Knowledge (XXG)

Pseudo-Anosov map

Source đź“ť

480:
is a pseudo-Anosov map: in this case, there are two fixed points on the Thurston boundary, one attracting and one repelling, and the homeomorphism behaves similarly to a hyperbolic automorphism of the
222: 302: 315:-coordinate, measured locally in every chart, is a geometric quantity (i.e. independent of the chart) and permits the definition of a total variation along a simple closed curve on 339:
is redefined with respect to this modified differentiable structure. With some technical modifications, these definitions extend to the case of a surface with boundary.
380: 331:≥3, are allowed. At such a singular point, the differentiable structure of the surface is modified to make the point into a conical point with the total angle 60: 500:(on the algebraic side). This leads to an analogue of Thurston classification for the case of automorphisms of free groups, developed by 513:
A. Casson, S. Bleiler, "Automorphisms of Surfaces after Nielsen and Thurston", (London Mathematical Society Student Texts 9), (1988).
496:, the notion of a pseudo-Anosov map has been extended to self-maps of graphs (on the topological side) and outer automorphisms of 168: 523:
R. C. Penner. "A construction of pseudo-Anosov homeomorphisms", Trans. Amer. Math. Soc., 310 (1988) No 1, 179–197
582: 476:
extends to a homeomorphism of the Thurston compactification. The dynamics of this homeomorphism is the simplest when
577: 233: 484:. A "generic" diffeomorphism of a surface of genus at least two is isotopic to a pseudo-Anosov diffeomorphism. 587: 481: 44: 446: 517: 40: 549: 353: 539: 527: 56: 561: 557: 501: 32: 90:
and a measure in the transverse direction. In some neighborhood of a regular point of
571: 36: 544: 20: 497: 553: 520:, "Travaux de Thurston sur les surfaces," Asterisque, Vols. 66 and 67 (1979). 59:, who also coined the term "pseudo-Anosov diffeomorphism" when he proved his 87: 24: 530:(1988), "On the geometry and dynamics of diffeomorphisms of surfaces", 48: 409: > 1 such that the foliations are preserved by 393:
if there exists a transverse pair of measured foliations on
311:. This assures that along a simple curve, the variation in 356: 236: 171: 217:{\displaystyle \phi _{ij}\circ \phi _{j}=\phi _{i},} 16:
Type of diffeomorphism or homeomorphism of a surface
413:and their transverse measures are multiplied by 1/ 374: 296: 216: 445:Thurston constructed a compactification of the 61:classification of diffeomorphisms of a surface 532:Bulletin of the American Mathematical Society 8: 51:. Its definition relies on the notion of a 297:{\displaystyle \phi (x,y)=(f(x,y),c\pm y)} 543: 355: 235: 205: 192: 176: 170: 319:. A finite number of singularities of 43:. It is a generalization of a linear 7: 335:. The notion of a diffeomorphism of 67:Definition of a measured foliation 14: 343:Definition of a pseudo-Anosov map 460:such that the action induced on 545:10.1090/S0273-0979-1988-15685-6 405:(unstable), and a real number 366: 291: 276: 264: 258: 252: 240: 162:), with the standard property 1: 516:A. Fathi, F. Laudenbach, and 86:which consists of a singular 114:. If two such neighborhoods 82:is a geometric structure on 110:to the horizontal lines in 604: 106:which sends the leaves of 227:which must have the form 468:) by any diffeomorphism 375:{\displaystyle f:S\to S} 132:overlap then there is a 94:, there is a "flow box" 376: 298: 218: 377: 299: 219: 45:Anosov diffeomorphism 528:Thurston, William P. 492:Using the theory of 385:of a closed surface 354: 234: 169: 78:on a closed surface 482:PoincarĂ© half-plane 134:transition function 583:Geometric topology 372: 327:-pronged saddle", 307:for some constant 294: 214: 73:measured foliation 53:measured foliation 23:, specifically in 578:Dynamical systems 447:TeichmĂĽller space 29:pseudo-Anosov map 595: 564: 547: 381: 379: 378: 373: 347:A homeomorphism 323:of the type of " 303: 301: 300: 295: 223: 221: 220: 215: 210: 209: 197: 196: 184: 183: 57:William Thurston 603: 602: 598: 597: 596: 594: 593: 592: 568: 567: 526: 510: 490: 456:) of a surface 443: 352: 351: 345: 232: 231: 201: 188: 172: 167: 166: 161: 152: 143: 131: 122: 69: 31:is a type of a 17: 12: 11: 5: 601: 599: 591: 590: 588:Homeomorphisms 585: 580: 570: 569: 566: 565: 538:(2): 417–431, 534:, New Series, 524: 521: 514: 509: 506: 489: 488:Generalization 486: 442: 439: 427:stretch factor 425:is called the 383: 382: 371: 368: 365: 362: 359: 344: 341: 305: 304: 293: 290: 287: 284: 281: 278: 275: 272: 269: 266: 263: 260: 257: 254: 251: 248: 245: 242: 239: 225: 224: 213: 208: 204: 200: 195: 191: 187: 182: 179: 175: 157: 148: 139: 127: 118: 68: 65: 55:introduced by 33:diffeomorphism 15: 13: 10: 9: 6: 4: 3: 2: 600: 589: 586: 584: 581: 579: 576: 575: 573: 563: 559: 555: 551: 546: 541: 537: 533: 529: 525: 522: 519: 515: 512: 511: 507: 505: 503: 499: 495: 487: 485: 483: 479: 475: 471: 467: 463: 459: 455: 451: 448: 440: 438: 436: 432: 428: 424: 421:. The number 420: 416: 412: 408: 404: 401:(stable) and 400: 396: 392: 391:pseudo-Anosov 388: 369: 363: 360: 357: 350: 349: 348: 342: 340: 338: 334: 330: 326: 322: 318: 314: 310: 288: 285: 282: 279: 273: 270: 267: 261: 255: 249: 246: 243: 237: 230: 229: 228: 211: 206: 202: 198: 193: 189: 185: 180: 177: 173: 165: 164: 163: 160: 156: 151: 147: 142: 138: 135: 130: 126: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 74: 66: 64: 62: 58: 54: 50: 46: 42: 38: 37:homeomorphism 34: 30: 26: 22: 535: 531: 504:and Handel. 494:train tracks 493: 491: 477: 473: 469: 465: 461: 457: 453: 449: 444: 441:Significance 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 390: 386: 384: 346: 336: 332: 328: 324: 320: 316: 312: 308: 306: 226: 158: 154: 149: 145: 140: 136: 133: 128: 124: 119: 115: 111: 107: 103: 99: 95: 91: 83: 79: 75: 72: 70: 52: 28: 18: 498:free groups 144:defined on 21:mathematics 572:Categories 518:V. PoĂ©naru 508:References 431:dilatation 389:is called 554:0002-9904 367:→ 286:± 238:ϕ 203:ϕ 190:ϕ 186:∘ 174:ϕ 88:foliation 502:Bestvina 25:topology 562:0956596 333:πp 47:of the 41:surface 560:  552:  423:λ 419:λ 415:λ 407:λ 146:φ 137:φ 96:φ 49:torus 39:of a 550:ISSN 417:and 123:and 27:, a 540:doi 472:of 433:of 429:or 35:or 19:In 574:: 558:MR 556:, 548:, 536:19 437:. 397:, 141:ij 102:→ 98:: 71:A 63:. 542:: 478:f 474:S 470:f 466:S 464:( 462:T 458:S 454:S 452:( 450:T 435:f 411:f 403:F 399:F 395:S 387:S 370:S 364:S 361:: 358:f 337:S 329:p 325:p 321:F 317:S 313:y 309:c 292:) 289:y 283:c 280:, 277:) 274:y 271:, 268:x 265:( 262:f 259:( 256:= 253:) 250:y 247:, 244:x 241:( 212:, 207:i 199:= 194:j 181:j 178:i 159:j 155:U 153:( 150:j 129:j 125:U 120:i 116:U 112:R 108:F 104:R 100:U 92:F 84:S 80:S 76:F

Index

mathematics
topology
diffeomorphism
homeomorphism
surface
Anosov diffeomorphism
torus
William Thurston
classification of diffeomorphisms of a surface
foliation
TeichmĂĽller space
Poincaré half-plane
free groups
Bestvina
V. Poénaru
Thurston, William P.
doi
10.1090/S0273-0979-1988-15685-6
ISSN
0002-9904
MR
0956596
Categories
Dynamical systems
Geometric topology
Homeomorphisms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑