Knowledge (XXG)

Optical sectioning

Source 📝

31: 1204: 1305: 1317: 98:) producing a clear image of the plane of the sample the microscope is focused on. Unfortunately a microscope is not this specific and light from sources outside the focal plane also reaches the detector; in a thick sample there may be a significant amount of material, and so spurious signal, between the focal plane and the 364:
Lightsheet based fluorescence microscopy illuminates the sample with excitation light under an angle of 90° to the direction of observation, i.e. only the focal plane is illuminated using a laser that is only focused in one direction (lightsheet). This method effectively reduces out-of focus light
420:
Optical sectioning can be enhanced by the use of clearing agents possessing a high refractive index (>1.4) such as Benzyl-Alcohol/Benzyl Benzoate (BABB) or Benzyl-ether which render specimens transparent and therefore allow for observation of internal structures.
307:
Beyond increasing numerical aperture, there are few techniques available to improve optical sectioning in bright-field light microscopy. Most microscopes with oil immersion objectives are reaching the limits of numerical aperture possible due to
321:
Differential interference contrast (DIC) provides modest improvements to optical sectioning. In DIC the sample is effectively illuminated by two slightly offset light sources which then interfere to produce an image resulting from the
390:"-dependent effect of requiring multiple photons to simultaneously interact with a fluorophore gives stimulation only very close to the focal plane. These techniques are normally used in conjunction with confocal microscopy. 338:
objects out of the focal plane only interfere with the image if they are illuminated and fluoresce. This adds an extra way in which optical sectioning can be improved by making illumination specific to only the focal plane.
293: 209: 459:
3D imaging using a combination of focal sectioning and tilting has been demonstrated theoretically and experimentally in order to provide exceptional 3D resolution over large fields of view.
393:
Further improvements in optical sectioning are under active development, these principally work through methods to circumvent the diffraction limit of light. Examples include single photon
144:
in the depth direction (the "z resolution") of a standard wide field microscope depends on the numerical aperture and the wavelength of the light and can be approximated as:
456:
is a fluorescent microscopy technique, which intentionally restricts observation to either the top or bottom surfaces of a sample, but with extremely high depth resolution.
1247: 942: 628:
Huisken, J.; Swoger, J.; Bene, F. Del; Wittbrodt, J.; Stelzer, E. H. (2004). "Optical sectioning deep inside live embryos by selective plane illumination microscopy".
1158: 1015:
Hovden, R; Ercius, P (2014). "Breaking the Crowther Limit: Combining Depth-Sectioning and Tilt Tomography for High-Resolution, Wide-Field 3D Reconstructions".
1086: 326:
of the two sources. As the offset in the light sources is small the only difference in phase results from the material close to the focal plane.
1290: 1285: 1153: 859: 453: 1252: 373: 359: 235: 1188: 1168: 316: 450:
are not typically discussed in the context of optical sectioning as these microscopes only interact with the surface of the sample.
149: 1232: 1228: 1079: 369: 133:
objective lenses typically have higher numerical apertures (and so better optical sectioning) than low magnification objectives.
1257: 378:
Dual and multi-photon excitation techniques take advantage of the fact that fluorophores can be excited not just by a single
439:
typically have a large depth of field (poor optical sectioning), and thus thin sectioning of samples is still widely used.
397:
through two objective lenses to give extremely accurate depth information about a single fluorophore and three-dimensional
72:
Good optical sectioning, often referred to as good depth or z resolution, is popular in modern microscopy as it allows the
1321: 447: 398: 506:
Qian, Jia; Lei, Ming; Dan, Dan; Yao, Baoli; Zhou, Xing; Yang, Yanlong; Yan, Shaohui; Min, Junwei; Yu, Xianghua (2015).
1309: 1072: 365:
and may in addition lead to a modest improvement in longitudinal resolution, compared to epi fluorescence microscopy.
1275: 1148: 443: 1236: 1218: 1133: 335: 1138: 647: 1143: 936: 409: 352: 95: 573: 562: 351:
uses a scanning point or points of light to illuminate the sample. In conjunction with a pinhole at a
969: 896: 751: 639: 519: 475: 652: 408:, an image processing technique to remove blur from the image according to a measured or calculated 1343: 1223: 1163: 485: 436: 348: 343: 799:"Three-dimensional structured illumination microscopy and its application to chromosome structure" 355:
this acts to filter out light from sources outside the focal plane to improve optical sectioning.
1114: 1050: 1024: 720: 673: 610: 141: 118: 30: 1042: 997: 924: 865: 855: 820: 779: 712: 665: 630: 602: 545: 227: 740:"Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure" 1203: 1193: 1034: 987: 977: 914: 904: 847: 810: 769: 759: 704: 657: 594: 535: 527: 432: 323: 106: 73: 1280: 958:"Depth sectioning with the aberration-corrected scanning transmission electron microscope" 137:
objectives typically have even larger numerical apertures so improved optical sectioning.
404:
The optical sectioning of normal wide field microscopes can be improved significantly by
386:
but also by multiple photons, which together provide the correct energy. The additional "
973: 900: 755: 643: 523: 1173: 992: 957: 919: 884: 774: 739: 540: 507: 394: 110: 99: 85: 90:
In an ideal microscope, only light from the focal plane would be allowed to reach the
1337: 1242: 405: 387: 134: 130: 126: 1054: 614: 1038: 677: 471: 69:
techniques are specifically designed to improve the quality of optical sectioning.
58: 35: 724: 909: 114: 54: 1178: 1107: 1095: 815: 798: 481: 309: 66: 50: 17: 883:
Becker, K., Jährling, N., Saghafi, S., Weiler, R., & Dodt, H. U. (2012).
982: 764: 692: 661: 585:
Conchello JA, Lichtman JW (December 2005). "Optical sectioning microscopy".
62: 1046: 1001: 928: 869: 824: 783: 716: 708: 669: 606: 549: 109:, the quality of optical sectioning is governed by the same physics as the 76:
reconstruction of a sample from images captured at different focal planes.
42:
grain. (b) Combined image. (c) Combined image of a group of pollen grains.
122: 91: 65:. Many different techniques for optical sectioning are used and several 956:
Borisevich, A. Y.; Lupini, A. R.; Pennycook, S. J. (21 February 2006).
531: 105:
With no modification to the microscope, i.e. with a simple wide field
1183: 1064: 598: 383: 379: 39: 851: 1029: 885:"Chemical clearing and dehydration of GFP expressing mouse brains" 738:
Shtengel G, Galbraith JA, Galbraith CG, et al. (March 2009).
508:"Full-color structured illumination optical sectioning microscopy" 29: 288:{\displaystyle D_{x}=D_{y}={\frac {0.61\lambda }{\mathrm {NA} }}} 57:
deep within a thick sample. This is used to reduce the need for
1068: 429:
Optical sectioning is underdeveloped in non-light microscopes.
219:
the refractive index of the objective lens immersion media and
204:{\displaystyle D_{z}={\frac {\lambda n}{(\mathrm {NA} )^{2}}}} 691:
Gratton E, Barry NP, Beretta S, Celli A (September 2001).
1248:
Total internal reflection fluorescence microscopy (TIRF)
442:
Although similar physics guides the focusing process,
842:. Advances in Biochemical Engineering/Biotechnology. 563:
Nikon MicroscopyU – Depth of Field and Depth of Focus
238: 152: 1286:
Photo-activated localization microscopy (PALM/STORM)
467:
The primary alternatives to optical sectioning are:
1266: 1211: 1124: 80:
Optical sectioning in traditional light microscopes
287: 203: 838:Sibarita JB (2005). "Deconvolution microscopy". 962:Proceedings of the National Academy of Sciences 1189:Interference reflection microscopy (IRM/RICM) 1080: 27:Imaging of focal planes within a thick sample 8: 941:: CS1 maint: multiple names: authors list ( 49:is the process by which a suitably designed 484:, which is particularly well developed for 298:Techniques for improving optical sectioning 1087: 1073: 1065: 129:) and gives good optical sectioning. High 1028: 991: 981: 918: 908: 814: 773: 763: 651: 539: 275: 265: 256: 243: 237: 192: 180: 166: 157: 151: 1159:Differential interference contrast (DIC) 498: 1154:Quantitative phase-contrast microscopy 934: 474:of the sample, for example as used in 693:"Multiphoton fluorescence microscopy" 7: 1316: 1281:Stimulated emission depletion (STED) 454:Total internal reflection microscopy 374:multiphoton fluorescence microscope 360:Light sheet fluorescence microscopy 399:structured illumination microscopy 317:differential interference contrast 279: 276: 184: 181: 25: 1253:Lightsheet microscopy (LSFM/SPIM) 1315: 1304: 1303: 1202: 486:transmission electron microscopy 370:two-photon excitation microscopy 125:, the depth of field is small ( 1258:Lattice light-sheet microscopy 1169:Second harmonic imaging (SHIM) 1039:10.1016/j.ultramic.2014.01.013 574:Nikon MicroscopyU – Resolution 189: 177: 61:using instruments such as the 1: 840:Adv. Biochem. Eng. Biotechnol 448:scanning electron microscopes 303:Bright-field light microscopy 910:10.1371/journal.pone.0033916 744:Proc. Natl. Acad. Sci. U.S.A 94:(typically an observer or a 53:can produce clear images of 121:lens, equivalent to a wide 1360: 444:Scanning probe microscopes 367: 357: 341: 314: 83: 1299: 1200: 1102: 816:10.1007/s10577-008-1231-9 230:can be approximated as: 223:the numerical aperture. 34:(a) Optically sectioned 1219:Fluorescence microscopy 1179:Structured illumination 1134:Bright-field microscopy 983:10.1073/pnas.0507105103 765:10.1073/pnas.0813131106 662:10.1126/science.1100035 336:fluorescence microscopy 330:Fluorescence microscopy 1291:Near-field (NSOM/SNOM) 1229:Multiphoton microscopy 709:10.1006/meth.2001.1219 289: 205: 43: 1144:Dark-field microscopy 410:point spread function 353:conjugate focal plane 290: 206: 33: 1212:Fluorescence methods 437:electron microscopes 236: 150: 1243:Image deconvolution 1224:Confocal microscopy 1164:Dispersion staining 1139:Köhler illumination 974:2006PNAS..103.3044B 901:2012PLoSO...733916B 797:Carlton PM (2008). 756:2009PNAS..106.3125S 644:2004Sci...305.1007H 638:(5686): 1007–1009. 524:2015NatSR...514513Q 349:Confocal microscopy 344:confocal microscopy 226:In comparison, the 215:is the wavelength, 1115:Optical microscopy 1096:Optical microscopy 512:Scientific Reports 285: 228:lateral resolution 201: 119:numerical aperture 47:Optical sectioning 44: 1331: 1330: 1276:Diffraction limit 861:978-3-540-23698-6 532:10.1038/srep14513 324:phase differences 283: 199: 74:three-dimensional 16:(Redirected from 1351: 1319: 1318: 1307: 1306: 1269:limit techniques 1206: 1127:contrast methods 1125:Illumination and 1089: 1082: 1075: 1066: 1059: 1058: 1032: 1012: 1006: 1005: 995: 985: 968:(9): 3044–3048. 953: 947: 946: 940: 932: 922: 912: 880: 874: 873: 835: 829: 828: 818: 794: 788: 787: 777: 767: 735: 729: 728: 688: 682: 681: 655: 625: 619: 618: 599:10.1038/nmeth815 582: 576: 571: 565: 560: 554: 553: 543: 503: 294: 292: 291: 286: 284: 282: 274: 266: 261: 260: 248: 247: 210: 208: 207: 202: 200: 198: 197: 196: 187: 175: 167: 162: 161: 107:light microscope 21: 1359: 1358: 1354: 1353: 1352: 1350: 1349: 1348: 1334: 1333: 1332: 1327: 1295: 1268: 1267:Sub-diffraction 1262: 1207: 1198: 1126: 1120: 1098: 1093: 1063: 1062: 1017:Ultramicroscopy 1014: 1013: 1009: 955: 954: 950: 933: 882: 881: 877: 862: 852:10.1007/b102215 837: 836: 832: 796: 795: 791: 737: 736: 732: 690: 689: 685: 653:10.1.1.456.2250 627: 626: 622: 584: 583: 579: 572: 568: 561: 557: 505: 504: 500: 495: 472:Thin sectioning 465: 427: 418: 416:Clearing agents 382:of the correct 376: 368:Main articles: 362: 346: 332: 319: 305: 300: 267: 252: 239: 234: 233: 188: 176: 168: 153: 148: 147: 88: 82: 59:thin sectioning 28: 23: 22: 15: 12: 11: 5: 1357: 1355: 1347: 1346: 1336: 1335: 1329: 1328: 1326: 1325: 1313: 1300: 1297: 1296: 1294: 1293: 1288: 1283: 1278: 1272: 1270: 1264: 1263: 1261: 1260: 1255: 1250: 1245: 1240: 1226: 1221: 1215: 1213: 1209: 1208: 1201: 1199: 1197: 1196: 1191: 1186: 1181: 1176: 1174:4Pi microscope 1171: 1166: 1161: 1156: 1151: 1149:Phase contrast 1146: 1141: 1136: 1130: 1128: 1122: 1121: 1119: 1118: 1111: 1103: 1100: 1099: 1094: 1092: 1091: 1084: 1077: 1069: 1061: 1060: 1007: 948: 875: 860: 830: 803:Chromosome Res 789: 750:(9): 3125–30. 730: 683: 620: 593:(12): 920–31. 577: 566: 555: 497: 496: 494: 491: 490: 489: 479: 464: 461: 426: 423: 417: 414: 395:interferometry 358:Main article: 342:Main article: 331: 328: 315:Main article: 304: 301: 299: 296: 281: 278: 273: 270: 264: 259: 255: 251: 246: 242: 195: 191: 186: 183: 179: 174: 171: 165: 160: 156: 111:depth of field 100:objective lens 86:Depth of field 81: 78: 26: 24: 18:Clearing agent 14: 13: 10: 9: 6: 4: 3: 2: 1356: 1345: 1342: 1341: 1339: 1324: 1323: 1314: 1312: 1311: 1302: 1301: 1298: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1273: 1271: 1265: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1238: 1234: 1230: 1227: 1225: 1222: 1220: 1217: 1216: 1214: 1210: 1205: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1131: 1129: 1123: 1117: 1116: 1112: 1110: 1109: 1105: 1104: 1101: 1097: 1090: 1085: 1083: 1078: 1076: 1071: 1070: 1067: 1056: 1052: 1048: 1044: 1040: 1036: 1031: 1026: 1022: 1018: 1011: 1008: 1003: 999: 994: 989: 984: 979: 975: 971: 967: 963: 959: 952: 949: 944: 938: 930: 926: 921: 916: 911: 906: 902: 898: 895:(3): e33916. 894: 890: 886: 879: 876: 871: 867: 863: 857: 853: 849: 845: 841: 834: 831: 826: 822: 817: 812: 809:(3): 351–65. 808: 804: 800: 793: 790: 785: 781: 776: 771: 766: 761: 757: 753: 749: 745: 741: 734: 731: 726: 722: 718: 714: 710: 706: 703:(1): 103–10. 702: 698: 694: 687: 684: 679: 675: 671: 667: 663: 659: 654: 649: 645: 641: 637: 633: 632: 624: 621: 616: 612: 608: 604: 600: 596: 592: 588: 581: 578: 575: 570: 567: 564: 559: 556: 551: 547: 542: 537: 533: 529: 525: 521: 517: 513: 509: 502: 499: 492: 487: 483: 480: 477: 473: 470: 469: 468: 462: 460: 457: 455: 451: 449: 445: 440: 438: 434: 430: 424: 422: 415: 413: 411: 407: 406:deconvolution 402: 400: 396: 391: 389: 388:concentration 385: 381: 375: 371: 366: 361: 356: 354: 350: 345: 340: 337: 329: 327: 325: 318: 313: 311: 302: 297: 295: 271: 268: 262: 257: 253: 249: 244: 240: 231: 229: 224: 222: 218: 214: 193: 172: 169: 163: 158: 154: 145: 143: 138: 136: 135:Oil immersion 132: 131:magnification 128: 127:shallow focus 124: 120: 117:. For a high 116: 112: 108: 103: 101: 97: 93: 87: 79: 77: 75: 70: 68: 64: 60: 56: 52: 48: 41: 37: 32: 19: 1320: 1308: 1237:Three-photon 1113: 1106: 1020: 1016: 1010: 965: 961: 951: 937:cite journal 892: 888: 878: 843: 839: 833: 806: 802: 792: 747: 743: 733: 700: 696: 686: 635: 629: 623: 590: 587:Nat. Methods 586: 580: 569: 558: 515: 511: 501: 466: 463:Alternatives 458: 452: 441: 431: 428: 419: 403: 392: 377: 363: 347: 333: 320: 306: 232: 225: 220: 216: 212: 146: 139: 104: 89: 71: 55:focal planes 46: 45: 38:images of a 36:fluorescence 115:photography 1344:Microscopy 1233:Two-photon 1108:Microscope 846:: 201–43. 493:References 482:Tomography 310:refraction 142:resolution 113:effect in 84:See also: 67:microscopy 51:microscope 1030:1402.0028 1023:: 26–31. 648:CiteSeerX 518:: 14513. 476:histology 272:λ 170:λ 63:microtome 1338:Category 1310:Category 1055:41919418 1047:24636875 1002:16492746 929:22479475 889:PLOS ONE 870:16080270 825:18461477 784:19202073 717:11559001 670:15310904 615:17722926 607:16299477 550:26415516 312:limits. 123:aperture 92:detector 1322:Commons 993:1413870 970:Bibcode 920:3316521 897:Bibcode 775:2637278 752:Bibcode 697:Methods 678:3213175 640:Bibcode 631:Science 541:4586488 520:Bibcode 1184:Sarfus 1053:  1045:  1000:  990:  927:  917:  868:  858:  823:  782:  772:  725:822155 723:  715:  676:  668:  650:  613:  605:  548:  538:  384:energy 380:photon 213:λ 211:where 40:pollen 1194:Raman 1051:S2CID 1025:arXiv 721:S2CID 674:S2CID 611:S2CID 433:X-ray 425:Other 1043:PMID 998:PMID 943:link 925:PMID 866:PMID 856:ISBN 821:PMID 780:PMID 713:PMID 666:PMID 603:PMID 546:PMID 446:and 435:and 372:and 269:0.61 140:The 1035:doi 1021:140 988:PMC 978:doi 966:103 915:PMC 905:doi 848:doi 811:doi 770:PMC 760:doi 748:106 705:doi 658:doi 636:305 595:doi 536:PMC 528:doi 334:In 96:CCD 1340:: 1235:, 1049:. 1041:. 1033:. 1019:. 996:. 986:. 976:. 964:. 960:. 939:}} 935:{{ 923:. 913:. 903:. 891:. 887:. 864:. 854:. 844:95 819:. 807:16 805:. 801:. 778:. 768:. 758:. 746:. 742:. 719:. 711:. 701:25 699:. 695:. 672:. 664:. 656:. 646:. 634:. 609:. 601:. 589:. 544:. 534:. 526:. 514:. 510:. 412:. 401:. 221:NA 102:. 1239:) 1231:( 1088:e 1081:t 1074:v 1057:. 1037:: 1027:: 1004:. 980:: 972:: 945:) 931:. 907:: 899:: 893:7 872:. 850:: 827:. 813:: 786:. 762:: 754:: 727:. 707:: 680:. 660:: 642:: 617:. 597:: 591:2 552:. 530:: 522:: 516:5 488:. 478:. 280:A 277:N 263:= 258:y 254:D 250:= 245:x 241:D 217:n 194:2 190:) 185:A 182:N 178:( 173:n 164:= 159:z 155:D 20:)

Index

Clearing agent

fluorescence
pollen
microscope
focal planes
thin sectioning
microtome
microscopy
three-dimensional
Depth of field
detector
CCD
objective lens
light microscope
depth of field
photography
numerical aperture
aperture
shallow focus
magnification
Oil immersion
resolution
lateral resolution
refraction
differential interference contrast
phase differences
fluorescence microscopy
confocal microscopy
Confocal microscopy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.