Knowledge

Direct methanol fuel cell

Source 📝

89:
the exact kinetics are debated, the result is a reduction of the cell voltage. Cross-over remains a major factor in inefficiencies, and often half of the methanol is lost to cross-over. Methanol cross-over and/or its effects can be alleviated by (a) developing alternative membranes (e.g.), (b) improving the electro-oxidation process in the catalyst layer and improving the structure of the catalyst and gas diffusion layers (e.g. ), and (c) optimizing the design of the flow field and the membrane electrode assembly (MEA) which can be achieved by studying the current density distributions (e.g. ).
128:. Military applications of DMFCs are an emerging application since they have low noise and thermal signatures and no toxic effluent. These applications include power for man-portable tactical equipment, battery chargers, and autonomous power for test and training instrumentation. Units are available with power outputs between 25 watts and 5 kilowatts with durations up to 100 hours between refuelings. Especially for power output up to 0.3 kW the DMFC is suitable. For a power output of more than 0.3 kW the 85:, i.e. about 3% in mass) to carry the reactant into the cell; common operating temperatures are in the range 50 to 120 °C (122 to 248 °F), where high temperatures are usually pressurized. DMFCs themselves are more efficient at high temperatures and pressures, but these conditions end up causing so many losses in the complete system that the advantage is lost; therefore, atmospheric-pressure configurations are currently preferred. 20: 172:
issued a proposal to allow airline passengers to carry fuel cell cartridges on board. The Department of Transportation issued a final ruling on April 30, 2008, permitting passengers and crew to carry an approved fuel cell with an installed methanol cartridge and up to two additional spare cartridges.
1011:
Methanol on the anodic side is usually in a weak solution (from 1M to 3M), because methanol in high concentrations has the tendency to diffuse through the membrane to the cathode, where its concentration is about zero because it is rapidly consumed by oxygen. Low concentrations help in reducing the
88:
Because of the methanol cross-over, a phenomenon by which methanol diffuses through the membrane without reacting, methanol is fed as a weak solution: this decreases efficiency significantly, since crossed-over methanol, after reaching the air side (the cathode), immediately reacts with air; though
115:
Current DMFCs are limited in the power they can produce, but can still store a high energy content in a small space. This means they can produce a small amount of power over a long period of time. This makes them ill-suited for powering large vehicles (at least directly), but ideal for smaller
605:
Platinum is used as a catalyst for both half-reactions. This contributes to the loss of cell voltage potential, as any methanol that is present in the cathode chamber will oxidize. If another catalyst could be found for the reduction of oxygen, the problem of methanol crossover would likely be
1024:
The water in the anodic loop is lost because of the anodic reaction, but mostly because of the associated water drag: every proton formed at the anode drags a number of water molecules to the cathode. Depending on temperature and membrane type, this number can be between 2 and 6.
1015:
The practical realization is usually that a solution loop enters the anode, exits, is refilled with methanol, and returns to the anode again. Alternatively, fuel cells with optimized structures can be directly fed with high concentration methanol solutions or even pure methanol.
1443:
Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery-Powered Devices; and Harmonization with the United Nations Recommendations, International Maritime Dangerous Goods Code, and International Civil Aviation Organization's Technical
1033:
A direct methanol fuel cell is usually part of a larger system including all the ancillary units that permit its operation. Compared to most other types of fuel cells, the ancillary system of DMFCs is relatively complex. The main reasons for its complexity are:
132:
presents a higher efficiency and is more cost-efficient. Freezing of the liquid methanol-water mixture in the stack at low ambient temperature can be problematic for the membrane of DMFC (in contrast to indirect methanol fuel cell).
164:. However, the International Civil Aviation Organization's (ICAO) Dangerous Goods Panel (DGP) voted in November 2005 to allow passengers to carry and use micro fuel cells and methanol fuel cartridges when aboard airplanes to power 886: 458: 995: 567: 774: 349: 1425: 53:
of a DMFC is 97%; as of 2014 the achievable energy conversion efficiency for operational cells attains 30% – 40%. There is intensive research on promising approaches to increase the operational efficiency.
173:
It is worth noting that 200 ml maximum methanol cartridge volume allowed in the final ruling is double the 100 ml limit on liquids allowed by the Transportation Security Administration in carry-on bags.
1447: 613:(CO) is formed, which strongly adsorbs onto the platinum catalyst, reducing the number of available reaction sites and thus the performance of the cell. The addition of other metals, such as 621:, to the platinum catalyst tends to ameliorate this problem. In the case of platinum-ruthenium catalysts, the oxophilic nature of ruthenium is believed to promote the formation of 625:
on its surface, which can then react with carbon monoxide adsorbed on the platinum atoms. The water in the fuel cell is oxidized to a hydroxy radical via the following reaction: H
46:(PEM). Their main advantage is low temperature operation and the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all environmental conditions. 1420: 1353:
Simon Araya, Samuel; Liso, Vincenzo; Cui, Xiaoti; Li, Na; Zhu, Jimin; Sahlin, Simon Lennart; Jensen, Søren Højgaard; Nielsen, Mads Pagh; Kær, Søren Knudsen (2020).
57:
A more efficient version of a direct fuel cell would play a key role in the theoretical use of methanol as a general energy transport medium, in the hypothesized
1441: 1216:
Dohle, H.; Mergel, J. & Stolten, D.: Heat and power management of a direct-methanol-fuel-cell (DMFC) system, Journal of Power Sources, 2002, 111, 268-282.
1556: 1048:
water in the anodic loop is slowly consumed by reaction and drag; it is necessary to recover water from the cathodic side to maintain steady operation.
789: 364: 901: 473: 1485:
Motoo, S.; Watanabe, M. (1975). "Electrolysis by Ad-Atoms Part II. Enhancement of the Oxidation of Methanol on Platinum by Ruthenium Ad-Atoms".
662: 1386:
Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P. (December 2008). "Hydrogen and fuel cells: Towards a sustainable energy future".
1253: 246: 1587: 1468: 1625: 1226:
Wei, Yongsheng; et al. (2012). "A novel membrane for DMFC – Na2Ti3O7 Nanotubes/Nafion composite membrane: Performances studies".
35: 1306:
Almheiri, Saif; Hongtan Liu (2014). "Separate measurement of current density under land and channel in Direct Methanol Fuel Cells".
1198:
Pasha Majidi; et al. (1 May 2016). "Determination of the efficiency of methanol oxidation in a direct methanol fuel cell".
1768: 1094: 169: 606:
significantly lessened. Furthermore, platinum is very expensive and contributes to the high cost per kilowatt of these cells.
1723: 1059: 1763: 1646: 50: 1816: 1733: 1676: 1074: 1038:
providing water along with methanol would make the fuel supply more cumbersome, so water has to be recycled in a loop;
153:. The energy density per mass is a tenth of that of hydrogen, but 10 times higher than that of lithium-ion batteries. 129: 70: 1753: 1615: 1064: 590:
in the reaction, pure methanol cannot be used without provision of water via either passive transport such as back
141:
Methanol is a liquid from −97.6 to 64.7 °C (−143.7 to 148.5 °F) at atmospheric pressure. The volumetric
1743: 1620: 1279:
Matar, Saif; Hongtan Liu (2010). "Effect of cathode catalyst layer thickness on methanol cross-over in a DMFC".
1748: 1656: 1580: 43: 1553: 1738: 1671: 1651: 1125:
Umit B. Demirci (2007). "Review: Direct liquid-feed fuel cells: Thermodynamic and environmental concerns".
1758: 1697: 221:
are transported through an external circuit from anode to cathode, providing power to connected devices.
1666: 1630: 1681: 1395: 1315: 1084: 1837: 1702: 1573: 150: 146: 1610: 1463: 1842: 622: 1803: 1798: 1793: 1788: 1513: 1403: 1366: 1323: 1288: 1235: 1180: 1157: 1134: 1089: 599: 58: 1534:
Merhoff, Henry and Helbig, Peter. Development and Fielding of a Direct Methanol Fuel Cell;
1560: 1472: 1451: 1429: 1099: 630: 610: 165: 78: 586:
particles, and lose protons until carbon dioxide is formed. As water is consumed at the
1399: 1319: 19: 1549:
Fuel Cell News Today. An internet portal of news and articles of fuel cell developments
1340: 1254:"Safe space: improving the "clean" methanol fuel cells using a protective carbon shell" 1184: 1161: 634: 194: 142: 121: 104: 93: 1554:
12th Small Fuel Cells. Annual conference on portable fuel cell technology developments
1831: 1718: 225: 1292: 1728: 1517: 1327: 1239: 1138: 1079: 161: 117: 100:, the sluggish dynamic behavior, and the ability to maintain the solution water. 1407: 1104: 881:{\displaystyle \mathrm {{\frac {3}{2}}O_{2}+3\ H_{2}O+6\ e^{-}\to 6\ OH^{-}} } 1152:
Ibrahim Dincer, Calin Zamfirescu (2014). "4.4.7 Direct Methanol Fuel Cells".
453:{\displaystyle \mathrm {{\frac {3}{2}}O_{2}+6\ H^{+}+6\ e^{-}\to 3\ H_{2}O} } 1596: 1422:
US Department of Transportation moves to approve fuel cells for aircraft use
1069: 614: 591: 583: 990:{\displaystyle \mathrm {CH_{3}OH+{\frac {3}{2}}O_{2}\to 2\ H_{2}O+CO_{2}} } 602:
such as pumping. The need for water limits the energy density of the fuel.
562:{\displaystyle \mathrm {CH_{3}OH+{\frac {3}{2}}O_{2}\to 2\ H_{2}O+CO_{2}} } 769:{\displaystyle \mathrm {CH_{3}OH+6\ OH^{-}\to 5\ H_{2}O+6\ e^{-}+CO_{2}} } 209:(H) are transported across the proton exchange membrane - often made from 1780: 644:
Using these OH groups in the half reactions, they are also expressed as:
579: 218: 190: 186: 157: 149:, about two times greater than liquid hydrogen and 2.6 times higher than 82: 74: 39: 1371: 1354: 595: 202: 344:{\displaystyle \mathrm {CH_{3}OH+H_{2}O\to 6\ H^{+}+6\ e^{-}+CO_{2}} } 214: 210: 206: 125: 42:
is used as the fuel and a special proton-conducting polymer as the
587: 198: 182: 168:
and other consumer electronic devices. On September 24, 2007, the
116:
vehicles such as forklifts and tuggers and consumer goods such as
97: 18: 1548: 618: 1569: 1045:
has to be removed from the solution flow exiting the fuel cell;
578:
Methanol and water are adsorbed on a catalyst usually made of
145:
of methanol is an order of magnitude greater than even highly
1565: 646: 637:, which is released from the surface as a gas: CO + OH• → CO 230: 1012:
cross-over, but also limit the maximum attainable current.
103:
The only waste products with these types of fuel cells are
1355:"A Review of The Methanol Economy: The Fuel Cell Route" 904: 792: 665: 476: 367: 249: 1779: 1711: 1690: 1639: 1603: 629:O → OH• + H + e. The hydroxy radical then oxidizes 1175:Keith Scott, Lei Xing (2012). "3.1 Introduction". 989: 880: 768: 561: 452: 343: 1487:Electrochemistry and Interfacial Electrochemistry 81:, DMFCs use a methanol solution (usually around 1 1341:Tenn. Nissan Plant to Use Methanol to Cut Costs 1475:, by the US transport security administration. 1581: 8: 1588: 1574: 1566: 1454:, by the US department of transportation. 1370: 980: 961: 942: 928: 913: 905: 903: 871: 849: 827: 808: 794: 793: 791: 759: 743: 721: 702: 674: 666: 664: 552: 533: 514: 500: 485: 477: 475: 440: 421: 402: 383: 369: 368: 366: 334: 318: 299: 277: 258: 250: 248: 1228:International Journal of Hydrogen Energy 1117: 609:During the methanol oxidation reaction 213:- to the cathode where they react with 92:Other issues include the management of 49:Whilst the thermodynamic theoretical 7: 1465:3-1-1 Gains International Acceptance 36:proton-exchange membrane fuel cells 1626:Proton-exchange membrane fuel cell 1185:10.1016/B978-0-12-386874-9.00005-1 1162:10.1016/B978-0-12-383860-5.00004-3 977: 973: 967: 958: 939: 922: 919: 910: 906: 868: 864: 846: 833: 824: 805: 756: 752: 740: 727: 718: 699: 695: 683: 680: 671: 667: 549: 545: 539: 530: 511: 494: 491: 482: 478: 446: 437: 418: 399: 380: 331: 327: 315: 296: 283: 274: 267: 264: 255: 251: 14: 1154:Advanced Power Generation Systems 1769:Unitized regenerative fuel cell 1293:10.1016/j.electacta.2010.09.001 1095:Portable fuel cell applications 170:US Department of Transportation 73:, where methanol is reacted to 1518:10.1016/j.jpowsour.2012.10.061 1504:Li, Xianglin; Faghri. "Amir". 1328:10.1016/j.jpowsour.2013.08.029 1240:10.1016/j.ijhydene.2011.08.107 1139:10.1016/j.jpowsour.2007.03.050 1060:Alkali anion-exchange membrane 948: 855: 708: 520: 427: 286: 1: 1764:Solid oxide electrolyzer cell 1647:Direct borohydride fuel cell 71:indirect methanol fuel cells 51:energy conversion efficiency 1734:Membrane electrode assembly 1677:Reformed methanol fuel cell 1408:10.1016/j.enpol.2008.09.036 1075:Glossary of fuel cell terms 197:. Water is consumed at the 130:indirect methanol fuel cell 1859: 1754:Protonic ceramic fuel cell 1724:Electro-galvanic fuel cell 1616:Molten carbonate fuel cell 1065:Dynamic hydrogen electrode 28:Direct methanol fuel cells 1812: 1744:Photoelectrochemical cell 1662:Direct methanol fuel cell 1621:Phosphoric acid fuel cell 181:The DMFC relies upon the 23:Direct methanol fuel cell 1749:Proton-exchange membrane 1657:Direct-ethanol fuel cell 1506:Journal of Power Sources 1308:Journal of Power Sources 1127:Journal of Power Sources 1739:Membraneless Fuel Cells 1672:Metal hydride fuel cell 1652:Direct carbon fuel cell 1759:Regenerative fuel cell 1698:Enzymatic biofuel cell 991: 882: 770: 563: 454: 345: 24: 1667:Formic acid fuel cell 1631:Solid oxide fuel cell 1177:Fuel Cell Engineering 992: 883: 771: 564: 455: 346: 156:Methanol is slightly 151:lithium-ion batteries 34:are a subcategory of 22: 1085:Methanol (data page) 902: 790: 663: 474: 365: 247: 201:and produced at the 1703:Microbial fuel cell 1432:, by FuelCellToday. 1400:2008EnPol..36.4356E 1320:2014JPS...246..899A 1281:Electrochimica Acta 1200:Electrochimica Acta 147:compressed hydrogen 1611:Alkaline fuel cell 1559:2012-03-03 at the 1471:2008-05-09 at the 1450:2011-07-25 at the 1428:2009-02-11 at the 1372:10.3390/en13030596 1007:Cross-over current 987: 878: 766: 559: 450: 341: 217:to produce water. 25: 1825: 1824: 1394:(12): 4356–4362. 1260:. 4 December 2020 1004: 1003: 1000: 956: 936: 896:Overall reaction 891: 863: 844: 822: 802: 779: 738: 716: 694: 623:hydroxyl radicals 576: 575: 572: 528: 508: 468:Overall reaction 463: 435: 416: 397: 377: 354: 313: 294: 16:Type of fuel cell 1850: 1682:Zinc–air battery 1590: 1583: 1576: 1567: 1522: 1521: 1501: 1495: 1494: 1482: 1476: 1461: 1455: 1439: 1433: 1418: 1412: 1411: 1383: 1377: 1376: 1374: 1350: 1344: 1338: 1332: 1331: 1303: 1297: 1296: 1276: 1270: 1269: 1267: 1265: 1250: 1244: 1243: 1234:(2): 1857–1864. 1223: 1217: 1214: 1208: 1207: 1195: 1189: 1188: 1172: 1166: 1165: 1149: 1143: 1142: 1122: 1090:Methanol economy 998: 996: 994: 993: 988: 986: 985: 984: 966: 965: 954: 947: 946: 937: 929: 918: 917: 889: 887: 885: 884: 879: 877: 876: 875: 861: 854: 853: 842: 832: 831: 820: 813: 812: 803: 795: 777: 775: 773: 772: 767: 765: 764: 763: 748: 747: 736: 726: 725: 714: 707: 706: 692: 679: 678: 647: 600:active transport 570: 568: 566: 565: 560: 558: 557: 556: 538: 537: 526: 519: 518: 509: 501: 490: 489: 461: 459: 457: 456: 451: 449: 445: 444: 433: 426: 425: 414: 407: 406: 395: 388: 387: 378: 370: 352: 350: 348: 347: 342: 340: 339: 338: 323: 322: 311: 304: 303: 292: 282: 281: 263: 262: 231: 166:laptop computers 59:methanol economy 1858: 1857: 1853: 1852: 1851: 1849: 1848: 1847: 1828: 1827: 1826: 1821: 1808: 1775: 1707: 1686: 1635: 1599: 1594: 1561:Wayback Machine 1545: 1531: 1529:Further reading 1526: 1525: 1503: 1502: 1498: 1484: 1483: 1479: 1473:Wayback Machine 1462: 1458: 1452:Wayback Machine 1440: 1436: 1430:Wayback Machine 1419: 1415: 1385: 1384: 1380: 1352: 1351: 1347: 1339: 1335: 1305: 1304: 1300: 1278: 1277: 1273: 1263: 1261: 1258:Bioengineer.org 1252: 1251: 1247: 1225: 1224: 1220: 1215: 1211: 1197: 1196: 1192: 1179:. p. 147. 1174: 1173: 1169: 1151: 1150: 1146: 1124: 1123: 1119: 1114: 1109: 1100:Rudolf Schulten 1055: 1044: 1031: 1029:Ancillary units 1022: 1009: 997: 976: 957: 938: 909: 900: 899: 888: 867: 845: 823: 804: 788: 787: 776: 755: 739: 717: 698: 670: 661: 660: 640: 631:carbon monoxide 628: 611:carbon monoxide 569: 548: 529: 510: 481: 472: 471: 460: 436: 417: 398: 379: 363: 362: 351: 330: 314: 295: 273: 254: 245: 244: 179: 139: 122:digital cameras 113: 96:created at the 79:steam reforming 69:In contrast to 67: 17: 12: 11: 5: 1856: 1854: 1846: 1845: 1840: 1830: 1829: 1823: 1822: 1820: 1819: 1813: 1810: 1809: 1807: 1806: 1801: 1796: 1791: 1785: 1783: 1777: 1776: 1774: 1773: 1772: 1771: 1766: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1715: 1713: 1709: 1708: 1706: 1705: 1700: 1694: 1692: 1688: 1687: 1685: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1643: 1641: 1637: 1636: 1634: 1633: 1628: 1623: 1618: 1613: 1607: 1605: 1604:By electrolyte 1601: 1600: 1595: 1593: 1592: 1585: 1578: 1570: 1564: 1563: 1551: 1544: 1543:External links 1541: 1540: 1539: 1530: 1527: 1524: 1523: 1496: 1477: 1456: 1434: 1413: 1378: 1345: 1333: 1298: 1287:(1): 600–606. 1271: 1245: 1218: 1209: 1190: 1167: 1144: 1116: 1115: 1113: 1110: 1108: 1107: 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1067: 1062: 1056: 1054: 1051: 1050: 1049: 1046: 1042: 1039: 1030: 1027: 1021: 1018: 1008: 1005: 1002: 1001: 999:redox reaction 983: 979: 975: 972: 969: 964: 960: 953: 950: 945: 941: 935: 932: 927: 924: 921: 916: 912: 908: 897: 893: 892: 874: 870: 866: 860: 857: 852: 848: 841: 838: 835: 830: 826: 819: 816: 811: 807: 801: 798: 785: 781: 780: 762: 758: 754: 751: 746: 742: 735: 732: 729: 724: 720: 713: 710: 705: 701: 697: 691: 688: 685: 682: 677: 673: 669: 658: 654: 653: 650: 638: 635:carbon dioxide 626: 574: 573: 571:redox reaction 555: 551: 547: 544: 541: 536: 532: 525: 522: 517: 513: 507: 504: 499: 496: 493: 488: 484: 480: 469: 465: 464: 448: 443: 439: 432: 429: 424: 420: 413: 410: 405: 401: 394: 391: 386: 382: 376: 373: 360: 356: 355: 337: 333: 329: 326: 321: 317: 310: 307: 302: 298: 291: 288: 285: 280: 276: 272: 269: 266: 261: 257: 253: 242: 238: 237: 234: 226:half-reactions 195:carbon dioxide 193:layer to form 178: 175: 143:energy density 138: 135: 112: 109: 105:carbon dioxide 94:carbon dioxide 66: 63: 15: 13: 10: 9: 6: 4: 3: 2: 1855: 1844: 1841: 1839: 1836: 1835: 1833: 1818: 1815: 1814: 1811: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1786: 1784: 1782: 1778: 1770: 1767: 1765: 1762: 1761: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1716: 1714: 1710: 1704: 1701: 1699: 1696: 1695: 1693: 1691:Biofuel cells 1689: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1644: 1642: 1638: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1608: 1606: 1602: 1598: 1591: 1586: 1584: 1579: 1577: 1572: 1571: 1568: 1562: 1558: 1555: 1552: 1550: 1547: 1546: 1542: 1537: 1533: 1532: 1528: 1519: 1515: 1511: 1507: 1500: 1497: 1492: 1488: 1481: 1478: 1474: 1470: 1467: 1466: 1460: 1457: 1453: 1449: 1446: 1445: 1438: 1435: 1431: 1427: 1424: 1423: 1417: 1414: 1409: 1405: 1401: 1397: 1393: 1389: 1388:Energy Policy 1382: 1379: 1373: 1368: 1364: 1360: 1356: 1349: 1346: 1342: 1337: 1334: 1329: 1325: 1321: 1317: 1313: 1309: 1302: 1299: 1294: 1290: 1286: 1282: 1275: 1272: 1259: 1255: 1249: 1246: 1241: 1237: 1233: 1229: 1222: 1219: 1213: 1210: 1205: 1201: 1194: 1191: 1186: 1182: 1178: 1171: 1168: 1163: 1159: 1155: 1148: 1145: 1140: 1136: 1132: 1128: 1121: 1118: 1111: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1057: 1052: 1047: 1040: 1037: 1036: 1035: 1028: 1026: 1019: 1017: 1013: 1006: 981: 970: 962: 951: 943: 933: 930: 925: 914: 898: 895: 894: 872: 858: 850: 839: 836: 828: 817: 814: 809: 799: 796: 786: 783: 782: 760: 749: 744: 733: 730: 722: 711: 703: 689: 686: 675: 659: 656: 655: 651: 649: 648: 645: 642: 636: 632: 624: 620: 616: 612: 607: 603: 601: 597: 593: 589: 585: 581: 553: 542: 534: 523: 515: 505: 502: 497: 486: 470: 467: 466: 441: 430: 422: 411: 408: 403: 392: 389: 384: 374: 371: 361: 358: 357: 335: 324: 319: 308: 305: 300: 289: 278: 270: 259: 243: 240: 239: 235: 233: 232: 229: 227: 222: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 176: 174: 171: 167: 163: 159: 154: 152: 148: 144: 136: 134: 131: 127: 123: 119: 118:mobile phones 110: 108: 106: 101: 99: 95: 90: 86: 84: 80: 76: 72: 64: 62: 60: 55: 52: 47: 45: 41: 37: 33: 29: 21: 1729:Flow battery 1661: 1538:, March 2010 1536:ITEA Journal 1535: 1509: 1505: 1499: 1490: 1486: 1480: 1464: 1459: 1444:Instructions 1442: 1437: 1421: 1416: 1391: 1387: 1381: 1362: 1358: 1348: 1343:by ABC News. 1336: 1311: 1307: 1301: 1284: 1280: 1274: 1262:. Retrieved 1257: 1248: 1231: 1227: 1221: 1212: 1203: 1199: 1193: 1176: 1170: 1153: 1147: 1130: 1126: 1120: 1080:Liquid fuels 1032: 1023: 1014: 1010: 643: 608: 604: 577: 223: 180: 155: 140: 114: 102: 91: 87: 68: 56: 48: 31: 27: 26: 1719:Blue energy 1512:: 223–240. 1314:: 899–905. 1264:30 December 633:to produce 160:and highly 111:Application 107:and water. 1838:Fuel cells 1832:Categories 1597:Fuel cells 1493:: 267–273. 1365:(3): 596. 1112:References 1105:SymPowerco 1020:Water drag 1070:Fuel cell 949:→ 890:reduction 873:− 856:→ 851:− 778:oxidation 745:− 709:→ 704:− 652:Equation 641:+ H + e. 615:ruthenium 592:diffusion 584:ruthenium 521:→ 462:reduction 428:→ 423:− 353:oxidation 320:− 287:→ 236:Equation 219:Electrons 183:oxidation 162:flammable 38:in which 1843:Methanol 1817:Glossary 1781:Hydrogen 1557:Archived 1469:Archived 1448:Archived 1426:Archived 1359:Energies 1053:See also 784:Cathode 580:platinum 359:Cathode 191:catalyst 187:methanol 177:Reaction 137:Methanol 75:hydrogen 65:The cell 44:membrane 40:methanol 1804:Vehicle 1799:Storage 1794:Station 1789:Economy 1640:By fuel 1396:Bibcode 1316:Bibcode 596:osmosis 207:Protons 203:cathode 126:laptops 1712:Others 955:  862:  843:  821:  737:  715:  693:  657:Anode 598:), or 527:  434:  415:  396:  312:  293:  241:Anode 215:oxygen 211:Nafion 588:anode 228:are: 199:anode 189:on a 158:toxic 98:anode 32:DMFCs 1266:2020 619:gold 582:and 224:The 1514:doi 1510:226 1404:doi 1367:doi 1324:doi 1312:246 1289:doi 1236:doi 1204:199 1181:doi 1158:doi 1135:doi 1131:169 617:or 185:of 124:or 77:by 30:or 1834:: 1508:. 1491:60 1489:. 1402:. 1392:36 1390:. 1363:13 1361:. 1357:. 1322:. 1310:. 1285:56 1283:. 1256:. 1232:37 1230:. 1202:. 1156:. 1133:. 1129:. 1041:CO 205:. 120:, 61:. 1589:e 1582:t 1575:v 1520:. 1516:: 1410:. 1406:: 1398:: 1375:. 1369:: 1330:. 1326:: 1318:: 1295:. 1291:: 1268:. 1242:. 1238:: 1206:. 1187:. 1183:: 1164:. 1160:: 1141:. 1137:: 1043:2 982:2 978:O 974:C 971:+ 968:O 963:2 959:H 952:2 944:2 940:O 934:2 931:3 926:+ 923:H 920:O 915:3 911:H 907:C 869:H 865:O 859:6 847:e 840:6 837:+ 834:O 829:2 825:H 818:3 815:+ 810:2 806:O 800:2 797:3 761:2 757:O 753:C 750:+ 741:e 734:6 731:+ 728:O 723:2 719:H 712:5 700:H 696:O 690:6 687:+ 684:H 681:O 676:3 672:H 668:C 639:2 627:2 594:( 554:2 550:O 546:C 543:+ 540:O 535:2 531:H 524:2 516:2 512:O 506:2 503:3 498:+ 495:H 492:O 487:3 483:H 479:C 447:O 442:2 438:H 431:3 419:e 412:6 409:+ 404:+ 400:H 393:6 390:+ 385:2 381:O 375:2 372:3 336:2 332:O 328:C 325:+ 316:e 309:6 306:+ 301:+ 297:H 290:6 284:O 279:2 275:H 271:+ 268:H 265:O 260:3 256:H 252:C 83:M

Index


proton-exchange membrane fuel cells
methanol
membrane
energy conversion efficiency
methanol economy
indirect methanol fuel cells
hydrogen
steam reforming
M
carbon dioxide
anode
carbon dioxide
mobile phones
digital cameras
laptops
indirect methanol fuel cell
energy density
compressed hydrogen
lithium-ion batteries
toxic
flammable
laptop computers
US Department of Transportation
oxidation
methanol
catalyst
carbon dioxide
anode
cathode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.