Knowledge (XXG)

Geometric finiteness

Source 📝

129:
with a finite number of faces is geometrically finite. In hyperbolic space of dimension at most 2, every geometrically finite polyhedron has a finite number of sides, but there are geometrically finite polyhedra in dimensions 3 and above with infinitely many sides. For example, in
204:
In hyperbolic spaces of dimension at most 3, every exact, convex, fundamental polyhedron for a geometrically finite group has only a finite number of sides, but in dimensions 4 and above there are examples with an infinite number of sides
228:
if it has a finite number of components, each of which is the quotient of hyperbolic space by a geometrically finite discrete group of isometries (
317: 241: 161:
A geometrically finite polyhedron has only a finite number of cusps, and all but finitely many sides meet one of the cusps.
335: 216:
showed that there are examples of finitely generated discrete groups in dimension 3 that are not geometrically finite.
340: 212:
In hyperbolic spaces of dimension at most 2, finitely generated discrete groups are geometrically finite, but
256: 56: 281: 44: 313: 273: 158:
under this projection is a geometrically finite polyhedron with an infinite number of sides.
265: 36: 293: 309: 289: 68: 17: 302: 329: 181:
that is convex, geometrically finite, and exact (every face is the intersection of
81:
in the conformal compactification of hyperbolic space has the following property:
126: 277: 48: 32: 28: 285: 269: 254:
Greenberg, L. (1966), "Fundamental polyhedra for kleinian groups",
75:
in hyperbolic space is called geometrically finite if its closure
142:
with an infinite number of sides. The upper half plane model of
55:
if it can be described in terms of geometrically finite
301: 8: 173:of isometries of hyperbolic space is called 229: 213: 206: 198: 118: 7: 304:Foundations of hyperbolic manifolds 242:Density theorem for Kleinian groups 146:+1 dimensional hyperbolic space in 25: 224:A hyperbolic manifold is called 177:if it has a fundamental domain 220:Geometrically finite manifolds 63:Geometrically finite polyhedra 1: 300:Ratcliffe, John G. (1994), 165:Geometrically finite groups 154:, and the inverse image of 357: 138:≥2 there is a polyhedron 95:, there is a neighborhood 18:Geometrically finite group 43:if it has a well-behaved 103:such that all faces of 257:Annals of Mathematics 308:, Berlin, New York: 226:geometrically finite 175:geometrically finite 53:geometrically finite 41:geometrically finite 336:Hyperbolic geometry 209:, theorem 12.4.6). 125:For example, every 113:also pass through 45:fundamental domain 319:978-0-387-94348-0 260:, Second Series, 169:A discrete group 16:(Redirected from 348: 322: 307: 296: 214:Greenberg (1966) 130:Euclidean space 108: 94: 80: 47:. A hyperbolic 37:hyperbolic space 21: 356: 355: 351: 350: 349: 347: 346: 345: 341:Kleinian groups 326: 325: 320: 310:Springer-Verlag 299: 270:10.2307/1970456 253: 250: 238: 222: 167: 104: 90: 85:For each point 76: 65: 23: 22: 15: 12: 11: 5: 354: 352: 344: 343: 338: 328: 327: 324: 323: 318: 297: 249: 246: 245: 244: 237: 234: 230:Ratcliffe 1994 221: 218: 207:Ratcliffe 1994 199:Ratcliffe 1994 166: 163: 123: 122: 119:Ratcliffe 1994 64: 61: 24: 14: 13: 10: 9: 6: 4: 3: 2: 353: 342: 339: 337: 334: 333: 331: 321: 315: 311: 306: 305: 298: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 258: 252: 251: 247: 243: 240: 239: 235: 233: 231: 227: 219: 217: 215: 210: 208: 202: 200: 196: 193: ∈  192: 188: 184: 180: 176: 172: 164: 162: 159: 157: 153: 149: 145: 141: 137: 134:of dimension 133: 128: 120: 116: 112: 107: 102: 98: 93: 88: 84: 83: 82: 79: 74: 70: 62: 60: 58: 54: 50: 46: 42: 38: 34: 31:, a group of 30: 19: 303: 261: 255: 225: 223: 211: 203: 194: 190: 186: 182: 178: 174: 170: 168: 160: 155: 151: 150:projects to 147: 143: 139: 135: 131: 124: 114: 110: 105: 100: 96: 91: 86: 77: 72: 66: 52: 40: 26: 264:: 433–441, 71:polyhedron 330:Categories 248:References 127:polyhedron 51:is called 39:is called 33:isometries 278:0003-486X 232:, 12.7). 201:, 12.4). 189:for some 236:See also 121:, 12.4). 109:meeting 49:manifold 29:geometry 294:0200446 286:1970456 316:  292:  284:  276:  69:convex 57:groups 282:JSTOR 314:ISBN 274:ISSN 185:and 266:doi 197:) ( 99:of 89:in 35:of 27:In 332:: 312:, 290:MR 288:, 280:, 272:, 262:84 187:gC 67:A 59:. 268:: 205:( 195:G 191:g 183:C 179:C 171:G 156:P 152:R 148:R 144:n 140:P 136:n 132:R 117:( 115:x 111:U 106:C 101:x 97:U 92:C 87:x 78:C 73:C 20:)

Index

Geometrically finite group
geometry
isometries
hyperbolic space
fundamental domain
manifold
groups
convex
Ratcliffe 1994
polyhedron
Ratcliffe 1994
Ratcliffe 1994
Greenberg (1966)
Ratcliffe 1994
Density theorem for Kleinian groups
Annals of Mathematics
doi
10.2307/1970456
ISSN
0003-486X
JSTOR
1970456
MR
0200446
Foundations of hyperbolic manifolds
Springer-Verlag
ISBN
978-0-387-94348-0
Categories
Hyperbolic geometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.