Knowledge

Cellular dewetting

Source 📝

96: 123:
that results from the spreading of cells due to actomyosin relaxation. Opposite to liquid dewetting, TEMs reach a maximum diameter, at which the driving force is balanced by a resisting force that develops along TEM edges (Figure 2). This resisting force is referred to as
204: 17: 247:) corresponds to the resisting force along the edge of the tunnel that opposes membrane tension and limits dewetting. This line tension can have physical and molecular components. 385:"cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization" 23:
Snapshot images taken from a video showing the nucleation and growth of a TEM in an endothelial cell intoxicated with C3 exoenzyme from
315: 263:
Lemichez, E. (2012). "Transcellular tunnel dynamics: Control of cellular dewetting by actomyosin contractility and I-BAR proteins".
80: 234: 47:(Figure 1). This phenomenon is analogous to the nucleation and growth of dry patches in viscous liquids spreading on a 333:"Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors" 163: 519: 76: 524: 52: 288: 95: 28: 496: 455: 406: 362: 311: 280: 110:
The phenomenon of cellular dewetting can be interpreted by physical modeling (Figure 2). The
486: 445: 437: 396: 352: 344: 272: 450: 425: 357: 84: 513: 230: 144: 115: 51:
substrate (Figure 2). Cellular dewetting is triggered by several protein toxins from
332: 292: 491: 474: 68: 114:
responsible for the spontaneous formation of TEM tunnels and their opening is the
16: 44: 401: 384: 40: 103: 72: 36: 500: 459: 410: 366: 284: 348: 276: 143:, as depicted in Figure 2. Here, pulling is due to the tensioning of the 43:
and enlargement of transendothelial cell macroaperture (TEM) tunnels in
441: 48: 147:(σ) that is partly counteracted by a line tension around the tunnel ( 475:"Cellular dewetting: opening of macroapertures in endothelial cells" 233:, inducing a decrease in membrane tension, as described by 426:"Cytoskeletal coherence requires myosin-IIA contractility" 166: 198: 27:for 24 hours, Bar = 10 μm. For the dynamics see 151:). In these conditions, the net driving force ( 128:and is uncharacterized at the molecular level. 8: 199:{\displaystyle F_{D}=\sigma -{\frac {T}{R}}} 79:or to induction of the flux of cyclic-AMP ( 67:. TEMs form in response to the rupture of 490: 449: 400: 356: 229:. A tunnel increase in size relaxes the 186: 171: 165: 94: 15: 255: 55:, notably the EDIN-like factors from 7: 378: 376: 14: 308:Capillarity and Wetting Phenomena 158:) consists of two contributions: 91:Physics behind cellular dewetting 71:physical connections through the 473:Gonzalez-Rodriguez, D. (2012). 225:) depends on the tunnel radius 492:10.1103/PhysRevLett.108.218105 139:pulling on a tunnel of radius 63:, as well as edema toxin from 1: 541: 402:10.1016/j.chom.2011.09.014 383:Maddugoda, M. P. (2011). 306:De Gennes, P.-G. (2004). 75:due to inhibition of the 39:refers to the process of 479:Physical Review Letters 430:Journal of Cell Science 389:Cell Host & Microbe 337:Journal of Cell Biology 106:and cellular dewetting. 310:. New York: Springer. 208:Dewetting proceeds if 200: 107: 32: 349:10.1083/jcb.200509009 277:10.1111/boc.201200063 201: 98: 61:Clostridium botulinum 57:Staphylococcus aureus 25:Clostridium botulinum 19: 164: 265:Biology of the Cell 132:Physical parameters 53:pathogenic bacteria 442:10.1242/jcs.058297 331:Boyer, L. (2006). 196: 108: 85:signaling molecule 65:Bacillus anthracis 33: 194: 77:RhoA/ROCK pathway 45:endothelial cells 532: 505: 504: 494: 470: 464: 463: 453: 424:Cai, Y. (2010). 421: 415: 414: 404: 380: 371: 370: 360: 328: 322: 321: 303: 297: 296: 260: 219:Membrane tension 205: 203: 202: 197: 195: 187: 176: 175: 104:liquid dewetting 102:Analogy between 540: 539: 535: 534: 533: 531: 530: 529: 510: 509: 508: 472: 471: 467: 423: 422: 418: 382: 381: 374: 330: 329: 325: 318: 305: 304: 300: 262: 261: 257: 253: 213: 167: 162: 161: 156: 134: 93: 12: 11: 5: 538: 536: 528: 527: 522: 512: 511: 507: 506: 485:(21): 218105. 465: 436:(3): 413–423. 416: 395:(5): 464–474. 372: 343:(5): 809–819. 323: 317:978-0387005928 316: 298: 271:(3): 109–117. 254: 252: 249: 235:Helfrich’s law 211: 193: 190: 185: 182: 179: 174: 170: 154: 137:Driving forces 133: 130: 92: 89: 13: 10: 9: 6: 4: 3: 2: 537: 526: 523: 521: 518: 517: 515: 502: 498: 493: 488: 484: 480: 476: 469: 466: 461: 457: 452: 447: 443: 439: 435: 431: 427: 420: 417: 412: 408: 403: 398: 394: 390: 386: 379: 377: 373: 368: 364: 359: 354: 350: 346: 342: 338: 334: 327: 324: 319: 313: 309: 302: 299: 294: 290: 286: 282: 278: 274: 270: 266: 259: 256: 250: 248: 246: 242: 238: 236: 232: 228: 224: 220: 216: 214: 206: 191: 188: 183: 180: 177: 172: 168: 159: 157: 150: 146: 145:cell membrane 142: 138: 131: 129: 127: 122: 119: 118: 113: 112:driving force 105: 101: 97: 90: 88: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 30: 26: 22: 18: 520:Cell biology 482: 478: 468: 433: 429: 419: 392: 388: 340: 336: 326: 307: 301: 268: 264: 258: 244: 241:Line tension 240: 239: 226: 222: 218: 217: 209: 207: 160: 152: 148: 140: 136: 135: 126:line tension 125: 120: 116: 111: 109: 99: 69:cytoskeleton 64: 60: 56: 49:non-wettable 34: 24: 20: 525:Biophysics 514:Categories 251:References 41:nucleation 184:− 181:σ 100:Figure 2. 73:cytoplasm 59:and from 37:dewetting 35:Cellular 21:Figure 1. 501:23003307 460:20067993 411:22100162 367:16754962 293:31452113 285:23189935 231:membrane 117:membrane 83:) broad 451:2816186 358:2063895 215:>0. 121:tension 499:  458:  448:  409:  365:  355:  314:  291:  283:  289:S2CID 29:Video 497:PMID 456:PMID 407:PMID 363:PMID 312:ISBN 281:PMID 81:cAMP 487:doi 483:108 446:PMC 438:doi 434:123 397:doi 353:PMC 345:doi 341:173 273:doi 269:105 516:: 495:. 481:. 477:. 454:. 444:. 432:. 428:. 405:. 393:10 391:. 387:. 375:^ 361:. 351:. 339:. 335:. 287:. 279:. 267:. 237:. 87:. 503:. 489:: 462:. 440:: 413:. 399:: 369:. 347:: 320:. 295:. 275:: 245:T 243:( 227:R 223:σ 221:( 212:D 210:F 192:R 189:T 178:= 173:D 169:F 155:D 153:F 149:T 141:R 31:.

Index

Snapshot sequence of cellular dewetting
Video
dewetting
nucleation
endothelial cells
non-wettable
pathogenic bacteria
cytoskeleton
cytoplasm
RhoA/ROCK pathway
cAMP
signaling molecule
Diagram illustrating the analogy between liquid and cellular dewetting.
liquid dewetting
membrane
cell membrane
membrane
Helfrich’s law
doi
10.1111/boc.201200063
PMID
23189935
S2CID
31452113
ISBN
978-0387005928
"Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors"
doi
10.1083/jcb.200509009
PMC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.