Knowledge (XXG)

Cost of transport

Source đź“ť

260:. This gives a dimensionless cost of transport of about 0.39. If only the additional metabolic cost (above the resting rate) is counted then the most efficient speed will be lower. The optimal speed if both energy and distance traveled in a given time are taken into account (with some "price" for each) may be faster or slower than the speed giving the lowest COT. 263:
Previously it was thought that a running person (unlike running animals) uses the same energy whether they run a distance slowly or fast. More recent experiments have shown that was mistaken. Cost of transport when running does depend on speed — individual people have an optimal running speed.
255:
of maintaining bodily function, and so goes to infinity as speed goes to zero. A human achieves the lowest cost of transport when walking at about 6 kilometres per hour (3.7 mph), at which speed a person of 70 kilograms (150 lb) has a metabolic rate of about
109: 235: 215: 191: 171: 151: 131: 241: 44: 21: 346:
Steudel-Numbers, Karen L.; Wall-Scheffler, Cara M. (2009). "Optimal running speed and the evolution of hominin hunting strategies".
399: 348: 284: 357: 25: 300: 362: 29: 375: 328: 367: 318: 308: 252: 194: 304: 220: 200: 176: 156: 136: 116: 393: 323: 288: 248:
processes (i.e., for animals), it is often called the metabolic cost of transport.
371: 245: 39:
It is calculated in one of two ways, both shown in the following definition:
313: 379: 332: 104:{\displaystyle \mathrm {COT} \triangleq {\frac {E}{mgd}}={\frac {P}{mgv}}} 240:
It is also called specific tractive force or specific resistance (see
24:
of transporting an animal or vehicle from one place to another. As a
257: 33: 32:. It has a wide range of applications, from comparing human 197:. Alternatively, one can use the power input to the system 36:
to observing the change in efficiency of trains over time.
28:, it allows for the comparison of dissimilar animals or 223: 203: 179: 159: 139: 119: 47: 244:), or the energy index. When the energy comes from 229: 209: 185: 165: 145: 133:is the energy input to the system, which has mass 125: 103: 293:Proceedings of the National Academy of Sciences 217:used to move the system at a constant velocity 251:The metabolic cost of transport includes the 153:, that is used to move the system a distance 8: 237:. The cost of transport is non-dimensional. 361: 322: 312: 222: 202: 178: 158: 138: 118: 83: 62: 48: 46: 273: 279: 277: 7: 289:"Locomotion: Dealing with friction" 55: 52: 49: 14: 1: 372:10.1016/j.jhevol.2008.11.002 242:von Kármán–Gabrielli diagram 416: 349:Journal of Human Evolution 285:Venkatraman Radhakrishnan 314:10.1073/pnas.95.10.5448 30:modes of transportation 231: 211: 187: 167: 147: 127: 105: 26:dimensionless quantity 232: 212: 188: 168: 148: 128: 106: 253:basal metabolic cost 221: 201: 177: 157: 137: 117: 45: 400:Transport economics 305:1998PNAS...95.5448R 227: 207: 183: 163: 143: 123: 101: 299:(10): 5448–5455. 230:{\displaystyle v} 210:{\displaystyle P} 186:{\displaystyle g} 166:{\displaystyle d} 146:{\displaystyle m} 126:{\displaystyle E} 99: 78: 22:energy efficiency 18:cost of transport 407: 384: 383: 365: 343: 337: 336: 326: 316: 287:(May 12, 1998). 281: 236: 234: 233: 228: 216: 214: 213: 208: 195:Standard gravity 192: 190: 189: 184: 172: 170: 169: 164: 152: 150: 149: 144: 132: 130: 129: 124: 110: 108: 107: 102: 100: 98: 84: 79: 77: 63: 58: 415: 414: 410: 409: 408: 406: 405: 404: 390: 389: 388: 387: 345: 344: 340: 283: 282: 275: 270: 219: 218: 199: 198: 175: 174: 155: 154: 135: 134: 115: 114: 88: 67: 43: 42: 20:quantifies the 12: 11: 5: 413: 411: 403: 402: 392: 391: 386: 385: 363:10.1.1.517.951 356:(4): 355–360. 338: 272: 271: 269: 266: 226: 206: 182: 162: 142: 122: 97: 94: 91: 87: 82: 76: 73: 70: 66: 61: 57: 54: 51: 13: 10: 9: 6: 4: 3: 2: 412: 401: 398: 397: 395: 381: 377: 373: 369: 364: 359: 355: 351: 350: 342: 339: 334: 330: 325: 320: 315: 310: 306: 302: 298: 294: 290: 286: 280: 278: 274: 267: 265: 261: 259: 254: 249: 247: 243: 238: 224: 204: 196: 180: 160: 140: 120: 111: 95: 92: 89: 85: 80: 74: 71: 68: 64: 59: 40: 37: 35: 31: 27: 23: 19: 353: 347: 341: 296: 292: 262: 250: 239: 112: 41: 38: 17: 15: 16:The energy 268:References 358:CiteSeerX 256:450  246:metabolic 60:≜ 394:Category 380:19297009 333:9576902 301:Bibcode 378:  360:  331:  321:  173:, and 113:where 324:20397 258:watts 34:gaits 376:PMID 329:PMID 368:doi 319:PMC 309:doi 193:is 396:: 374:. 366:. 354:56 352:. 327:. 317:. 307:. 297:95 295:. 291:. 276:^ 382:. 370:: 335:. 311:: 303:: 225:v 205:P 181:g 161:d 141:m 121:E 96:v 93:g 90:m 86:P 81:= 75:d 72:g 69:m 65:E 56:T 53:O 50:C

Index

energy efficiency
dimensionless quantity
modes of transportation
gaits
Standard gravity
von Kármán–Gabrielli diagram
metabolic
basal metabolic cost
watts


Venkatraman Radhakrishnan
"Locomotion: Dealing with friction"
Bibcode
1998PNAS...95.5448R
doi
10.1073/pnas.95.10.5448
PMC
20397
PMID
9576902
Journal of Human Evolution
CiteSeerX
10.1.1.517.951
doi
10.1016/j.jhevol.2008.11.002
PMID
19297009
Category
Transport economics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑