Knowledge (XXG)

Color-glass condensate

Source đź“ť

160:. In these sorts of collisions, the standard outcome is that new particles are created and fly off in different directions. However, the Compact Muon Solenoid (CMS) team at the LHC found that in a sample of 2 million lead-proton collisions, some pairs of particles flew away from each other with their respective directions correlated. This correlation of directions is the anomaly that might be caused by the existence of a color-glass condensate while the particles are colliding. 581: 83:
is very large. This is because a high-momentum gluon is likely to split into smaller momentum gluons. When the gluon density becomes large enough, gluon-gluon recombination puts a limit on how large the gluon density can be. When gluon recombination balances gluon splitting, the density of gluons
141:
The color-glass condensate is important because it is proposed as a universal form of matter that describes the properties of all high-energy, strongly interacting particles. It has simple properties that follow from first principles in the theory of strong interactions,
146:. It has the potential to explain many unsolved problems such as how particles are produced in high-energy collisions, and the distribution of matter itself inside of these particles. 74: 518: 464: 119:, the gluons themselves are disordered and do not change their positions rapidly. "Condensate" means that the gluons have a very high density. 457: 210:
description of the structure of an object cannot depend on a choice of frame. A classical analogy would be if one would provide a
1023: 785: 855: 780: 511: 422: 967: 795: 450: 850: 595: 977: 84:
saturate, producing new and universal properties of hadronic matter. This state of saturated gluon matter is called the
35: 135: 504: 277:
Gelis, Francois; Iancu, Edmond; Jalilian-Marian, Jamal; Venugopalan, Raju (2010). "The Color Glass Condensate".
192:
of the gluons in this wall would then increase greatly. However, this description is incorrect for two reasons:
1028: 1002: 901: 531: 239: 480:"Einstein's Theory Predicts a Weird State of Matter. Could It Be Lurking in the World's Largest Atom Smasher?" 418: 382:
A. Accardi et al., “Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all,”
896: 656: 921: 911: 479: 143: 337:(2013). "Observation of long-range near-side angular correlations in proton-lead collisions at the LHC". 334: 131: 840: 600: 356: 296: 96: 815: 707: 697: 610: 565: 402: 962: 891: 725: 346: 312: 286: 246: 227: 201: 197: 181: 169: 992: 987: 957: 916: 805: 757: 742: 635: 605: 947: 570: 458:"Color-Glass Condensate: New State Of Matter May Have Been Created By Large Hadron Collider" 364: 304: 217: 173: 79:
variable. The small momenta gluons dominate the description of the collision because their
49: 149:
Researchers at CERN believe they have created color-glass condensates during collisions of
126:
property of matter that can only be observed under high-energy conditions such as those at
937: 790: 527: 116: 76: 360: 300: 735: 730: 687: 620: 615: 308: 231: 221: 185: 39: 1017: 972: 952: 875: 835: 770: 702: 625: 316: 242: 172:
of the nucleus. Accordingly, this one would appear compressed along its direction of
31: 997: 870: 865: 860: 825: 775: 692: 368: 906: 800: 712: 580: 845: 820: 747: 717: 651: 630: 91:"Color" in the name "color-glass condensate" refers to a type of charge that 211: 205: 123: 496: 168:
The high density of gluon seen during the collision is often explained by
982: 810: 942: 830: 765: 682: 677: 443: 436: 429: 189: 150: 80: 551: 258: 112: 104: 43: 27: 560: 546: 381: 351: 291: 177: 164:
Erroneous description in term of hadronic pancakes or gluonic wall
108: 100: 92: 157: 154: 127: 500: 556: 437:"The Color Glass Condensate and High Energy Scattering in QCD" 449:
Riordon, James; Schewe, Phil; Stein, Ben (January 14, 2004).
46:
that have very small momenta, or more precisely a very small
430:"The Color Glass Condensate and Small x Physics: 4 Lectures" 238:
A correct description of the collision can be given using
403:
P. A. M. Dirac, (1949) “Forms of Relativistic Dynamics”
230:
is not observable in collision experiments due to the
444:"Evolution at small x_bj: The Color Glass Condensate" 107:
and other materials that are disordered and act like
52: 930: 884: 756: 670: 644: 588: 539: 435:Iancu, Edmond; Venugopalan, Raju (March 24, 2003). 68: 465:"Lead-proton collisions yield surprising results" 42:. During such collision, one is sensitive to the 180:inside the nucleus would appear to a stationary 512: 279:Annual Review of Nuclear and Particle Science 8: 519: 505: 497: 350: 328: 326: 290: 57: 51: 393:Bled Workshops Phys. 16 (2015) 2, 35-46 122:The color-glass condensate describes an 269: 184:as a "gluonic wall" traveling near the 456:Moskowitz, Clara (November 27, 2012). 442:Weigert, Heribert (January 11, 2005). 419:"Background on color glass condensate" 7: 95:and gluons carry as a result of the 463:Trafton, Anne (November 27, 2012). 428:McLerran, Larry (April 26, 2001). 309:10.1146/annurev.nucl.010909.083629 14: 579: 196:Such description depends on the 115:on long time scales. In the CGC 103:" is borrowed from the term for 423:Brookhaven National Laboratory 369:10.1016/j.physletb.2012.11.025 1: 968:Macroscopic quantum phenomena 188:. At very high energies, the 978:Order and disorder (physics) 478:Childers, Tim (2019-09-24). 16:Hypothetical phase of matter 405:Rev. Mod. Phys. 21, 392-399 1045: 577: 111:on short time scales but 1003:Thermo-dielectric effect 902:Enthalpy of vaporization 596:Bose–Einstein condensate 451:"Color Glass Condensate" 333:CMS-collaboration siehe 897:Enthalpy of sublimation 200:and therefore violates 1024:Quantum chromodynamics 912:Latent internal energy 662:Color-glass condensate 232:Penrose–Terrell effect 144:quantum chromodynamics 134:as well as the future 86:color-glass condensate 70: 69:{\displaystyle x_{Bj}} 30:theorized to exist in 20:Color-glass condensate 722:Magnetically ordered 335:Compact Muon Solenoid 176:and as a result, the 136:Electron Ion Collider 132:Large Hadron Collider 71: 601:Fermionic condensate 460:. HuffingtonPost.com 97:strong nuclear force 50: 816:Chemical ionization 708:Programmable matter 698:Quantum spin liquid 566:Supercritical fluid 361:2013PhLB..718..795C 301:2010ARNPS..60..463G 963:Leidenfrost effect 892:Enthalpy of fusion 657:Quark–gluon plasma 216:description using 202:Lorentz invariance 66: 1011: 1010: 993:Superheated vapor 988:Superconductivity 958:Equation of state 806:Flash evaporation 758:Phase transitions 743:String-net liquid 636:Photonic molecule 606:Degenerate matter 339:Physics Letters B 247:frame-independent 218:fictitious forces 1036: 948:Compressed fluid 583: 528:States of matter 521: 514: 507: 498: 493: 491: 490: 412: 406: 400: 394: 391: 385: 379: 373: 372: 354: 330: 321: 320: 294: 274: 75: 73: 72: 67: 65: 64: 1044: 1043: 1039: 1038: 1037: 1035: 1034: 1033: 1029:Nuclear physics 1014: 1013: 1012: 1007: 938:Baryonic matter 926: 880: 851:Saturated fluid 791:Crystallization 752: 726:Antiferromagnet 666: 640: 584: 575: 535: 525: 488: 486: 484:livescience.com 477: 474: 415: 409: 401: 397: 392: 388: 380: 376: 332: 331: 324: 276: 275: 271: 267: 255: 166: 77:Bjorken scaling 53: 48: 47: 26:) is a type of 17: 12: 11: 5: 1042: 1040: 1032: 1031: 1026: 1016: 1015: 1009: 1008: 1006: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 960: 955: 950: 945: 940: 934: 932: 928: 927: 925: 924: 919: 917:Trouton's rule 914: 909: 904: 899: 894: 888: 886: 882: 881: 879: 878: 873: 868: 863: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 808: 803: 798: 793: 788: 786:Critical point 783: 778: 773: 768: 762: 760: 754: 753: 751: 750: 745: 740: 739: 738: 733: 728: 720: 715: 710: 705: 700: 695: 690: 688:Liquid crystal 685: 680: 674: 672: 668: 667: 665: 664: 659: 654: 648: 646: 642: 641: 639: 638: 633: 628: 623: 621:Strange matter 618: 616:Rydberg matter 613: 608: 603: 598: 592: 590: 586: 585: 578: 576: 574: 573: 568: 563: 554: 549: 543: 541: 537: 536: 526: 524: 523: 516: 509: 501: 495: 494: 473: 472:External links 470: 469: 468: 461: 454: 447: 440: 433: 426: 414: 413: 407: 395: 386: 374: 345:(3): 795–814. 322: 268: 266: 263: 262: 261: 254: 251: 243:wave functions 236: 235: 225: 222:Coriolis force 186:speed of light 165: 162: 63: 60: 56: 40:speed of light 15: 13: 10: 9: 6: 4: 3: 2: 1041: 1030: 1027: 1025: 1022: 1021: 1019: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 973:Mpemba effect 971: 969: 966: 964: 961: 959: 956: 954: 953:Cooling curve 951: 949: 946: 944: 941: 939: 936: 935: 933: 929: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 889: 887: 883: 877: 876:Vitrification 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 842: 841:Recombination 839: 837: 836:Melting point 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 781:Critical line 779: 777: 774: 772: 771:Boiling point 769: 767: 764: 763: 761: 759: 755: 749: 746: 744: 741: 737: 734: 732: 729: 727: 724: 723: 721: 719: 716: 714: 711: 709: 706: 704: 703:Exotic matter 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 675: 673: 669: 663: 660: 658: 655: 653: 650: 649: 647: 643: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 593: 591: 587: 582: 572: 569: 567: 564: 562: 558: 555: 553: 550: 548: 545: 544: 542: 538: 533: 529: 522: 517: 515: 510: 508: 503: 502: 499: 485: 481: 476: 475: 471: 466: 462: 459: 455: 452: 448: 445: 441: 438: 434: 431: 427: 424: 420: 417: 416: 411: 408: 404: 399: 396: 390: 387: 383: 378: 375: 370: 366: 362: 358: 353: 348: 344: 340: 336: 329: 327: 323: 318: 314: 310: 306: 302: 298: 293: 288: 284: 280: 273: 270: 264: 260: 257: 256: 252: 250: 248: 244: 241: 233: 229: 226: 223: 219: 215: 214: 209: 208: 203: 199: 195: 194: 193: 191: 187: 183: 179: 175: 171: 163: 161: 159: 156: 152: 147: 145: 139: 137: 133: 129: 125: 120: 118: 114: 110: 106: 102: 98: 94: 89: 87: 82: 78: 61: 58: 54: 45: 41: 37: 33: 32:atomic nuclei 29: 25: 21: 998:Superheating 871:Vaporization 866:Triple point 861:Supercooling 826:Lambda point 776:Condensation 693:Time crystal 671:Other states 661: 611:Quantum Hall 487:. Retrieved 483: 410: 398: 389: 377: 342: 338: 282: 278: 272: 245:, which are 237: 220:such as the 212: 206: 167: 148: 140: 121: 99:. The word " 90: 85: 38:at near the 23: 19: 18: 907:Latent heat 856:Sublimation 801:Evaporation 736:Ferromagnet 731:Ferrimagnet 713:Dark matter 645:High energy 285:: 463–489. 240:light-front 228:contraction 213:fundamental 207:fundamental 170:contraction 1018:Categories 922:Volatility 885:Quantities 846:Regelation 821:Ionization 796:Deposition 748:Superglass 718:Antimatter 652:QCD matter 631:Supersolid 626:Superfluid 589:Low energy 489:2019-09-24 467:. MITnews. 453:. aip.org. 265:References 34:when they 352:1210.5482 317:118675789 292:1002.0333 124:intrinsic 983:Spinodal 931:Concepts 811:Freezing 253:See also 182:observer 943:Binodal 831:Melting 766:Boiling 683:Crystal 678:Colloid 357:Bibcode 297:Bibcode 190:density 151:protons 113:liquids 81:density 36:collide 571:Plasma 552:Liquid 315:  259:Glasma 178:gluons 174:motion 130:, the 109:solids 105:silica 93:quarks 44:gluons 28:matter 561:Vapor 547:Solid 540:State 384:2012. 347:arXiv 313:S2CID 287:arXiv 198:frame 153:with 117:phase 101:glass 532:list 204:: a 158:ions 155:lead 128:RHIC 557:Gas 365:doi 343:718 305:doi 24:CGC 1020:: 559:/ 482:. 421:. 363:. 355:. 341:. 325:^ 311:. 303:. 295:. 283:60 281:. 249:. 138:. 88:. 534:) 530:( 520:e 513:t 506:v 492:. 446:. 439:. 432:. 425:. 371:. 367:: 359:: 349:: 319:. 307:: 299:: 289:: 234:. 224:. 62:j 59:B 55:x 22:(

Index

matter
atomic nuclei
collide
speed of light
gluons
Bjorken scaling
density
quarks
strong nuclear force
glass
silica
solids
liquids
phase
intrinsic
RHIC
Large Hadron Collider
Electron Ion Collider
quantum chromodynamics
protons
lead
ions
contraction
motion
gluons
observer
speed of light
density
frame
Lorentz invariance

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑