 5443: 5429: 5428: 5424: 5415: 5411: 5404: 5391: 5390: 5383: 5345: 5344: 5340: 5294: 5293: 5289: 5251: 5250: 5246: 5223:10.2307/2152785 5204: 5199: 5198: 5194: 5144: 5143: 5132: 5119: 5115: 5077: 5076: 5069: 5064: 5034: 5017: 5016: 4956:, a continuous 4884: 4883: 4860: 4855: 4854: 4806: 4805: 4752: 4751: 4728: 4706: 4698: 4697: 4671: 4670: 4647: 4633: 4632: 4582: 4581: 4577: 4539: 4525: 4524: 4489: 4478: 4477: 4455: 4454: 4414: 4413: 4369: 4353: 4336: 4335: 4304: 4303: 4279: 4259: 4258: 4231: 4217: 4216: 4193: 4192: 4173: 4172: 4147: 4146: 4125: 4109: 4092: 4091: 4070: 4065: 4064: 4031: 4018: 4007: 4006: 3981: 3980: 3955: 3941: 3940: 3920: 3919: 3902: 3864: 3859: 3858: 3822: 3805: 3804: 3751: 3740: 3739: 3681: 3680: 3636: 3631: 3630: 3607: 3596: 3595: 3572: 3557: 3546: 3545: 3481: 3470: 3469: 3414: 3413: 3391: 3390: 3368: 3367: 3319: 3318: 3255: 3254: 3206: 3205: 3190: 3145: 3144: 3096: 3095: 3024: 3023: 2970: 2953: 2952: 2925: 2914: 2913: 2892: 2887: 2886: 2709: 2704: 2703: 2649: 2616: 2599: 2598: 2540: 2539: 2484: 2479: 2440: 2435: 2434: 2395: 2382: 2377: 2376: 2343: 2320: 2319: 2287: 2279: 2278: 2255: 2240: 2214: 2213: 2186: 2181: 2180: 2161:Gromov boundary 2138: 2137: 2114: 2094: 2093: 2070: 2069: 2046: 2041: 2040: 2012: 2011: 1947: 1946: 1939: 1892: 1867: 1853: 1852: 1829: 1824: 1823: 1804: 1803: 1802:if and only if 1780: 1775: 1774: 1746: 1745: 1714: 1713: 1686: 1671: 1660: 1659: 1636: 1635: 1579: 1578: 1548: 1537: 1536: 1501: 1479: 1471: 1470: 1432: 1427: 1426: 1388: 1368: 1367: 1306: 1295: 1294: 1264: 1249: 1238: 1237: 1210: 1205: 1204: 1181: 1176: 1175: 1148: 1143: 1142: 1141:being equal to 1119: 1106: 1089: 1088: 1047: 1042: 1041: 1011: 1000: 999: 970: 954: 906: 905: 863: 858: 857: 823: 812: 811: 781: 770: 769: 759: 754: 751:Kleinian groups 704: 699: 698: 659: 644: 633: 632: 594: 576: 571: 570: 547: 529: 524: 523: 496: 481: 470: 469: 436: 431: 430: 407: 392: 387: 386: 356: 351: 350: 320: 315: 314: 276: 261: 241: 240: 210: 205: 204: 179: 178: 155: 150: 149: 119: 114: 113: 82: 81: 79:universal cover 52:James W. Cannon 48: 12: 11: 5: 6534: 6532: 6524: 6523: 6518: 6513: 6508: 6498: 6497: 6494: 6493: 6487: 6467: 6464: 6461: 6460: 6405: 6359: 6301: 6246: 6215:(1): 605–624. 6193: 6182:(4): 769–816. 6164: 6137:(1): 177–211. 6115: 6097: 6060:(1): 203–224. 6049: 6040: 6003:(2): 753–797. 5985: 5978: 5955: 5900: 5842: 5780: 5734: 5697:(1): 255–282. 5679: 5648:(1): 135–164. 5623: 5577: 5556:(3): 527–538. 5534: 5485: 5470: 5441: 5422: 5409: 5402: 5381: 5338: 5287: 5266:(3): 219–259. 5244: 5217:(3): 539–588. 5192: 5130: 5113: 5066: 5065: 5063: 5060: 5059: 5058: 5046: 5041: 5037: 5033: 5030: 5027: 5024: 5012: 5011: 5008: 5001: 4938: 4933:Inclusions of 4931: 4928: 4916: 4912: 4908: 4905: 4902: 4899: 4896: 4892: 4869: 4864: 4851: 4848:path-connected 4835: 4832: 4829: 4826: 4823: 4818: 4813: 4781: 4778: 4775: 4772: 4769: 4764: 4759: 4737: 4732: 4727: 4724: 4721: 4718: 4713: 4709: 4705: 4690: 4678: 4656: 4651: 4646: 4643: 4640: 4620: 4616: 4612: 4609: 4606: 4603: 4600: 4596: 4592: 4589: 4576: 4573: 4560: 4557: 4554: 4549: 4546: 4542: 4538: 4535: 4532: 4504: 4499: 4496: 4492: 4488: 4485: 4465: 4462: 4442: 4439: 4436: 4433: 4430: 4427: 4424: 4421: 4376: 4372: 4368: 4365: 4360: 4356: 4352: 4349: 4346: 4343: 4323: 4320: 4317: 4314: 4311: 4291: 4286: 4282: 4278: 4275: 4272: 4269: 4266: 4243: 4238: 4234: 4230: 4227: 4224: 4200: 4180: 4160: 4157: 4154: 4132: 4128: 4124: 4121: 4116: 4112: 4108: 4105: 4102: 4099: 4077: 4073: 4052: 4049: 4046: 4043: 4038: 4034: 4030: 4025: 4021: 4017: 4014: 3994: 3991: 3988: 3967: 3962: 3958: 3954: 3951: 3948: 3927: 3900: 3871: 3867: 3855: 3854: 3843: 3840: 3837: 3834: 3829: 3825: 3821: 3818: 3815: 3812: 3769: 3766: 3763: 3758: 3754: 3750: 3747: 3729:surface groups 3712: 3709: 3706: 3703: 3700: 3697: 3694: 3691: 3688: 3657: 3654: 3651: 3646: 3643: 3639: 3616: 3611: 3606: 3603: 3581: 3576: 3571: 3566: 3561: 3556: 3553: 3533: 3530: 3526: 3522: 3519: 3516: 3513: 3510: 3506: 3502: 3499: 3496: 3493: 3488: 3484: 3480: 3477: 3442: 3439: 3436: 3433: 3430: 3427: 3424: 3421: 3401: 3398: 3378: 3375: 3347: 3344: 3341: 3338: 3335: 3332: 3329: 3326: 3283: 3280: 3277: 3274: 3271: 3268: 3265: 3262: 3234: 3231: 3228: 3225: 3222: 3219: 3216: 3213: 3189: 3186: 3173: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3124: 3121: 3118: 3115: 3112: 3109: 3106: 3103: 3071:distortion in 3052: 3049: 3046: 3043: 3040: 3037: 3034: 3031: 2988: 2985: 2982: 2977: 2973: 2969: 2966: 2963: 2960: 2940: 2937: 2932: 2928: 2924: 2921: 2899: 2895: 2877:splits as the 2730: 2727: 2724: 2719: 2716: 2712: 2672: 2669: 2666: 2661: 2658: 2653: 2645: 2642: 2636: 2633: 2630: 2625: 2620: 2612: 2609: 2586: 2583: 2580: 2577: 2574: 2571: 2568: 2565: 2562: 2559: 2553: 2550: 2483: 2480: 2478: 2472: 2459: 2455: 2449: 2444: 2404: 2399: 2394: 2389: 2385: 2364: 2361: 2358: 2355: 2350: 2346: 2342: 2339: 2336: 2333: 2330: 2327: 2307: 2304: 2299: 2296: 2291: 2286: 2264: 2259: 2254: 2249: 2244: 2239: 2236: 2233: 2230: 2227: 2224: 2221: 2210: 2209: 2195: 2190: 2148: 2145: 2123: 2118: 2113: 2110: 2107: 2104: 2101: 2077: 2055: 2050: 2028: 2025: 2022: 2019: 1991: 1987: 1983: 1980: 1977: 1974: 1971: 1967: 1963: 1960: 1957: 1954: 1938: 1935: 1901: 1896: 1891: 1888: 1885: 1882: 1879: 1874: 1870: 1866: 1863: 1860: 1838: 1833: 1811: 1789: 1784: 1762: 1759: 1756: 1753: 1744:, the element 1733: 1730: 1727: 1724: 1721: 1710: 1709: 1695: 1690: 1685: 1680: 1675: 1670: 1667: 1643: 1623: 1619: 1615: 1612: 1609: 1606: 1603: 1599: 1595: 1592: 1589: 1586: 1566: 1563: 1560: 1555: 1551: 1547: 1544: 1510: 1505: 1500: 1497: 1494: 1491: 1486: 1482: 1478: 1455: 1452: 1446: 1441: 1436: 1397: 1392: 1387: 1384: 1381: 1378: 1375: 1355: 1351: 1347: 1344: 1341: 1338: 1335: 1331: 1327: 1324: 1321: 1318: 1313: 1309: 1305: 1302: 1273: 1268: 1263: 1258: 1253: 1248: 1245: 1219: 1214: 1190: 1185: 1157: 1152: 1128: 1123: 1118: 1113: 1109: 1105: 1102: 1099: 1096: 1070: 1067: 1061: 1056: 1051: 1029: 1026: 1023: 1018: 1014: 1010: 1007: 984: 979: 974: 969: 966: 961: 957: 953: 950: 946: 942: 939: 936: 933: 930: 926: 922: 919: 916: 913: 886: 883: 877: 872: 867: 841: 838: 835: 830: 826: 822: 819: 799: 796: 793: 788: 784: 780: 777: 758: 755: 753: 747: 713: 708: 668: 663: 658: 653: 648: 643: 640: 603: 598: 593: 590: 585: 580: 556: 551: 546: 543: 538: 533: 520: 519: 505: 500: 495: 490: 485: 480: 477: 454: 451: 448: 443: 439: 416: 411: 406: 401: 396: 365: 360: 338: 335: 332: 327: 323: 299: 296: 290: 285: 280: 275: 270: 265: 260: 254: 251: 228: 225: 222: 217: 213: 192: 189: 186: 164: 159: 128: 123: 95: 92: 47: 44: 13: 10: 9: 6: 4: 3: 2: 6533: 6522: 6519: 6517: 6514: 6512: 6509: 6507: 6504: 6503: 6501: 6490: 6484: 6477: 6476: 6470: 6469: 6465: 6456: 6452: 6448: 6444: 6440: 6436: 6431: 6426: 6422: 6418: 6417: 6409: 6406: 6401: 6397: 6393: 6389: 6385: 6381: 6377: 6373: 6366: 6364: 6360: 6355: 6351: 6347: 6343: 6339: 6335: 6330: 6325: 6321: 6317: 6316: 6308: 6306: 6302: 6297: 6293: 6289: 6285: 6281: 6277: 6272: 6267: 6263: 6259: 6258: 6250: 6247: 6242: 6238: 6233: 6228: 6223: 6218: 6214: 6210: 6209: 6204: 6197: 6194: 6189: 6185: 6181: 6177: 6176: 6168: 6165: 6160: 6156: 6152: 6148: 6144: 6140: 6136: 6132: 6131: 6101: 6098: 6093: 6089: 6085: 6081: 6077: 6073: 6068: 6063: 6059: 6055: 6044: 6041: 6036: 6032: 6028: 6024: 6020: 6016: 6011: 6006: 6002: 5998: 5997: 5989: 5986: 5981: 5975: 5968: 5967: 5959: 5956: 5951: 5947: 5943: 5939: 5935: 5931: 5926: 5921: 5917: 5913: 5912: 5904: 5901: 5896: 5892: 5887: 5882: 5877: 5872: 5868: 5864: 5863: 5858: 5851: 5849: 5847: 5843: 5838: 5834: 5830: 5826: 5822: 5818: 5813: 5808: 5804: 5800: 5799: 5794: 5787: 5785: 5781: 5776: 5772: 5767: 5762: 5758: 5754: 5753: 5745: 5738: 5735: 5730: 5726: 5722: 5718: 5714: 5710: 5705: 5700: 5696: 5692: 5691: 5683: 5680: 5675: 5671: 5666: 5661: 5656: 5651: 5647: 5643: 5642: 5637: 5630: 5628: 5624: 5619: 5615: 5610: 5605: 5601: 5597: 5596: 5588: 5581: 5578: 5573: 5569: 5564: 5559: 5555: 5551: 5550: 5545: 5538: 5535: 5530: 5526: 5521: 5516: 5512: 5508: 5507: 5499: 5492: 5490: 5486: 5481: 5474: 5471: 5466: 5462: 5458: 5454: 5453: 5445: 5442: 5437: 5433: 5426: 5423: 5419: 5413: 5410: 5405: 5399: 5395: 5388: 5386: 5382: 5377: 5373: 5368: 5363: 5359: 5355: 5354: 5349: 5342: 5339: 5334: 5330: 5325: 5320: 5316: 5312: 5308: 5304: 5303: 5298: 5291: 5288: 5283: 5279: 5274: 5269: 5265: 5261: 5260: 5255: 5248: 5245: 5240: 5236: 5232: 5228: 5224: 5220: 5216: 5212: 5211: 5203: 5196: 5193: 5188: 5184: 5180: 5176: 5172: 5168: 5163: 5158: 5154: 5150: 5149: 5141: 5139: 5137: 5135: 5131: 5127: 5123: 5117: 5114: 5109: 5105: 5100: 5095: 5091: 5087: 5086: 5081: 5074: 5072: 5068: 5061: 5039: 5035: 5028: 5025: 5022: 5014: 5013: 5009: 5006: 5002: 4999: 4995: 4992: =  4991: 4987: 4983: 4979: 4976: =  4975: 4971: 4967: 4964: →  4963: 4959: 4955: 4951: 4947: 4943: 4939: 4936: 4932: 4929: 4906: 4903: 4897: 4894: 4867: 4852: 4849: 4830: 4827: 4824: 4803: 4799: 4795: 4794:curve complex 4776: 4773: 4770: 4735: 4725: 4719: 4711: 4707: 4695: 4691: 4654: 4641: 4610: 4607: 4601: 4598: 4590: 4579: 4578: 4574: 4572: 4555: 4547: 4544: 4536: 4522: 4518: 4502: 4497: 4486: 4483: 4463: 4440: 4431: 4425: 4422: 4411: 4407: 4402: 4400: 4396: 4392: 4370: 4358: 4354: 4347: 4344: 4318: 4312: 4284: 4280: 4273: 4270: 4267: 4264: 4255: 4236: 4232: 4225: 4222: 4214: 4158: 4155: 4152: 4126: 4114: 4110: 4103: 4100: 4071: 4050: 4032: 4023: 4019: 4012: 3992: 3989: 3986: 3978: 3960: 3956: 3949: 3946: 3916: 3914: 3910: 3906: 3899: 3896: →  3895: 3891: 3887: 3865: 3841: 3823: 3816: 3810: 3803: 3802: 3801: 3799: 3795: 3791: 3787: 3783: 3764: 3756: 3752: 3748: 3745: 3736: 3734: 3730: 3726: 3710: 3704: 3698: 3692: 3686: 3678: 3673: 3671: 3652: 3644: 3641: 3637: 3614: 3604: 3601: 3579: 3564: 3554: 3551: 3531: 3520: 3517: 3511: 3508: 3494: 3486: 3482: 3478: 3475: 3466: 3464: 3460: 3456: 3440: 3431: 3425: 3422: 3399: 3376: 3365: 3361: 3345: 3336: 3330: 3327: 3316: 3312: 3308: 3303: 3301: 3297: 3281: 3272: 3266: 3263: 3252: 3248: 3232: 3223: 3217: 3214: 3203: 3199: 3195: 3187: 3185: 3171: 3162: 3156: 3153: 3142: 3138: 3122: 3113: 3107: 3104: 3093: 3090: ≤  3089: 3085: 3081: 3076: 3074: 3070: 3066: 3050: 3041: 3035: 3032: 3021: 3017: 3013: 3009: 3006: ≤  3005: 3000: 2986: 2975: 2971: 2964: 2961: 2938: 2930: 2926: 2922: 2919: 2897: 2893: 2884: 2880: 2876: 2871: 2869: 2866: ∈  2865: 2861: 2857: 2853: 2849: 2845: 2841: 2838: =  2837: 2833: 2830:is normal in 2829: 2825: 2822: ≤  2821: 2816: 2814: 2810: 2806: 2802: 2799: =  2798: 2794: 2790: 2786: 2783: ≤  2782: 2778: 2773: 2771: 2767: 2763: 2759: 2755: 2751: 2748: ≤  2747: 2742: 2725: 2717: 2702: 2698: 2694: 2690: 2686: 2670: 2664: 2659: 2640: 2634: 2631: 2628: 2623: 2607: 2584: 2578: 2575: 2569: 2563: 2560: 2557: 2548: 2537: 2533: 2529: 2525: 2521: 2517: 2514: →  2513: 2509: 2505: 2501: 2498: ≤  2497: 2493: 2489: 2481: 2477: 2473: 2471: 2457: 2453: 2447: 2432: 2428: 2424: 2420: 2402: 2392: 2387: 2383: 2362: 2359: 2356: 2353: 2348: 2344: 2340: 2337: 2331: 2325: 2305: 2302: 2297: 2284: 2262: 2252: 2247: 2234: 2228: 2225: 2222: 2219: 2193: 2178: 2174: 2170: 2166: 2162: 2146: 2121: 2108: 2102: 2099: 2091: 2075: 2053: 2023: 2017: 2009: 2005: 1981: 1978: 1972: 1969: 1958: 1955: 1952: 1944: 1943: 1942: 1936: 1934: 1932: 1928: 1924: 1920: 1915: 1899: 1889: 1880: 1872: 1868: 1861: 1836: 1809: 1787: 1757: 1751: 1731: 1728: 1725: 1722: 1719: 1693: 1678: 1668: 1665: 1657: 1641: 1613: 1610: 1604: 1601: 1590: 1587: 1584: 1561: 1553: 1549: 1545: 1542: 1534: 1530: 1529: 1528: 1526: 1508: 1498: 1492: 1484: 1480: 1450: 1444: 1439: 1424: 1420: 1416: 1411: 1395: 1382: 1376: 1373: 1345: 1342: 1336: 1333: 1319: 1311: 1307: 1303: 1300: 1292: 1287: 1271: 1256: 1246: 1243: 1235: 1217: 1188: 1173: 1155: 1126: 1116: 1111: 1107: 1100: 1097: 1087: 1065: 1059: 1054: 1024: 1016: 1012: 1008: 1005: 996: 977: 964: 959: 955: 951: 940: 937: 931: 928: 917: 914: 911: 903: 881: 875: 870: 855: 836: 828: 824: 820: 817: 794: 786: 782: 778: 775: 768: 767:surface group 764: 756: 752: 748: 746: 744: 739: 737: 733: 729: 711: 696: 692: 688: 684: 666: 651: 641: 638: 629: 627: 623: 619: 601: 588: 583: 554: 541: 536: 503: 488: 478: 475: 468: 467: 466: 449: 441: 437: 414: 404: 399: 383: 381: 363: 333: 325: 321: 294: 288: 283: 273: 268: 258: 249: 223: 215: 211: 190: 187: 184: 162: 148: 144: 126: 112: 90: 80: 76: 72: 68: 64: 59: 57: 53: 45: 43: 41: 36: 34: 30: 25: 23: 19: 6506:Group theory 6474: 6420: 6414: 6408: 6378:(1): 57–68. 6375: 6371: 6319: 6313: 6261: 6255: 6249: 6212: 6206: 6196: 6179: 6173: 6167: 6134: 6128: 6100: 6057: 6053: 6043: 6000: 5994: 5988: 5965: 5958: 5915: 5909: 5903: 5869:(4): 58–80. 5866: 5860: 5805:(1): 41–47. 5802: 5796: 5756: 5750: 5737: 5694: 5688: 5682: 5655:math/9609209 5645: 5639: 5599: 5593: 5580: 5553: 5547: 5537: 5510: 5504: 5479: 5473: 5456: 5450: 5444: 5435: 5425: 5417: 5412: 5393: 5357: 5351: 5341: 5309:(1): 35–91. 5306: 5300: 5290: 5263: 5257: 5247: 5214: 5208: 5195: 5162:math/0607509 5152: 5146: 5125: 5116: 5089: 5083: 4997: 4993: 4989: 4985: 4981: 4977: 4973: 4969: 4965: 4961: 4957: 4953: 4949: 4941: 4801: 4797: 4693: 4516: 4409: 4405: 4403: 4398: 4394: 4390: 4256: 3917: 3912: 3908: 3904: 3897: 3893: 3889: 3885: 3856: 3797: 3793: 3785: 3781: 3737: 3724: 3674: 3669: 3467: 3462: 3458: 3454: 3363: 3314: 3310: 3304: 3299: 3295: 3250: 3246: 3201: 3197: 3193: 3191: 3140: 3136: 3091: 3087: 3079: 3077: 3072: 3064: 3019: 3015: 3007: 3003: 3001: 2999:does exist. 2874: 2872: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2817: 2812: 2808: 2804: 2800: 2796: 2792: 2784: 2780: 2776: 2774: 2765: 2761: 2757: 2749: 2745: 2743: 2696: 2692: 2688: 2684: 2535: 2534:is called a 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2487: 2485: 2429:in terms of 2426: 2422: 2418: 2211: 2176: 2168: 2164: 2089: 2010:, and where 2003: 1940: 1916: 1711: 1655: 1532: 1524: 1422: 1418: 1417:(2014). Let 1412: 1290: 1288: 1233: 1171: 997: 853: 852:, the group 760: 742: 740: 735: 731: 727: 694: 690: 686: 630: 617: 521: 384: 142: 74: 70: 65:be a closed 62: 60: 49: 37: 29:James Cannon 26: 17: 15: 5155:(1): 1–80. 4984:, or where 4215:element of 3086:) subgroup 2597:, given by 1084:, with the 203:lifts to a 6500:Categories 6430:1506.08036 6010:1506.06974 5459:: 89–245. 5062:References 4523:, the set 4515:such that 4063:the group 3733:free group 3679:, that if 3010:where the 998:The group 622:surjective 6329:0708.3578 6322:: 59–78. 6296:119149073 6271:1406.4594 6222:0908.2272 6159:119295501 6067:1207.3494 6035:255427886 5950:253648281 5925:1001.4482 5876:1401.2638 5837:119169019 5812:1206.5868 5729:119299936 5704:1209.0815 5360:: 35–76. 5187:119160004 5026:⁡ 4812:∂ 4758:∂ 4708:π 4704:∂ 4677:Λ 4645:∂ 4642:⊆ 4639:Λ 4591:≤ 4588:Γ 4545:− 4534:∂ 4495:∂ 4491:Λ 4487:∈ 4461:∂ 4438:∂ 4435:→ 4429:∂ 4420:∂ 4375:Γ 4367:∂ 4364:→ 4351:∂ 4342:∂ 4322:⟩ 4319:ϕ 4316:⟨ 4310:Γ 4274:⁡ 4268:∈ 4265:ϕ 4226:⁡ 4199:Γ 4179:Γ 4153:≤ 4131:Γ 4123:∂ 4120:→ 4107:∂ 4098:∂ 4076:Γ 4048:→ 4045:Γ 4042:→ 4037:Γ 4029:→ 4016:→ 3990:≥ 3950:⁡ 3926:Γ 3870:Γ 3839:→ 3836:Γ 3833:→ 3828:Γ 3820:→ 3814:→ 3753:π 3731:and of a 3708:→ 3702:→ 3696:→ 3690:→ 3642:− 3605:∈ 3570:→ 3501:→ 3483:π 3476:ρ 3438:∂ 3435:→ 3429:∂ 3420:∂ 3397:∂ 3374:∂ 3343:∂ 3340:→ 3334:∂ 3325:∂ 3279:∂ 3276:→ 3270:∂ 3261:∂ 3230:∂ 3227:→ 3221:∂ 3212:∂ 3169:∂ 3166:→ 3160:∂ 3151:∂ 3120:∂ 3117:→ 3111:∂ 3102:∂ 3048:∂ 3045:→ 3039:∂ 3030:∂ 2984:∂ 2981:→ 2968:∂ 2959:∂ 2936:→ 2715:∂ 2711:Λ 2701:limit set 2668:∂ 2657:∂ 2644:^ 2611:^ 2582:∂ 2579:∪ 2573:→ 2567:∂ 2564:∪ 2552:^ 2393:∈ 2360:∈ 2295:∂ 2253:∪ 2238:→ 2232:∂ 2229:∪ 2173:limit set 2144:∂ 2112:→ 2106:∂ 2076:ρ 2018:ρ 1962:→ 1953:ρ 1890:⊆ 1869:π 1862:ρ 1859:Λ 1752:ρ 1729:∈ 1723:≠ 1684:→ 1642:ρ 1594:→ 1585:ρ 1550:π 1523:(even if 1481:π 1477:Λ 1454:~ 1386:→ 1380:Λ 1326:→ 1308:π 1301:ρ 1262:→ 1104:∂ 1101:⊆ 1095:Λ 1086:limit set 1069:~ 1013:π 965:⁡ 921:→ 912:ρ 885:~ 825:π 783:π 657:→ 592:∂ 545:∂ 494:→ 438:π 405:⊆ 322:π 298:~ 274:⊆ 253:~ 212:π 188:⊆ 94:~ 6455:92985011 6400:16597989 6092:30718832 5549:Topology 5436:Preprint 5007:context. 2494:and let 2136:, where 1927:Bowditch 1925:(2001), 1923:McMullen 1415:Mahan Mj 856:acts on 763:Kleinian 730:, where 6447:3797060 6392:2654898 6354:7045852 6346:2780738 6288:3570022 6241:2783240 6188:2851869 6151:4077660 6084:3335244 6027:3557464 5942:2989436 5895:3488025 5829:3176651 5775:3143716 5721:4077662 5674:1622603 5618:1443845 5572:1604882 5529:3652816 5465:2469517 5376:2262721 5333:1859018 5311:Bibcode 5282:1688476 5239:1257060 5231:2152785 5179:3126566 5108:2326947 4792:of the 3979:(where 3200:, then 2171:is the 2159:is the 2068:. Then 378:is not 73:. Then 46:History 6485:  6453:  6445:  6398:  6390:  6352:  6344:  6294:  6286:  6239:  6186:  6157:  6149:  6090:  6082:  6033:  6025:  5976:  5948:  5940:  5893:  5835:  5827:  5773:  5727:  5719:  5672:  5616:  5570:  5527:  5463:  5400:  5374:  5331:  5280:  5237:  5229:  5185:  5177:  5106:  2789:normal 1919:Minsky 1577:. Let 522:where 6479:(PDF) 6451:S2CID 6425:arXiv 6396:S2CID 6350:S2CID 6324:arXiv 6292:S2CID 6266:arXiv 6217:arXiv 6155:S2CID 6088:S2CID 6062:arXiv 6031:S2CID 6005:arXiv 5970:(PDF) 5946:S2CID 5920:arXiv 5871:arXiv 5833:S2CID 5807:arXiv 5747:(PDF) 5725:S2CID 5699:arXiv 5650:arXiv 5590:(PDF) 5501:(PDF) 5227:JSTOR 5205:(PDF) 5183:S2CID 5157:arXiv 4519:is a 2787:is a 2490:be a 2006:is a 6483:ISBN 6127:)". 5974:ISBN 5398:ISBN 4952:and 3792:Mod( 3362:for 3084:free 2795:and 2486:Let 2318:and 1945:Let 1531:Let 1469:and 1203:and 956:Isom 569:and 349:on 54:and 31:and 6435:doi 6380:doi 6376:120 6334:doi 6320:151 6276:doi 6227:doi 6139:doi 6072:doi 6052:". 6015:doi 6001:216 5930:doi 5881:doi 5817:doi 5761:doi 5709:doi 5660:doi 5604:doi 5600:125 5558:doi 5515:doi 5362:doi 5358:255 5319:doi 5307:146 5268:doi 5219:doi 5167:doi 5153:179 5094:doi 5023:Out 4846:is 4796:of 4271:Out 4223:Out 3947:Out 3918:If 3738:If 3457:in 3366:in 3018:in 3014:of 2818:If 2752:is 2744:If 2433:of 2179:in 2175:of 2163:of 1174:on 685:of 620:is 6502:: 6449:. 6443:MR 6441:. 6433:. 6421:18 6419:. 6394:. 6388:MR 6386:. 6374:. 6362:^ 6348:. 6342:MR 6340:. 6332:. 6318:. 6304:^ 6290:. 6284:MR 6282:. 6274:. 6262:36 6260:. 6237:MR 6235:. 6225:. 6213:11 6211:. 6205:. 6184:MR 6180:86 6178:. 6153:. 6147:MR 6145:. 6135:14 6133:. 6086:. 6080:MR 6078:. 6070:. 6058:91 6056:. 6029:. 6023:MR 6021:. 6013:. 5999:. 5944:. 5938:MR 5936:. 5928:. 5916:22 5914:. 5891:MR 5889:. 5879:. 5867:20 5865:. 5859:. 5845:^ 5831:. 5825:MR 5823:. 5815:. 5803:17 5801:. 5795:. 5783:^ 5771:MR 5769:. 5759:. 5755:. 5749:. 5723:. 5717:MR 5715:. 5707:. 5695:14 5693:. 5670:MR 5668:. 5658:. 5646:48 5644:. 5638:. 5626:^ 5614:MR 5612:. 5598:. 5592:. 5568:MR 5566:. 5554:37 5552:. 5546:. 5525:MR 5523:. 5513:. 5509:. 5503:. 5488:^ 5461:MR 5457:13 5455:. 5434:. 5384:^ 5372:MR 5370:. 5356:. 5350:. 5329:MR 5327:. 5317:. 5305:. 5299:. 5278:MR 5276:. 5264:93 5262:. 5256:. 5235:MR 5233:. 5225:. 5213:. 5207:. 5181:. 5175:MR 5173:. 5165:. 5151:. 5133:^ 5126:11 5104:MR 5102:. 5090:11 5088:. 5082:. 5070:^ 4994:∂G 4978:∂G 4254:. 3913:∂i 3905:∂i 3898:∂E 3894:∂H 3890:∂i 3735:. 3672:. 3465:. 3463:∂i 3459:∂G 3302:. 3075:. 2870:. 2868:∂Q 2856:∂G 2854:→ 2852:∂H 2850:: 2848:∂i 2766:∂G 2764:→ 2762:∂H 2760:: 2758:∂i 2741:. 2697:∂H 2693:∂i 2685:∂i 2532:∂i 2528:∂G 2526:→ 2524:∂H 2522:: 2520:∂i 2470:. 1931:Mj 1410:. 1286:. 995:. 738:. 628:. 382:. 42:. 6491:. 6457:. 6437:: 6427:: 6402:. 6382:: 6356:. 6336:: 6326:: 6298:. 6278:: 6268:: 6243:. 6229:: 6219:: 6190:. 6161:. 6141:: 6114:F 6094:. 6074:: 6064:: 6050:N 6037:. 6017:: 6007:: 5982:. 5952:. 5932:: 5922:: 5897:. 5883:: 5873:: 5839:. 5819:: 5809:: 5777:. 5763:: 5757:1 5731:. 5711:: 5701:: 5676:. 5662:: 5652:: 5620:. 5606:: 5574:. 5560:: 5531:. 5517:: 5511:5 5467:. 5438:. 5406:. 5378:. 5364:: 5335:. 5321:: 5313:: 5284:. 5270:: 5241:. 5221:: 5215:7 5189:. 5169:: 5159:: 5110:. 5096:: 5045:) 5040:n 5036:F 5032:( 5029:t 5000:. 4998:G 4990:M 4986:G 4982:G 4974:M 4970:G 4966:Z 4962:M 4958:G 4954:Z 4950:M 4942:G 4927:. 4915:) 4911:C 4907:, 4904:2 4901:( 4898:L 4895:S 4891:P 4868:2 4863:S 4834:) 4831:z 4828:, 4825:S 4822:( 4817:C 4802:S 4798:S 4780:) 4777:z 4774:, 4771:S 4768:( 4763:C 4736:1 4731:S 4726:= 4723:) 4720:S 4717:( 4712:1 4694:S 4655:3 4650:H 4619:) 4615:C 4611:, 4608:2 4605:( 4602:L 4599:S 4595:P 4559:) 4556:p 4553:( 4548:1 4541:) 4537:i 4531:( 4517:p 4503:H 4498:G 4484:p 4464:i 4441:G 4432:H 4426:: 4423:i 4410:G 4406:H 4399:n 4395:n 4391:n 4371:E 4359:n 4355:F 4348:: 4345:i 4313:= 4290:) 4285:n 4281:F 4277:( 4242:) 4237:n 4233:F 4229:( 4159:n 4156:2 4127:E 4115:n 4111:F 4104:: 4101:i 4072:E 4051:1 4033:E 4024:n 4020:F 4013:1 3993:3 3987:n 3966:) 3961:n 3957:F 3953:( 3909:S 3901:Γ 3892:: 3886:S 3866:E 3842:1 3824:E 3817:H 3811:1 3798:S 3794:S 3786:H 3782:S 3768:) 3765:S 3762:( 3757:1 3749:= 3746:H 3725:H 3711:1 3705:Q 3699:G 3693:H 3687:1 3670:S 3656:) 3653:p 3650:( 3645:1 3638:j 3615:2 3610:S 3602:p 3580:2 3575:S 3565:1 3560:S 3555:: 3552:j 3532:, 3529:) 3525:C 3521:, 3518:2 3515:( 3512:L 3509:S 3505:P 3498:) 3495:S 3492:( 3487:1 3479:: 3455:H 3441:G 3432:H 3426:: 3423:i 3400:i 3377:G 3364:H 3346:G 3337:H 3331:: 3328:i 3315:G 3311:H 3300:G 3296:H 3282:G 3273:H 3267:: 3264:i 3251:G 3247:H 3233:G 3224:H 3218:: 3215:i 3202:H 3198:G 3194:H 3172:G 3163:H 3157:: 3154:i 3141:G 3137:H 3123:G 3114:H 3108:: 3105:i 3092:G 3088:H 3080:G 3073:G 3065:H 3051:G 3042:H 3036:: 3033:i 3020:G 3016:H 3008:G 3004:H 2987:G 2976:v 2972:A 2965:: 2962:i 2939:G 2931:v 2927:A 2923:: 2920:i 2898:v 2894:A 2875:G 2864:z 2860:H 2844:H 2842:/ 2840:G 2836:Q 2832:G 2828:H 2824:G 2820:H 2813:G 2809:H 2805:H 2803:/ 2801:G 2797:Q 2793:H 2785:G 2781:H 2777:G 2750:G 2746:H 2729:) 2726:H 2723:( 2718:G 2695:( 2689:H 2671:i 2665:= 2660:H 2652:| 2641:i 2635:, 2632:i 2629:= 2624:H 2619:| 2608:i 2585:G 2576:G 2570:H 2561:H 2558:: 2549:i 2516:G 2512:H 2510:: 2508:i 2504:H 2500:G 2496:H 2488:G 2458:G 2454:/ 2448:3 2443:H 2427:j 2423:G 2419:G 2403:3 2398:H 2388:0 2384:x 2363:G 2357:g 2354:, 2349:0 2345:x 2341:g 2338:= 2335:) 2332:g 2329:( 2326:J 2306:j 2303:= 2298:G 2290:| 2285:J 2263:2 2258:S 2248:3 2243:H 2235:G 2226:G 2223:: 2220:J 2208:. 2194:2 2189:S 2177:G 2169:j 2165:G 2147:G 2122:2 2117:S 2109:G 2103:: 2100:j 2090:G 2054:3 2049:H 2027:) 2024:G 2021:( 2004:G 1990:) 1986:C 1982:, 1979:2 1976:( 1973:L 1970:S 1966:P 1959:G 1956:: 1900:2 1895:S 1887:) 1884:) 1881:S 1878:( 1873:1 1865:( 1837:2 1832:H 1810:h 1788:3 1783:H 1761:) 1758:h 1755:( 1732:H 1726:h 1720:1 1708:. 1694:2 1689:S 1679:1 1674:S 1669:: 1666:j 1656:H 1622:) 1618:C 1614:, 1611:2 1608:( 1605:L 1602:S 1598:P 1591:H 1588:: 1565:) 1562:S 1559:( 1554:1 1546:= 1543:H 1533:S 1525:S 1509:1 1504:S 1499:= 1496:) 1493:S 1490:( 1485:1 1451:S 1445:= 1440:2 1435:H 1423:S 1419:S 1396:2 1391:S 1383:H 1377:: 1374:j 1354:) 1350:C 1346:, 1343:2 1340:( 1337:L 1334:S 1330:P 1323:) 1320:S 1317:( 1312:1 1304:: 1291:S 1272:2 1267:S 1257:1 1252:S 1247:: 1244:j 1234:H 1218:3 1213:H 1189:2 1184:H 1172:H 1156:1 1151:S 1127:1 1122:S 1117:= 1112:2 1108:H 1098:H 1066:S 1060:= 1055:2 1050:H 1028:) 1025:S 1022:( 1017:1 1009:= 1006:H 983:) 978:3 973:H 968:( 960:+ 952:= 949:) 945:C 941:, 938:2 935:( 932:L 929:S 925:P 918:H 915:: 882:M 876:= 871:3 866:H 854:H 840:) 837:M 834:( 829:1 821:= 818:G 798:) 795:S 792:( 787:1 779:= 776:H 743:j 736:S 732:g 728:g 712:2 707:S 695:j 691:M 687:S 667:2 662:S 652:1 647:S 642:: 639:j 618:j 602:3 597:H 589:= 584:2 579:S 555:2 550:H 542:= 537:1 532:S 518:, 504:2 499:S 489:1 484:S 479:: 476:j 453:) 450:S 447:( 442:1 415:3 410:H 400:2 395:H 364:3 359:H 337:) 334:S 331:( 326:1 295:M 289:= 284:3 279:H 269:2 264:H 259:= 250:S 227:) 224:S 221:( 216:1 191:M 185:S 163:3 158:H 143:M 127:2 122:H 91:S 75:S 71:S 63:M

Index

hyperbolic metric spaces
James Cannon
William Thurston
space-filling curves
James W. Cannon
William Thurston
hyperbolic 3-manifold
universal cover
hyperbolic plane
hyperbolic 3-space
geometrically finite
surjective
space-filling curve
pseudo-Anosov homeomorphism
Kleinian groups
Kleinian
surface group
properly discontinuous
limit set
Mahan Mj
Minsky
McMullen
Bowditch
Mj
word-hyperbolic group
Gromov boundary
limit set
ending laminations
word-hyperbolic groups
word-hyperbolic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.