Knowledge (XXG)

Dehn plane

Source 📝

522: 311:. The parallel postulate is true in this model, but if the deviation from the perpendicular is infinitesimal (meaning smaller than any positive rational number), the intersecting lines intersect at a point that is not in the finite part of the plane. Hence, if the model is restricted to the finite part of the plane (points ( 343:
In the same paper, Dehn also constructed an example of a non-Legendrian geometry where there are infinitely many lines through a point not meeting another line, but the sum of the angles in a triangle exceeds
137: 298: 564: 32:, that have infinitely many lines parallel to a given one that pass through a given point, but where the sum of the angles of a triangle is at least 503: 92:), consisting of the smallest field of real-valued functions on the real line containing the real constants, the identity function 404:, but assumes Archimedes's axiom, and Dehn's example shows that Legendre's theorem need not hold if Archimedes' axiom is dropped. 559: 530: 397: 368::1) together with the "line at infinity", and has the property that the sum of the angles of any triangle is greater than 99: 232: 554: 327:
finite), a geometry is obtained in which the parallel postulate fails but the sum of the angles of a triangle is
426: 224: 69: 540:
incorrectly led you here, you may wish to change the link to point directly to the intended article.
81: 37: 459: 308: 499: 443: 349: 73: 45: 451: 435: 513: 487: 509: 483: 455: 418: 548: 474: 470: 463: 533:
includes a list of related items that share the same name (or similar names).
447: 521: 414: 21: 17: 439: 96:(taking any real number to itself) and closed under the operation 496:
Infinity and the mind. The science and philosophy of the infinite
40:, except that the sum of the angles of a triangle is less than 331:. This is Dehn's semi-Euclidean geometry. It is discussed in 44:. Dehn's examples use a non-Archimedean field, so that the 360:), which can be identified with the affine plane of points ( 400:
states that the sum of the angles of a triangle is at most
419:"Die Legendre'schen Sätze über die Winkelsumme im Dreieck" 48:
is violated. They were introduced by Max Dehn (
537: 102: 372:
The non-Legendrian geometry consists of the points (
235: 56:, pp. 127–130, or pp. 42–43 in some later editions). 219:
are any (possibly infinite) elements of the field Ω(
132:{\textstyle \omega \mapsto {\sqrt {1+\omega ^{2}}}} 292: 131: 482:, The Open Court Publishing Co., La Salle, Ill., 293:{\displaystyle \|(x,y)\|={\sqrt {x^{2}+y^{2}}},} 527:Index of articles associated with the same name 8: 254: 236: 356:) consists of the projective plane over Ω( 59: 396:) represented by the identity function). 279: 266: 260: 234: 159:for sufficiently large reals. An element 121: 109: 101: 68:To construct his geometries, Dehn used a 338: 198: 53: 380::1) of this affine subspace such that 332: 24:introduced two examples of planes, a 7: 49: 84:of the field of rational functions 36:. A similar phenomenon occurs in 14: 565:Set index articles on mathematics 520: 60:Dehn's non-archimedean field Ω( 339:Dehn's non-Legendrian geometry 251: 239: 199:Dehn's semi-Euclidean geometry 106: 1: 498:, Boston, Mass.: Birkhäuser, 476:The foundations of geometry 388:are finite (where as above 581: 519: 303:which takes values in Ω( 143:) is ordered by putting 30:non-Legendrian geometry 26:semi-Euclidean geometry 560:Non-Euclidean geometry 294: 223:), and with the usual 203:The set of all pairs ( 133: 494:Rucker, Rudy (1982), 427:Mathematische Annalen 295: 134: 392:is the element of Ω( 307:), gives a model of 233: 100: 82:Pythagorean closure 52:) and discussed by 38:hyperbolic geometry 440:10.1007/BF01448980 398:Legendre's theorem 309:Euclidean geometry 290: 183:for some integers 129: 555:Planes (geometry) 531:set index article 350:elliptic geometry 285: 127: 74:Pythagorean field 46:Archimedean axiom 572: 541: 524: 516: 490: 481: 466: 423: 403: 371: 347: 330: 299: 297: 296: 291: 286: 284: 283: 271: 270: 261: 191:, and is called 179: <  175: <  151:if the function 147: >  138: 136: 135: 130: 128: 126: 125: 110: 43: 35: 580: 579: 575: 574: 573: 571: 570: 569: 545: 544: 543: 542: 535: 534: 528: 506: 493: 479: 469: 421: 413: 410: 401: 369: 345: 341: 328: 275: 262: 231: 230: 201: 155:is larger than 117: 98: 97: 70:non-Archimedean 66: 41: 33: 12: 11: 5: 578: 576: 568: 567: 562: 557: 547: 546: 526: 525: 518: 517: 504: 491: 471:Hilbert, David 467: 434:(3): 404–439, 409: 406: 340: 337: 301: 300: 289: 282: 278: 274: 269: 265: 259: 256: 253: 250: 247: 244: 241: 238: 200: 197: 139:. The field Ω( 124: 120: 116: 113: 108: 105: 65: 58: 13: 10: 9: 6: 4: 3: 2: 577: 566: 563: 561: 558: 556: 553: 552: 550: 539: 538:internal link 532: 523: 515: 511: 507: 505:3-7643-3034-1 501: 497: 492: 489: 485: 478: 477: 472: 468: 465: 461: 457: 453: 449: 445: 441: 437: 433: 429: 428: 420: 416: 412: 411: 407: 405: 399: 395: 391: 387: 383: 379: 375: 367: 363: 359: 355: 351: 336: 335:, pp. 91–2). 334: 326: 322: 318: 314: 310: 306: 287: 280: 276: 272: 267: 263: 257: 248: 245: 242: 229: 228: 227: 226: 222: 218: 214: 210: 206: 196: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 122: 118: 114: 111: 103: 95: 91: 87: 83: 79: 75: 71: 63: 57: 55: 54:Hilbert (1902 51: 47: 39: 31: 27: 23: 19: 495: 475: 431: 425: 393: 389: 385: 381: 377: 373: 365: 361: 357: 353: 348:. Riemann's 342: 333:Rucker (1982 324: 320: 316: 312: 304: 302: 220: 216: 212: 208: 204: 202: 192: 188: 184: 180: 176: 172: 168: 167:) is called 164: 160: 156: 152: 148: 144: 140: 93: 89: 85: 77: 67: 61: 29: 25: 15: 195:otherwise. 549:Categories 456:31.0471.01 408:References 464:122651688 448:0025-5831 415:Dehn, Max 255:‖ 237:‖ 211:), where 119:ω 107:↦ 104:ω 473:(1902), 417:(1900), 193:infinite 72:ordered 22:Max Dehn 18:geometry 514:0658492 488:0116216 352:over Ω( 319:) with 207:,  536:If an 512:  502:  486:  462:  454:  446:  225:metric 169:finite 28:and a 529:This 480:(PDF) 460:S2CID 422:(PDF) 163:of Ω( 80:), a 500:ISBN 444:ISSN 384:and 323:and 215:and 50:1900 452:JFM 436:doi 171:if 16:In 551:: 510:MR 508:, 484:MR 458:, 450:, 442:, 432:53 430:, 424:, 386:ty 382:tx 187:, 76:Ω( 20:, 438:: 402:π 394:t 390:t 378:y 376:: 374:x 370:π 366:y 364:: 362:x 358:t 354:t 346:π 329:π 325:y 321:x 317:y 315:, 313:x 305:t 288:, 281:2 277:y 273:+ 268:2 264:x 258:= 252:) 249:y 246:, 243:x 240:( 221:t 217:y 213:x 209:y 205:x 189:n 185:m 181:n 177:x 173:m 165:t 161:x 157:y 153:x 149:y 145:x 141:t 123:2 115:+ 112:1 94:t 90:t 88:( 86:R 78:t 64:) 62:t 42:π 34:π

Index

geometry
Max Dehn
hyperbolic geometry
Archimedean axiom
1900
Hilbert (1902
non-Archimedean
Pythagorean field
Pythagorean closure
metric
Euclidean geometry
Rucker (1982
elliptic geometry
Legendre's theorem
Dehn, Max
"Die Legendre'schen Sätze über die Winkelsumme im Dreieck"
Mathematische Annalen
doi
10.1007/BF01448980
ISSN
0025-5831
JFM
31.0471.01
S2CID
122651688
Hilbert, David
The foundations of geometry
MR
0116216
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.