Knowledge (XXG)

CoRR hypothesis

Source 📝

151:
encoded by nuclear genes specifically for this purpose. ... The reason for such a costly arrangement is not clear, and the hope that the nucleotide sequences of mitochondrial and chloroplast genomes would provide the answer has proved to be unfounded. We cannot think of compelling reasons why the proteins made in mitochondria and chloroplasts should be made there rather than in the cytosol.
218:
Chloroplast and mitochondrial genomes also contain genes for components of the chloroplast and mitochondrial genetic systems themselves. These genes comprise a secondary subset of organellar genes: genetic system genes. There is generally no requirement for redox control of expression of genetic
150:
Why do mitochondria and chloroplasts require their own separate genetic systems, when other organelles that share the same cytoplasm, such as peroxisomes and lysosomes, do not? The question is not trivial, because maintaining a separate genetic system is costly: more than 90 proteins ... must be
226:
Retention of genes of the secondary subset (genetic system genes) is necessary for the operation of redox control of expression of genes in the primary subset. If all genes disappear from the primary subset, CoRR predicts that there is no function for genes in the secondary subset, and such
210:
carriers with which those gene products interact. Such genes comprise a core, or primary subset, of organellar genes. The requirement for redox control of each gene in the primary subset then confers an advantage upon location of that gene within the organelle.
58:
with the title "Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes". The central concept had been outlined in a review of 1992. The term CoRR was introduced in 2003 in a paper in
124:
Both the genetic and energy-converting systems of chloroplasts and mitochondria are descended, with little modification, from those of the free-living bacteria that these organelles once were. The existence of these cytoplasmic
227:
organelles will then, eventually, lose their genomes completely. However, if even only one gene remains under redox control, then an organelle genetic system is required for the synthesis of its gene product.
45:
CoRR is short for "co-location for redox regulation", itself a shortened form of "co-location (of gene and gene product) for (evolutionary) continuity of redox regulation of
117:, chloroplasts and mitochondria each contain specialized and discrete genetic systems. These genetic systems enable chloroplasts and mitochondria to make some of their own 61: 297:
fulfil central roles in the structure of their respective protein complexes, suggesting that their organellar retention allows local control of complex assembly.
577: 449:
Allen JF (December 1993). "Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes".
680:
Puthiyaveetil S, Kavanagh TA, Cain P, Sullivan JA, Newell CA, Gray JC, Robinson C, van der Giezen M, Rogers MB, Allen JF (July 2008).
587: 343:"Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression" 220: 864: 287: 54: 854: 206:
whose expression is required to be under the direct, regulatory control of the redox state of their gene products, or of
274:
couples transcription in chloroplasts to plastoquinone redox state. This chloroplast sensor kinase is inherited from
849: 283: 264: 252: 790:"Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention" 645:
Pfannschmidt T, Nilsson A, Allen JF (February 1997). "Photosynthetic control of chloroplast gene expression".
576:
Bruce Alberts; Alexander Johnson; Julian Lewis; Martin Raff; Keith Roberts; Peter Walter (16 November 2007).
130: 174:, and thus why some characters are inherited through the cytoplasm in the phenomenon of cytoplasmic, non- 844: 240:
in isolated chloroplasts and mitochondria are obtained in the presence of redox reagents with different
741:"Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression" 693: 458: 413: 354: 179: 110: 682:"The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts" 215:
therefore anchors some genes in organelles, while favouring location of others in the cell nucleus.
869: 24: 662: 137:
in the nuclei of eukaryotic cells. There they code for protein precursors that are made in the
859: 839: 814: 770: 721: 627: 583: 558: 509: 474: 431: 382: 317: 294: 237: 212: 113:; the release of this stored energy when work is done. In addition to these key reactions of 605:"Redox Conditions Specify the Proteins Synthesized by Isolated-Chloroplasts and Mitochondria" 804: 760: 752: 711: 701: 654: 619: 548: 540: 501: 466: 421: 372: 362: 90: 789: 307: 260: 241: 46: 133:. Most genes for proteins of chloroplasts and mitochondria are, however, now located on 697: 604: 462: 417: 358: 765: 740: 716: 681: 553: 528: 377: 342: 98: 505: 244:. In mitochondria, the effect results from a redox signal at the level of respiratory 833: 312: 275: 256: 114: 492:
Allen JF (January 1992). "Protein phosphorylation in regulation of photosynthesis".
219:
system genes, though their being subject to redox control may, in some cases, allow
666: 623: 191: 187: 106: 82: 78: 39: 279: 134: 94: 28: 809: 426: 401: 223:
of redox signals acting upon genes in the primary subset (bioenergetic genes).
245: 31: 706: 367: 183: 175: 86: 818: 774: 756: 725: 631: 562: 544: 470: 435: 386: 513: 478: 322: 207: 118: 102: 138: 126: 271: 145:
Why do mitochondria and chloroplasts have their own genetic systems?
658: 203: 35: 34:
permits regulation of its expression by the reduction-oxidation ("
182:. CoRR does so by offering an answer to this question: why, in 170:
CoRR seeks to explain why chloroplasts and mitochondria retain
65:
entitled "The function of genomes in bioenergetic organelles".
171: 202:
CoRR states that chloroplasts and mitochondria contain those
160:. Garland Science. All editions (pgs 868-869 in 5th edition) 52:
CoRR was put forward explicitly in 1993 in a paper in the
255:
according to the redox state of the electron carrier
529:"The function of genomes in bioenergetic organelles" 129:
is consistent with, and counts as evidence for, the
148: 62:Philosophical Transactions of the Royal Society 101:; the capture and conversion of the energy of 402:"The CoRR hypothesis for genes in organelles" 8: 293:Products of genes most commonly retained in 263:and other components of the photosynthetic 141:for subsequent import into the organelles. 808: 788:Johnston, I. G.; Williams, B. P. (2016). 764: 715: 705: 552: 425: 376: 366: 603:Allen CA, Hakansson G, Allen JF (1995). 533:Philos. Trans. R. Soc. Lond. B Biol. Sci 85:are energy-converting organelles in the 739:Puthiyaveetil S, Allen JF (June 2009). 333: 251:Genes in chloroplasts are selected for 259:. These genes code for photosynthetic 582:. Garland Science. pp. 868–869. 7: 105:. Mitochondria in both plant and 14: 158:The Molecular Biology of the Cell 539:(1429): 19–37, discussion 37–8. 288:two-component regulatory system 624:10.1080/13510002.1995.11746969 55:Journal of Theoretical Biology 1: 579:Molecular Biology of the Cell 506:10.1016/s0005-2728(09)91014-3 74:Chloroplasts and mitochondria 686:Proc. Natl. Acad. Sci. U.S.A 347:Proc. Natl. Acad. Sci. U.S.A 270:A modified bacterial sensor 23:states that the location of 886: 810:10.1016/j.cels.2016.01.013 427:10.1016/j.jtbi.2017.04.008 400:Allen JF (December 2017). 527:Allen JF (January 2003). 284:Chloroplast sensor kinase 341:Allen JF (August 2015). 265:electron transport chain 194:, while others did not? 707:10.1073/pnas.0803928105 368:10.1073/pnas.1500012112 166:Cytoplasmic inheritance 131:endosymbiont hypothesis 865:Mitochondrial genetics 757:10.1098/rspb.2008.1426 545:10.1098/rstb.2002.1191 494:Biochim. Biophys. Acta 471:10.1006/jtbi.1993.1210 236:Different products of 186:, did some bacterial, 163: 278:and encoded in plant 16:Biological hypothesis 855:Evolutionary biology 180:maternal inheritance 698:2008PNAS..10510061P 463:1993JThBi.165..609A 418:2017JThBi.434...50A 359:2015PNAS..11210231A 353:(33): 10231–10238. 286:is part of a redox 93:. Chloroplasts in 25:genetic information 190:genes move to the 178:, uniparental, or 850:Eukaryote biology 751:(1665): 2133–45. 653:(6720): 625–628. 318:Mitochondrial DNA 295:mitochondrial DNA 238:protein synthesis 213:Natural selection 198:Proposed solution 877: 823: 822: 812: 794: 785: 779: 778: 768: 736: 730: 729: 719: 709: 677: 671: 670: 642: 636: 635: 609: 600: 594: 593: 573: 567: 566: 556: 524: 518: 517: 489: 483: 482: 446: 440: 439: 429: 397: 391: 390: 380: 370: 338: 261:reaction centers 242:redox potentials 161: 156:Alberts et al., 91:eukaryotic cells 38:") state of its 885: 884: 880: 879: 878: 876: 875: 874: 830: 829: 826: 792: 787: 786: 782: 745:Proc. Biol. Sci 738: 737: 733: 692:(29): 10061–6. 679: 678: 674: 644: 643: 639: 607: 602: 601: 597: 590: 575: 574: 570: 526: 525: 521: 491: 490: 486: 448: 447: 443: 399: 398: 394: 340: 339: 335: 331: 308:Chloroplast DNA 304: 233: 200: 168: 162: 155: 147: 76: 71: 47:gene expression 21:CoRR hypothesis 17: 12: 11: 5: 883: 881: 873: 872: 867: 862: 857: 852: 847: 842: 832: 831: 825: 824: 803:(2): 101–111. 780: 731: 672: 637: 618:(2): 119–123. 595: 588: 568: 519: 500:(3): 275–335. 484: 451:J. Theor. Biol 441: 406:J. Theor. Biol 392: 332: 330: 327: 326: 325: 320: 315: 310: 303: 300: 299: 298: 291: 290:in eukaryotes. 268: 249: 232: 229: 199: 196: 167: 164: 153: 146: 143: 99:photosynthesis 75: 72: 70: 67: 15: 13: 10: 9: 6: 4: 3: 2: 882: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 837: 835: 828: 820: 816: 811: 806: 802: 798: 791: 784: 781: 776: 772: 767: 762: 758: 754: 750: 746: 742: 735: 732: 727: 723: 718: 713: 708: 703: 699: 695: 691: 687: 683: 676: 673: 668: 664: 660: 659:10.1038/17624 656: 652: 648: 641: 638: 633: 629: 625: 621: 617: 613: 606: 599: 596: 591: 589:9781136844423 585: 581: 580: 572: 569: 564: 560: 555: 550: 546: 542: 538: 534: 530: 523: 520: 515: 511: 507: 503: 499: 495: 488: 485: 480: 476: 472: 468: 464: 460: 457:(4): 609–31. 456: 452: 445: 442: 437: 433: 428: 423: 419: 415: 411: 407: 403: 396: 393: 388: 384: 379: 374: 369: 364: 360: 356: 352: 348: 344: 337: 334: 328: 324: 321: 319: 316: 314: 313:Cyanobacteria 311: 309: 306: 305: 301: 296: 292: 289: 285: 281: 277: 276:cyanobacteria 273: 269: 266: 262: 258: 257:plastoquinone 254: 253:transcription 250: 247: 243: 239: 235: 234: 230: 228: 224: 222: 221:amplification 216: 214: 209: 205: 197: 195: 193: 189: 185: 181: 177: 173: 165: 159: 152: 144: 142: 140: 136: 132: 128: 122: 120: 116: 115:bioenergetics 112: 108: 104: 100: 96: 92: 88: 84: 80: 73: 68: 66: 64: 63: 57: 56: 50: 48: 43: 41: 40:gene products 37: 33: 30: 26: 22: 845:Cell biology 827: 800: 797:Cell Systems 796: 783: 748: 744: 734: 689: 685: 675: 650: 646: 640: 615: 612:Redox Report 611: 598: 578: 571: 536: 532: 522: 497: 493: 487: 454: 450: 444: 409: 405: 395: 350: 346: 336: 225: 217: 201: 192:cell nucleus 188:endosymbiont 169: 157: 149: 123: 107:animal cells 83:mitochondria 79:Chloroplasts 77: 60: 53: 51: 44: 20: 18: 280:nuclear DNA 135:chromosomes 111:respiration 95:plant cells 69:The problem 29:cytoplasmic 870:Organelles 834:Categories 329:References 246:complex II 32:organelles 412:: 50–57. 184:evolution 176:Mendelian 87:cytoplasm 860:Genomics 840:Bacteria 819:27135164 775:19324807 726:18632566 632:27405554 563:12594916 436:28408315 387:26286985 323:Plastids 302:See also 231:Evidence 208:electron 154:—  119:proteins 109:perform 103:sunlight 97:perform 766:2677595 717:2474565 694:Bibcode 667:4423836 554:1693096 514:1310622 479:8114509 459:Bibcode 414:Bibcode 378:4547249 355:Bibcode 139:cytosol 127:genomes 817:  773:  763:  724:  714:  665:  647:Nature 630:  586:  561:  551:  512:  477:  434:  385:  375:  272:kinase 793:(PDF) 663:S2CID 608:(PDF) 204:genes 36:redox 815:PMID 771:PMID 722:PMID 628:PMID 584:ISBN 559:PMID 510:PMID 498:1098 475:PMID 432:PMID 383:PMID 81:and 19:The 805:doi 761:PMC 753:doi 749:276 712:PMC 702:doi 690:105 655:doi 651:397 620:doi 549:PMC 541:doi 537:358 502:doi 467:doi 455:165 422:doi 410:434 373:PMC 363:doi 351:112 282:. 172:DNA 89:of 49:". 27:in 836:: 813:. 799:. 795:. 769:. 759:. 747:. 743:. 720:. 710:. 700:. 688:. 684:. 661:. 649:. 626:. 614:. 610:. 557:. 547:. 535:. 531:. 508:. 496:. 473:. 465:. 453:. 430:. 420:. 408:. 404:. 381:. 371:. 361:. 349:. 345:. 121:. 42:. 821:. 807:: 801:2 777:. 755:: 728:. 704:: 696:: 669:. 657:: 634:. 622:: 616:1 592:. 565:. 543:: 516:. 504:: 481:. 469:: 461:: 438:. 424:: 416:: 389:. 365:: 357:: 267:. 248:.

Index

genetic information
cytoplasmic
organelles
redox
gene products
gene expression
Journal of Theoretical Biology
Philosophical Transactions of the Royal Society
Chloroplasts
mitochondria
cytoplasm
eukaryotic cells
plant cells
photosynthesis
sunlight
animal cells
respiration
bioenergetics
proteins
genomes
endosymbiont hypothesis
chromosomes
cytosol
DNA
Mendelian
maternal inheritance
evolution
endosymbiont
cell nucleus
genes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.