Knowledge (XXG)

Continuum robot

Source 📝

202:: shape is reconstructed thanks to the mutual induction between a magnetic field generator and a magnetic field sensor. The most common external EM tracking system is the commercially available NDI Aurora: small sensors can be placed on the robot and their position is tracked in an external generated magnetic field. The validity of this method has been extensively assessed, however its performance is hindered by the limited workspace, whose dimension depends on the magnetic field. Another alternative is to embed the sensors internally in the continuum robot, combining magnetic sensors with 179:: this technique assumes the backbone to be made of a series of mutually tangent sections that can be approximated as arcs with constant curvature. This approach is also known as piecewise constant-curvature. This assumption can be applied to the entire segment of the backbone or to its subsegments. This model has shown promising results, however it must be taken into account that the segment/subsegments of the backbone may not comply to the constant curvature assumption and therefore the model's behaviour may not entirely reflect the behaviour of the robot. 171:: this approach is an exact solution to the static of a continuum robot, as it is not subject to any assumption. It solves a set of equilibrium equations between position, orientation, internal force and torque of the robot. This method requires to be solved numerically and it is therefore computationally expensive, due to its high complexity. 261:), the inverse kinematic or the direct kinematic representation of the continuum robot from collected data, and they are also known as data-driven methods. Even though these controllers present the advantage of not having to establish an accurate model of the continuum robot, they perform worse than their model-based counterpart. 186:
number of variables, and thus complexity. Despite this limitation, rigid-link modelling allows the use of the standard control techniques that are well known for rigid-link robots. It has been proven that this model can be coupled with shape and force sensing to mitigate its inaccuracy and can lead to promising results.
216:
can be embedded into the backbone of the continuum robot to estimate its shape; these sensors can only reflect a small range of the input light spectrum depending on their strain; therefore, by measuring the strain on each sensor it is possible to obtain the shape of the robot. This type of sensor is
185:
this approach is based on the assumption that the continuum robot can be divided in small segments with rigid links. This is a strong assumption, since if the number of segments is too low, the model hardly behaves like the continuum robot, while increasing the number of segments means increasing the
267:
they need the formulation of the kinematic model and an associated dynamic formulation. As of 2021, they are in the early stage, as they require high computational power and high-dimensional sensory feedback. With improvements in computational power and sensing capabilities they could be crucial in
226:
The control strategies can be distinguished in static and dynamic; the first one is based on the steady-state assumption, while the latter also considers the dynamic behaviour of the continuum robot. We can also differentiate between model-based controllers, that depend on a model of the robot, and
27:
that is characterised by infinite degrees of freedom and number of joints. These characteristics allow continuum manipulators to adjust and modify their shape at any point along their length, granting them the possibility to work in confined spaces and complex environments where standard rigid-link
150:
The particular design of continuum robots also introduces many challenges. To properly and safely use continuum robots, it is crucial to have an accurate force and shape sensing system. Traditionally, this is done using cameras that are not suitable for some of the applications of continuum robots
155:
sensors have been proposed as a possible alternative and have shown promising results. It is also necessary to notice that while the mechanical properties of rigid-link robots are fully understood, the comprehension of the behaviour and properties of continuum robots is still subject of study and
137:
The particular design of continuum robots offers several advantages with respect to rigid-link robots. First of all, as already said, continuum robots can more easily operate in environments that require a high level of dexterity, adaptability and flexibility. Moreover, the simplicity of their
39:
The design of continuum robots is bioinspired, as the intent is to resemble biological trunks, snakes and tentacles. Several concepts of continuum robots have been commercialised and can be found in many different domains of application, ranging from the medical field to undersea exploration.
206:: the magnetic field is measured at the level of the Hall effect sensors in order to estimate the deflection of the robot. However, it has been noticed that the higher the bending of the manipulator, the higher is the estimation error, due to crosstalk between sensors and magnets. 302:
is a robotic-assisted endoluminal platform for minimally invasive peripheral lung biopsy, that allows to reach nodules located in peripheral areas of the lungs that cannot be reached by standard instrumentations; this allows to perform early-stage diagnoses of cancer.
277:
they are still a relatively unexplored approach. Some works that propose machine learning techniques to learn the dynamic behaviour of continuum robots have been presented, but their performance is limited by high training time and instability of the machine learning
311:
Continuum robots offer the possibility of completing tasks in hazardous and hostile environments. For example, a quadruped robot with continuum limbs has been developed: it can walk, crawl, trot and propel to whole arm grasping to negotiate difficult obstacles.
28:
robots cannot operate. In particular, we can define a continuum robot as an actuatable structure whose constitutive material forms curves with continuous tangent vectors. This is a fundamental definition that allows to distinguish between continuum robots and
234:
they rely on one of the modelling approaches presented above; once the model is defined, the kinematics must be inverted to obtain the desired actuator or configuration space variables. There are several ways to do this, like differential
142:. These continuum manipulators are made of highly compliant materials that are flexible and can adapt and deform according to the surrounding environment. The "softness" of their material grants higher safety in human-robot interactions. 320:
NASA has developed a continuum manipulator, named Tendril, that can extend into crevasses and under thermal blankets to access areas that would be otherwise inaccessible with conventional means.
328:
The AMADEUS project developed a dextrous underwater robot for grasping and manipulation tasks, while the FLAPS project created propulsion systems that replicate the mechanisms of fish swimming.
151:(e.g. minimally invasive surgery), or using electromagnetic sensors that are however disturbed by the presence of magnetic objects in the environment. To solve this issue, in the last years 551:
Chen, Gang; Pham, Minh Tu; Redarce, Tanneguy (2008), Lee, Sukhan; Suh, Il Hong; Kim, Mun Sang (eds.), "A Guidance Control Strategy for Semi-autonomous Colonoscopy Using a Continuum Robot",
195:
To develop accurate control algorithms, it is necessary to complement the presented modelling techniques with real time shape sensing. The following options are currently available:
164:
Creating an accurate model that can predict the shape of a continuum robot allows to properly control the robot's shape. There are three main approaches to model continuum robots:
84:
the structure of these continuum robots has two or more elastic elements (either rods or tubes) parallel to each other and constrained with one another in some way.
90:
the backbone is made of concentric tubes that are free to rotate and translate between each other, depending on the actuation happening at the base of the robot.
366:
da Veiga, Tomas; Chandler, James H; Lloyd, Peter; Pittiglio, Giovanni; Wilkinson, Nathan J; Hoshiar, Ali K; Harris, Russell A; Valdastri, Pietro (2020-08-03).
114:
the actuation happens outside the main structure of the robot and the forces are transmitted via mechanical transmission; among these techniques, there are
553:
Recent Progress in Robotics: Viable Robotic Service to Human: An Edition of the Selected Papers from the 13th International Conference on Advanced Robotics
1445: 1369: 1261: 1169: 1124: 867: 819: 774: 604: 568: 217:
however expensive and is more prone to breaking in case of excessive strain, and this can happen in robots that can perform high deflections.
138:
structure makes continuum robots more prone to miniaturisation. The rise of continuum robots has also paved the way for the development of
1048:
Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang (August 2017).
124:
the actuation mechanism operates within the structure of the robot; these strategies include pneumatic or hydraulic chambers and the
298:
Continuum robots have been widely applied in the medical field, in particular for minimally invasive surgery. For example, Ion by
1103:
Dore, Alessio; Smoljkic, Gabrijel; Poorten, Emmanuel Vander; Sette, Mauro; Sloten, Jos Vander; Yang, Guang-Zhong (October 2012).
750:"On using an array of fiber Bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments" 36:: the presence of rigid links and joints allows them to only approximately perform curves with continuous tangent vectors. 60:
The main characteristic of the design of continuum robots is the presence of a continuously curving core structure, named
78:
these continuum manipulators have one central elastic backbone through which actuation/transmission elements can run.
555:, Lecture Notes in Control and Information Sciences, vol. 370, Berlin, Heidelberg: Springer, pp. 63–78, 1491: 240: 156:
debate. This poses new challenges in developing accurate models and control algorithms for this kind of robots.
1105:"Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation" 282:
Hybrid approaches, that combine model-free and model-based controllers, can also present a valid alternative.
1240:
Ozel, Selim; Skorina, Erik H.; Luo, Ming; Tao, Weijia; Chen, Fuchen; Yixiao Pan; Onal, Cagdas D. (May 2016).
1424:
Davies, J.B.C.; Lane, D.M.; Robinson, G.C.; O'Brien, D.J.; Pickett, M.; Sfakiotakis, M.; Deacon, B. (1998).
1496: 1471: 1194: 892: 939: 418: 1003:"Steering of Multisegment Continuum Manipulators Using Rigid-Link Modeling and FBG-Based Shape Sensing" 893:"Modeling and experimental analysis of a multi-rod parallel continuum robot using the Cosserat theory" 688: 268:
industrial applications of continuum robots, where time and cost are also relevant along with accurac
71:
According to the design principles chosen for the continuum manipulator, we can distinguish between:
254: 152: 115: 1451: 1375: 1267: 1222: 1175: 1130: 1085: 1030: 920: 873: 825: 780: 753: 730: 657: 610: 533: 450: 397: 299: 236: 203: 175: 125: 33: 1193:
Guo, Hao; Ju, Feng; Cao, Yanfei; Qi, Fei; Bai, Dongming; Wang, Yaoyao; Chen, Bai (2019-01-01).
1150:"Position control of concentric-tube continuum robots using a modified Jacobian-based approach" 1486: 1441: 1365: 1330: 1322: 1257: 1214: 1165: 1120: 1077: 1069: 1022: 983: 965: 912: 863: 815: 770: 722: 714: 649: 600: 564: 525: 442: 389: 1433: 1406: 1357: 1312: 1302: 1249: 1206: 1157: 1112: 1061: 1014: 973: 955: 904: 855: 807: 762: 704: 696: 641: 592: 556: 517: 484: 434: 379: 250: 505: 589:
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006
29: 692: 1286: 1050:"Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey" 978: 943: 258: 1480: 1455: 1226: 924: 734: 661: 537: 401: 337: 213: 139: 1379: 1134: 1089: 1034: 877: 829: 784: 1271: 614: 454: 1179: 48:
Continuum robots can be categorised according to two main criteria: structure and
944:"How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance" 1348:
Godage, Isuru S.; Nanayakkara, Thrishantha; Caldwell, Darwin G. (October 2012).
908: 560: 342: 1349: 1241: 1195:"Continuum robot shape estimation using permanent magnets and magnetic sensors" 1149: 1104: 1049: 1002: 847: 799: 749: 596: 584: 422: 384: 367: 1425: 1361: 1253: 1210: 1161: 1116: 1065: 960: 859: 811: 766: 676: 99:
The actuation strategy of continuum manipulators can be distinguished between
1326: 1242:"A composite soft bending actuation module with integrated curvature sensing" 1218: 1073: 1026: 1018: 969: 916: 718: 653: 645: 529: 521: 446: 438: 393: 1437: 1334: 1307: 1290: 1081: 987: 726: 629: 1394: 585:"Multi-degree of freedom hydraulic pressure driven safety active catheter" 489: 472: 1410: 709: 49: 1354:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
1317: 1109:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
852:
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
755:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
700: 630:"Robot-assisted Active Catheter Insertion: Algorithms and Experiments" 1430:
Proceedings of 1998 International Symposium on Underwater Technology
1246:
2016 IEEE International Conference on Robotics and Automation (ICRA)
1148:
Xu, Ran; Asadian, Ali; Naidu, Anish S.; Patel, Rajni V. (May 2013).
846:
Jones, Bryan A.; Gray, Ricky L.; Turlapati, Krishna (October 2009).
804:
2014 IEEE International Conference on Robotics and Automation (ICRA)
748:
Roesthuis, Roy J.; Janssen, Sander; Misra, Sarthak (November 2013).
24: 506:"Hybrid motion/force control of multi-backbone continuum robots" 68:, meaning that the backbone yields smoothly to external loads. 368:"Challenges of continuum robots in clinical context: a review" 1154:
2013 IEEE International Conference on Robotics and Automation
290:
Continuum robots have been applied in many different fields.
1291:"Control Strategies for Soft Robotic Manipulators: A Survey" 1285:
George Thuruthel, Thomas; Ansari, Yasmin; Falotico, Egidio;
1395:"Snake-Arm Robots – A New Tool for the Aerospace Industry" 1111:. Vilamoura-Algarve, Portugal: IEEE. pp. 3806–3811. 227:
model-free, that learn the robot's behaviour from data.
64:, whose shape can be actuated. The backbone must also be 583:
Ikuta, K.; Ichikawa, H.; Suzuki, K.; Yajima, D. (2006).
1356:. Vilamoura-Algarve, Portugal: IEEE. pp. 293–298. 891:
Ghafoori, Morteza; Keymasi Khalaji, Ali (2020-12-01).
423:"Continuum Robots for Medical Applications: A Survey" 107:
actuation, depending on where the actuation happens:
800:"FBG-based shape sensing tubes for continuum robots" 628:
Jayender, J.; Patel, R.V.; Nikumb, S. (2009-09-01).
473:"Continuous Backbone "Continuum" Robot Manipulators" 421:; Rucker, D. Caleb; Choset, Howie (December 2015). 848:"Three dimensional statics for continuum robotics" 1156:. Karlsruhe, Germany: IEEE. pp. 5813–5818. 1001:Roesthuis, Roy J.; Misra, Sarthak (April 2016). 854:. St. Louis, MO, USA: IEEE. pp. 2659–2664. 677:"Design, fabrication and control of soft robots" 1248:. Stockholm, Sweden: IEEE. pp. 4963–4968. 798:Ryu, Seok Chang; Dupont, Pierre E. (May 2014). 212:fiber Bragg grating sensors incorporated in an 1393:Buckingham, Rob; Graham, Andrew (2003-09-08). 806:. Hong Kong, China: IEEE. pp. 3531–3537. 634:The International Journal of Robotics Research 591:. Orlando, FL, USA: IEEE. pp. 4161–4166. 510:The International Journal of Robotics Research 938:Rao, Priyanka; Peyron, Quentin; Lilge, Sven; 675:Rus, Daniela; Tolley, Michael T. (May 2015). 8: 1054:IEEE Transactions on Biomedical Engineering 504:Bajo, Andrea; Simaan, Nabil (April 2016). 1426:"Subsea applications of continuum robots" 1316: 1306: 977: 959: 708: 488: 383: 1432:. Tokyo, Japan: IEEE. pp. 363–369. 118:actuators and multi-backbone strategies. 353: 1472:Continuum robots - a state of the art 1405:. Warrendale, PA: SAE International. 841: 839: 249:these approaches learn directly, via 7: 466: 464: 413: 411: 361: 359: 357: 761:. Tokyo: IEEE. pp. 2545–2551. 372:Progress in Biomedical Engineering 14: 1350:"Locomotion with continuum limbs" 1199:Sensors and Actuators A: Physical 265:Model-based dynamic controllers: 897:Robotics and Autonomous Systems 275:Model-free dynamic controllers: 232:Model-based static controllers: 247:Model-free static controllers: 1: 1007:IEEE Transactions on Robotics 471:Walker, Ian D. (2013-07-16). 427:IEEE Transactions on Robotics 948:Frontiers in Robotics and AI 200:Electromagnetic (EM) sensing 34:hyper-redundant manipulators 909:10.1016/j.robot.2020.103650 561:10.1007/978-3-540-76729-9_6 251:machine learning techniques 140:soft continuum manipulators 1513: 1399:SAE Technical Paper Series 597:10.1109/ROBOT.2006.1642342 1362:10.1109/IROS.2012.6385810 1254:10.1109/ICRA.2016.7487703 1211:10.1016/j.sna.2018.11.030 1162:10.1109/ICRA.2013.6631413 1117:10.1109/IROS.2012.6386139 1066:10.1109/TBME.2016.2622361 961:10.3389/frobt.2020.630245 860:10.1109/IROS.2009.5354199 812:10.1109/ICRA.2014.6907368 767:10.1109/IROS.2013.6696715 1019:10.1109/TRO.2016.2527047 646:10.1177/0278364909103785 522:10.1177/0278364915584806 439:10.1109/TRO.2015.2489500 385:10.1088/2516-1091/ab9f41 1438:10.1109/UT.1998.670127 1308:10.1089/soro.2017.0007 940:Burgner-Kahrs, Jessica 419:Burgner-Kahrs, Jessica 239:, direct inversion or 1411:10.4271/2003-01-2952 122:intrinsic actuation: 112:extrinsic actuation: 701:10.1038/nature14543 693:2015Natur.521..467R 490:10.5402/2013/726506 204:Hall effect sensors 169:Cosserat rod theory 153:fiber-Bragg-grating 126:shape memory effect 116:cable/tendon driven 255:regression methods 237:inverse kinematics 222:Control strategies 176:Constant curvature 1447:978-0-7803-4273-6 1371:978-1-4673-1736-8 1263:978-1-4673-8026-3 1171:978-1-4673-5643-5 1126:978-1-4673-1736-8 869:978-1-4244-3803-7 821:978-1-4799-3685-4 776:978-1-4673-6358-7 687:(7553): 467–475. 606:978-0-7803-9505-3 570:978-3-540-76729-9 183:Rigid-link model: 1504: 1492:Robot kinematics 1460: 1459: 1421: 1415: 1414: 1390: 1384: 1383: 1345: 1339: 1338: 1320: 1310: 1282: 1276: 1275: 1237: 1231: 1230: 1190: 1184: 1183: 1145: 1139: 1138: 1100: 1094: 1093: 1060:(8): 1665–1678. 1045: 1039: 1038: 998: 992: 991: 981: 963: 935: 929: 928: 888: 882: 881: 843: 834: 833: 795: 789: 788: 760: 745: 739: 738: 712: 672: 666: 665: 640:(9): 1101–1117. 625: 619: 618: 580: 574: 573: 548: 542: 541: 501: 495: 494: 492: 468: 459: 458: 433:(6): 1261–1280. 415: 406: 405: 387: 363: 307:Hazardous places 210:Optical sensing: 88:concentric-tube: 76:single-backbone: 30:snake-arm robots 1512: 1511: 1507: 1506: 1505: 1503: 1502: 1501: 1477: 1476: 1468: 1463: 1448: 1423: 1422: 1418: 1392: 1391: 1387: 1372: 1347: 1346: 1342: 1287:Laschi, Cecilia 1284: 1283: 1279: 1264: 1239: 1238: 1234: 1192: 1191: 1187: 1172: 1147: 1146: 1142: 1127: 1102: 1101: 1097: 1047: 1046: 1042: 1000: 999: 995: 937: 936: 932: 890: 889: 885: 870: 845: 844: 837: 822: 797: 796: 792: 777: 758: 747: 746: 742: 674: 673: 669: 627: 626: 622: 607: 582: 581: 577: 571: 550: 549: 545: 503: 502: 498: 470: 469: 462: 417: 416: 409: 365: 364: 355: 351: 334: 326: 318: 309: 296: 288: 259:neural networks 224: 193: 162: 148: 135: 97: 82:multi-backbone: 58: 46: 21:continuum robot 17: 12: 11: 5: 1510: 1508: 1500: 1499: 1494: 1489: 1479: 1478: 1475: 1474: 1467: 1466:External links 1464: 1462: 1461: 1446: 1416: 1385: 1370: 1340: 1301:(2): 149–163. 1289:(April 2018). 1277: 1262: 1232: 1185: 1170: 1140: 1125: 1095: 1040: 1013:(2): 372–382. 993: 930: 883: 868: 835: 820: 790: 775: 740: 667: 620: 605: 575: 569: 543: 516:(4): 422–434. 496: 460: 407: 352: 350: 347: 346: 345: 340: 333: 330: 325: 322: 317: 314: 308: 305: 295: 292: 287: 284: 280: 279: 272: 262: 244: 223: 220: 219: 218: 207: 192: 189: 188: 187: 180: 172: 161: 158: 147: 144: 134: 131: 130: 129: 119: 96: 93: 92: 91: 85: 79: 57: 54: 45: 44:Classification 42: 15: 13: 10: 9: 6: 4: 3: 2: 1509: 1498: 1497:Robot control 1495: 1493: 1490: 1488: 1485: 1484: 1482: 1473: 1470: 1469: 1465: 1457: 1453: 1449: 1443: 1439: 1435: 1431: 1427: 1420: 1417: 1412: 1408: 1404: 1400: 1396: 1389: 1386: 1381: 1377: 1373: 1367: 1363: 1359: 1355: 1351: 1344: 1341: 1336: 1332: 1328: 1324: 1319: 1314: 1309: 1304: 1300: 1296: 1295:Soft Robotics 1292: 1288: 1281: 1278: 1273: 1269: 1265: 1259: 1255: 1251: 1247: 1243: 1236: 1233: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1186: 1181: 1177: 1173: 1167: 1163: 1159: 1155: 1151: 1144: 1141: 1136: 1132: 1128: 1122: 1118: 1114: 1110: 1106: 1099: 1096: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1044: 1041: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 997: 994: 989: 985: 980: 975: 971: 967: 962: 957: 953: 949: 945: 941: 934: 931: 926: 922: 918: 914: 910: 906: 902: 898: 894: 887: 884: 879: 875: 871: 865: 861: 857: 853: 849: 842: 840: 836: 831: 827: 823: 817: 813: 809: 805: 801: 794: 791: 786: 782: 778: 772: 768: 764: 757: 756: 751: 744: 741: 736: 732: 728: 724: 720: 716: 711: 710:1721.1/100772 706: 702: 698: 694: 690: 686: 682: 678: 671: 668: 663: 659: 655: 651: 647: 643: 639: 635: 631: 624: 621: 616: 612: 608: 602: 598: 594: 590: 586: 579: 576: 572: 566: 562: 558: 554: 547: 544: 539: 535: 531: 527: 523: 519: 515: 511: 507: 500: 497: 491: 486: 482: 478: 477:ISRN Robotics 474: 467: 465: 461: 456: 452: 448: 444: 440: 436: 432: 428: 424: 420: 414: 412: 408: 403: 399: 395: 391: 386: 381: 378:(3): 032003. 377: 373: 369: 362: 360: 358: 354: 348: 344: 341: 339: 338:Soft robotics 336: 335: 331: 329: 323: 321: 315: 313: 306: 304: 301: 293: 291: 285: 283: 276: 273: 271: 266: 263: 260: 256: 252: 248: 245: 242: 238: 233: 230: 229: 228: 221: 215: 214:optical fiber 211: 208: 205: 201: 198: 197: 196: 190: 184: 181: 178: 177: 173: 170: 167: 166: 165: 159: 157: 154: 146:Disadvantages 145: 143: 141: 132: 127: 123: 120: 117: 113: 110: 109: 108: 106: 102: 94: 89: 86: 83: 80: 77: 74: 73: 72: 69: 67: 63: 55: 53: 51: 43: 41: 37: 35: 31: 26: 23:is a type of 22: 16:Type of robot 1429: 1419: 1402: 1398: 1388: 1353: 1343: 1318:11382/521074 1298: 1294: 1280: 1245: 1235: 1202: 1198: 1188: 1153: 1143: 1108: 1098: 1057: 1053: 1043: 1010: 1006: 996: 951: 947: 933: 900: 896: 886: 851: 803: 793: 754: 743: 684: 680: 670: 637: 633: 623: 588: 578: 552: 546: 513: 509: 499: 480: 476: 430: 426: 375: 371: 327: 319: 310: 297: 289: 286:Applications 281: 274: 269: 264: 246: 241:optimization 231: 225: 209: 199: 194: 182: 174: 168: 163: 149: 136: 121: 111: 104: 100: 98: 87: 81: 75: 70: 65: 61: 59: 47: 38: 20: 18: 1205:: 519–530. 343:Biorobotics 1481:Categories 954:: 630245. 903:: 103650. 349:References 133:Advantages 1456:111200462 1327:2169-5172 1227:117531270 1219:0924-4247 1074:0018-9294 1027:1552-3098 970:2296-9144 925:225025768 917:0921-8890 735:217952627 719:1476-4687 662:206500027 654:0278-3649 538:206500774 530:0278-3649 447:1552-3098 402:225400772 394:2516-1091 300:Intuitive 160:Modelling 105:intrinsic 101:extrinsic 95:Actuation 66:compliant 56:Structure 50:actuation 1487:Robotics 1380:11689025 1335:29297756 1135:17183408 1090:26514168 1082:27810796 1035:17902850 988:33604355 942:(2021). 878:17031584 830:15064329 785:13551100 727:26017446 483:: 1–19. 332:See also 62:backbone 1272:6366153 979:7885639 689:Bibcode 615:1646994 455:9660483 294:Medical 191:Sensing 1454:  1444:  1378:  1368:  1333:  1325:  1270:  1260:  1225:  1217:  1180:580594 1178:  1168:  1133:  1123:  1088:  1080:  1072:  1033:  1025:  986:  976:  968:  923:  915:  876:  866:  828:  818:  783:  773:  733:  725:  717:  681:Nature 660:  652:  613:  603:  567:  536:  528:  453:  445:  400:  392:  324:Subsea 278:model. 253:(e.g. 1452:S2CID 1376:S2CID 1268:S2CID 1223:S2CID 1176:S2CID 1131:S2CID 1086:S2CID 1031:S2CID 921:S2CID 874:S2CID 826:S2CID 781:S2CID 759:(PDF) 731:S2CID 658:S2CID 611:S2CID 534:S2CID 451:S2CID 398:S2CID 316:Space 25:robot 1442:ISBN 1366:ISBN 1331:PMID 1323:ISSN 1258:ISBN 1215:ISSN 1166:ISBN 1121:ISBN 1078:PMID 1070:ISSN 1023:ISSN 984:PMID 966:ISSN 913:ISSN 864:ISBN 816:ISBN 771:ISBN 723:PMID 715:ISSN 650:ISSN 601:ISBN 565:ISBN 526:ISSN 481:2013 443:ISSN 390:ISSN 257:and 1434:doi 1407:doi 1358:doi 1313:hdl 1303:doi 1250:doi 1207:doi 1203:285 1158:doi 1113:doi 1062:doi 1015:doi 974:PMC 956:doi 905:doi 901:134 856:doi 808:doi 763:doi 705:hdl 697:doi 685:521 642:doi 593:doi 557:doi 518:doi 485:doi 435:doi 380:doi 103:or 32:or 1483:: 1450:. 1440:. 1428:. 1401:. 1397:. 1374:. 1364:. 1352:. 1329:. 1321:. 1311:. 1297:. 1293:. 1266:. 1256:. 1244:. 1221:. 1213:. 1201:. 1197:. 1174:. 1164:. 1152:. 1129:. 1119:. 1107:. 1084:. 1076:. 1068:. 1058:64 1056:. 1052:. 1029:. 1021:. 1011:32 1009:. 1005:. 982:. 972:. 964:. 950:. 946:. 919:. 911:. 899:. 895:. 872:. 862:. 850:. 838:^ 824:. 814:. 802:. 779:. 769:. 752:. 729:. 721:. 713:. 703:. 695:. 683:. 679:. 656:. 648:. 638:28 636:. 632:. 609:. 599:. 587:. 563:, 532:. 524:. 514:35 512:. 508:. 479:. 475:. 463:^ 449:. 441:. 431:31 429:. 425:. 410:^ 396:. 388:. 374:. 370:. 356:^ 270:y. 52:. 19:A 1458:. 1436:: 1413:. 1409:: 1403:1 1382:. 1360:: 1337:. 1315:: 1305:: 1299:5 1274:. 1252:: 1229:. 1209:: 1182:. 1160:: 1137:. 1115:: 1092:. 1064:: 1037:. 1017:: 990:. 958:: 952:7 927:. 907:: 880:. 858:: 832:. 810:: 787:. 765:: 737:. 707:: 699:: 691:: 664:. 644:: 617:. 595:: 559:: 540:. 520:: 493:. 487:: 457:. 437:: 404:. 382:: 376:2 243:. 128:.

Index

robot
snake-arm robots
hyper-redundant manipulators
actuation
cable/tendon driven
shape memory effect
soft continuum manipulators
fiber-Bragg-grating
Constant curvature
Hall effect sensors
optical fiber
inverse kinematics
optimization
machine learning techniques
regression methods
neural networks
Intuitive
Soft robotics
Biorobotics



"Challenges of continuum robots in clinical context: a review"
doi
10.1088/2516-1091/ab9f41
ISSN
2516-1091
S2CID
225400772

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.