Knowledge

Concrete cone failure

Source 📝

515: 20: 510:
expected from the first model. In the case of concrete tensile failure with increasing member size, the failure load increases less than the available failure surface; that means the nominal stress at failure (peak load divided by failure area) decreases.
557:
The tension failure loads predicted by the CCD method fits experimental results over a wide range of embedment depth (e.g. 100 – 600 mm). Anchor load bearing capacity provided by ACI 349 does not consider
223:
Under tension loading, the concrete capacity of a single anchor is calculated assuming an inclination between the failure surface and surface of the concrete member of about 35°. The concrete cone failure load
570:
For large head size, the bearing pressure in the bearing zone diminishes. An increase of the anchor's load-carrying capacity is observed . Different modification factors were proposed in technical literature.
729:
Nilforoush, R.; Nilsson, M.; Elfgren, L.; Ožbolt, J.; Hofmann, J.; Eligehausen, R. (2017). "Tensile capacity of anchor bolts in uncracked concrete: Influence of member thickness and anchor's head size".
332: 579:
Anchors, experimentally show a lower load-bearing capacity when installed in a cracked concrete member. The reduction is up to 40% with respect to the un-cracked condition, depending on the
150: 469: 508: 59:
Under tension loading, the concrete cone failure surface has 45° inclination. A constant distribution of tensile stresses is then assumed. The concrete cone failure load
423: 389: 184: 547: 249: 213: 84: 357: 549:
considering: (i) the presence of edges; (ii) the overlapping cones due to group effect; (iii) the presence of an eccentricity of the tension load.
580: 39: 774: 429: 694:
Ožbolt, Joško; Eligehausen, Rolf; Periškić, G.; Mayer, U. (2007). "3D FE analysis of anchor bolts with large embedment depths".
251:
of a single anchor in uncracked concrete unaffected by edge influences or overlapping cones of neighboring anchors is given by:
86:
of a single anchor in uncracked concrete unaffected by edge influences or overlapping cones of neighboring anchors is given by:
823: 256: 43: 798: 652:
Ožbolt, Joško; Eligehausen, Rolf; Reinhardt, Hans-Wolf (1999). "Size effect on the concrete cone pull-out load".
583:. The reduction is due to the impossibility to transfer both normal and tangential stresses at the crack plane. 625:
Fuchs, Werner; Eligehausen, Rolf (1995). "Concrete Capacity Design (CCD) Approach for Fastening to Concrete".
679:
ACI (2004). "ACI 349.2 Guide to the Concrete Capacity Design ( CCD ) Method — Embedment Design Examples".
91: 828: 562:, thus an underestimated value for the load-carrying capacity is obtained for large embedment depths. 435: 474: 793: 833: 770: 747: 711: 661: 634: 396: 35: 739: 703: 364: 159: 525: 227: 191: 62: 342: 707: 522:
Current codes take into account a reduction of the theoretical concrete cone capacity
817: 808: 514: 19: 803: 751: 715: 665: 638: 428:
The model is based on fracture mechanics theory and takes into account the
42:
in concrete, which forms a typical cone shape having the anchor's axis as
31: 743: 359:- 13.5 for post-installed fasteners, 15.5 for cast-in-site fasteners 513: 18: 219:
Concrete capacity design (CCD) approach for fastening to concrete
16:
Failure mode of anchors in concrete submitted to tensile force
765:
Mallèe, Rainer; Eligehausen, Rolf; Silva, John F (2006).
528: 477: 438: 399: 367: 345: 327:{\displaystyle N_{0}=k{\sqrt {f_{cc}}}{h_{ef}}^{1.5}} 259: 230: 194: 162: 94: 65: 391:- Concrete compressive strength measured on cubes 541: 502: 463: 417: 383: 351: 326: 243: 207: 178: 144: 78: 603:Cook, Ronald; Doerr, G T; Klingner, R.E. (2010). 605:Design Guide For Steel To Concrete Connections 518:Overlapping Areas in case of group of anchors 8: 30:is one of the failure modes of anchors in 533: 527: 494: 484: 479: 476: 455: 445: 440: 437: 405: 400: 398: 372: 366: 344: 309: 299: 294: 282: 276: 264: 258: 235: 229: 199: 193: 167: 161: 126: 121: 112: 99: 93: 70: 64: 620: 618: 616: 614: 598: 596: 592: 7: 145:{\displaystyle N_{0}=f_{ct}{A_{N}}} 14: 708:10.1016/j.engfracmech.2006.01.019 654:International Journal of Fracture 425:- Embedment depth of the anchor 575:Un-cracked and cracked concrete 186:- tensile strength of concrete 767:Anchors In Concrete Structures 696:Engineering Fracture Mechanics 464:{\displaystyle {h_{ef}}^{1.5}} 432:, particularly for the factor 321: 315: 139: 133: 1: 607:. University Of Texas Austin. 38:. The failure is governed by 503:{\displaystyle {h_{ef}}^{2}} 850: 799:Concrete fracture analysis 566:Influence of the head size 471:which differentiates from 553:Difference between models 418:{\displaystyle {h_{ef}}} 215:- Cone's projected area 732:ACI Structural Journal 627:ACI Structural Journal 543: 519: 504: 465: 419: 385: 384:{\displaystyle f_{cc}} 353: 328: 245: 209: 180: 179:{\displaystyle f_{ct}} 146: 80: 24: 824:Structural connectors 544: 542:{\displaystyle N_{0}} 517: 505: 466: 420: 386: 354: 329: 246: 244:{\displaystyle N_{0}} 210: 208:{\displaystyle A_{N}} 181: 147: 81: 79:{\displaystyle N_{0}} 22: 526: 475: 436: 397: 365: 343: 257: 228: 192: 160: 92: 63: 23:Concrete Cone Model 794:Fracture mechanics 769:. Ernst&Shon. 539: 520: 500: 461: 415: 381: 349: 324: 241: 205: 176: 142: 76: 25: 744:10.14359/51689503 352:{\displaystyle k} 291: 50:Mechanical models 841: 781: 780: 762: 756: 755: 738:(6): 1519–1530. 726: 720: 719: 702:(1–2): 168–178. 691: 685: 684: 676: 670: 669: 649: 643: 642: 633:(January): 1–4. 622: 609: 608: 600: 548: 546: 545: 540: 538: 537: 509: 507: 506: 501: 499: 498: 493: 492: 491: 470: 468: 467: 462: 460: 459: 454: 453: 452: 424: 422: 421: 416: 414: 413: 412: 390: 388: 387: 382: 380: 379: 358: 356: 355: 350: 333: 331: 330: 325: 314: 313: 308: 307: 306: 292: 290: 289: 277: 269: 268: 250: 248: 247: 242: 240: 239: 214: 212: 211: 206: 204: 203: 185: 183: 182: 177: 175: 174: 151: 149: 148: 143: 132: 131: 130: 120: 119: 104: 103: 85: 83: 82: 77: 75: 74: 849: 848: 844: 843: 842: 840: 839: 838: 814: 813: 790: 785: 784: 777: 764: 763: 759: 728: 727: 723: 693: 692: 688: 678: 677: 673: 651: 650: 646: 624: 623: 612: 602: 601: 594: 589: 577: 568: 555: 529: 524: 523: 480: 478: 473: 472: 441: 439: 434: 433: 401: 395: 394: 368: 363: 362: 341: 340: 295: 293: 278: 260: 255: 254: 231: 226: 225: 221: 195: 190: 189: 163: 158: 157: 122: 108: 95: 90: 89: 66: 61: 60: 57: 52: 44:revolution axis 34:, loaded by a 17: 12: 11: 5: 847: 845: 837: 836: 831: 826: 816: 815: 812: 811: 806: 801: 796: 789: 786: 783: 782: 776:978-3433011430 775: 757: 721: 686: 671: 644: 610: 591: 590: 588: 585: 576: 573: 567: 564: 554: 551: 536: 532: 497: 490: 487: 483: 458: 451: 448: 444: 411: 408: 404: 378: 375: 371: 348: 323: 320: 317: 312: 305: 302: 298: 288: 285: 281: 275: 272: 267: 263: 238: 234: 220: 217: 202: 198: 173: 170: 166: 141: 138: 135: 129: 125: 118: 115: 111: 107: 102: 98: 73: 69: 56: 53: 51: 48: 15: 13: 10: 9: 6: 4: 3: 2: 846: 835: 832: 830: 827: 825: 822: 821: 819: 810: 807: 805: 802: 800: 797: 795: 792: 791: 787: 778: 772: 768: 761: 758: 753: 749: 745: 741: 737: 733: 725: 722: 717: 713: 709: 705: 701: 697: 690: 687: 682: 675: 672: 667: 663: 659: 655: 648: 645: 640: 636: 632: 628: 621: 619: 617: 615: 611: 606: 599: 597: 593: 586: 584: 582: 574: 572: 565: 563: 561: 552: 550: 534: 530: 516: 512: 495: 488: 485: 481: 456: 449: 446: 442: 431: 426: 409: 406: 402: 392: 376: 373: 369: 360: 346: 338: 335: 318: 310: 303: 300: 296: 286: 283: 279: 273: 270: 265: 261: 252: 236: 232: 218: 216: 200: 196: 187: 171: 168: 164: 155: 152: 136: 127: 123: 116: 113: 109: 105: 100: 96: 87: 71: 67: 54: 49: 47: 45: 41: 37: 36:tensile force 33: 29: 28:Concrete cone 21: 829:Wall anchors 766: 760: 735: 731: 724: 699: 695: 689: 683:(Ccd): 1–77. 680: 674: 657: 653: 647: 630: 626: 604: 578: 569: 559: 556: 521: 427: 393: 361: 339: 336: 253: 222: 188: 156: 153: 88: 58: 40:crack growth 27: 26: 809:Anchor Cone 804:Size effect 660:: 391–404. 581:crack width 560:size effect 430:size effect 818:Categories 587:References 55:ACI 349-85 752:0889-3241 716:0013-7944 666:0376-9429 639:0889-3241 834:Concrete 788:See also 681:Concrete 32:concrete 337:Where: 154:Where: 773:  750:  714:  664:  637:  771:ISBN 748:ISSN 712:ISSN 662:ISSN 635:ISSN 740:doi 736:114 704:doi 631:109 457:1.5 311:1.5 820:: 746:. 734:. 710:. 700:74 698:. 658:95 656:. 629:. 613:^ 595:^ 334:, 46:. 779:. 754:. 742:: 718:. 706:: 668:. 641:. 535:0 531:N 496:2 489:f 486:e 482:h 450:f 447:e 443:h 410:f 407:e 403:h 377:c 374:c 370:f 347:k 322:] 319:N 316:[ 304:f 301:e 297:h 287:c 284:c 280:f 274:k 271:= 266:0 262:N 237:0 233:N 201:N 197:A 172:t 169:c 165:f 140:] 137:N 134:[ 128:N 124:A 117:t 114:c 110:f 106:= 101:0 97:N 72:0 68:N

Index


concrete
tensile force
crack growth
revolution axis
size effect

crack width






ISSN
0889-3241
ISSN
0376-9429
doi
10.1016/j.engfracmech.2006.01.019
ISSN
0013-7944
doi
10.14359/51689503
ISSN
0889-3241
ISBN
978-3433011430
Fracture mechanics
Concrete fracture analysis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.