Knowledge (XXG)

Drift-barrier hypothesis

Source πŸ“

91:
increased mutation rates, and other features typical of their small population sizes. This included the loss of several transcriptional fidelity factors. Traverse and Ochman’s results showed that the transcriptional error rates between E. coli and the two endosymbionts were nearly equal even though their population sizes were very different. Their initial prediction was that the endosymbionts would have higher transcription error rates as they were subject to a large amount of genetic drift. This would mean that they would therefore sustain more deleterious mutations. However, neither Buchnera aphidicola and Carsonella ruddii had elevated transcription error rates.
82:. The population keeps fixing these advantageous traits over time, pushing the population towards the genetic perfection associated with the environment. This increasing perfection causes mutations to have a higher chance of being deleterious. Individuals with a high mutation rate now increasingly decrease population fitness, and selection causes the mutation rate to decrease again. At the same time, new advantageous alleles have a diminishing positive effect on fitness. At a certain point, natural selection, mutation rate and random genetic drift reach a balance. This is called the drift-barrier. 29: 24:
in 2010. It suggests that the perfection of the performance of a trait, in a specific environment, by natural selection will hit a hypothetical barrier. The closer a trait comes to perfection, the smaller the fitness advantages become. Once this barrier is reached, the effects of further beneficial
90:
Traverse and Ochman showed a striking exception to the drift-barrier hypothesis. In 2016, they measured transcriptional error rates in Escherichia coli as well as two endosymbiotic prokaryotes, Buchnera aphidicola and Carsonella ruddii. The endosymbionts had dramatically reduced genome sizes,
25:
mutations are unlikely to be large enough to overcome the power of random genetic drift. Selection generally favors lower mutation rates due to the associated load of deleterious mutations that come with a high mutation rate.
73:
to environmental changes. Such populations have a bigger genetic pool, and therefore a bigger chance of containing an advantageous functional trait for this new environment. These advantageous functional traits get
65:. The balance between the influence of natural selection and genetic drift on the population mutation rate is mainly determined by the population size. Large populations are predicted to generally have lower 49:. When the environment in which the population lives changes, some of these traits turn out to be more advantageous for this new situation than others. Through 388: 228:
Lynch, Michael; Ackerman, Matthew S.; Gout, Jean-Francois; Long, Hongan; Sung, Way; Thomas, W. Kelley; Foster, Patricia L. (November 2016).
32:
Left: Random genetic drift (blue arrows) impede selection (red arrows) towards 'genetic perfection'. Right: Simulation of mutation rates.
75: 537: 21: 284: 79: 470:"Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles" 532: 265: 192: 46: 368: 69:
than smaller populations. Populations containing individuals with high mutation rates are more
509: 491: 450: 432: 384: 349: 331: 257: 249: 210: 184: 138: 58: 50: 42: 499: 481: 440: 422: 376: 339: 321: 241: 200: 174: 161:
Sung, Way; Ackerman, Matthew S.; Miller, Samuel F.; Doak, Thomas G.; Lynch, Michael (2012).
128: 120: 28: 504: 469: 344: 309: 205: 162: 133: 108: 526: 445: 410: 66: 54: 375:, General Plant Pathology, The American Phytopathological Society, pp. 59–86, 285:"Sandwalk: Learning about modern evolutionary theory: the drift-barrier hypothesis" 269: 229: 167:
Proceedings of the National Academy of Sciences of the United States of America
380: 124: 70: 495: 436: 335: 253: 188: 486: 427: 326: 179: 62: 513: 353: 261: 214: 142: 454: 245: 196: 373:
Population Biology of Plant Pathogens: Genetics, Ecology, and Evolution
230:"Genetic drift, selection and the evolution of the mutation rate" 411:"A constant rate of spontaneous mutation in DNA-based microbes" 367:
Milgroom, Michael G. (2017-08-02), Michael, G. Milgroom (ed.),
308:
McCandlish, David M.; Plotkin, Joshua B. (2016-03-22).
163:"Drift-barrier hypothesis and mutation-rate evolution" 468:Traverse, Charles C.; Ochman, Howard (2016-03-22). 57:, the traits with a negative effect on population 474:Proceedings of the National Academy of Sciences 415:Proceedings of the National Academy of Sciences 314:Proceedings of the National Academy of Sciences 369:"CHAPTER 4: Mutation and Random Genetic Drift" 310:"Transcriptional errors and the drift barrier" 41:Every population contains a certain amount of 8: 20:is an evolutionary hypothesis formulated by 86:Exceptions for the drift-barrier hypothesis 503: 485: 444: 426: 343: 325: 204: 178: 132: 27: 99: 7: 156: 154: 152: 78:in the population due to positive 14: 109:"Evolution of the mutation rate" 1: 409:Drake, J. W. (1991-08-15). 283:Moran, Larry (2016-12-01). 554: 381:10.1094/9780890544525.004 125:10.1016/j.tig.2010.05.003 18:drift-barrier hypothesis 487:10.1073/pnas.1525329113 428:10.1073/pnas.88.16.7160 327:10.1073/pnas.1601785113 234:Nature Reviews Genetics 180:10.1073/pnas.1216223109 45:, coding for different 33: 80:directional selection 31: 246:10.1038/nrg.2016.104 538:Theoretical ecology 173:(45): 18488–18492. 61:disappear from the 107:Lynch, M. (2010). 34: 480:(12): 3311–3316. 421:(16): 7160–7164. 390:978-0-89054-452-5 320:(12): 3136–3138. 51:natural selection 47:functional traits 43:genetic variation 545: 518: 517: 507: 489: 465: 459: 458: 448: 430: 406: 400: 399: 398: 397: 364: 358: 357: 347: 329: 305: 299: 298: 296: 295: 280: 274: 273: 225: 219: 218: 208: 182: 158: 147: 146: 136: 104: 553: 552: 548: 547: 546: 544: 543: 542: 523: 522: 521: 467: 466: 462: 408: 407: 403: 395: 393: 391: 366: 365: 361: 307: 306: 302: 293: 291: 282: 281: 277: 240:(11): 704–714. 227: 226: 222: 160: 159: 150: 106: 105: 101: 97: 88: 39: 12: 11: 5: 551: 549: 541: 540: 535: 525: 524: 520: 519: 460: 401: 389: 359: 300: 275: 220: 148: 119:(8): 345–352. 98: 96: 93: 87: 84: 67:mutation rates 38: 35: 13: 10: 9: 6: 4: 3: 2: 550: 539: 536: 534: 531: 530: 528: 515: 511: 506: 501: 497: 493: 488: 483: 479: 475: 471: 464: 461: 456: 452: 447: 442: 438: 434: 429: 424: 420: 416: 412: 405: 402: 392: 386: 382: 378: 374: 370: 363: 360: 355: 351: 346: 341: 337: 333: 328: 323: 319: 315: 311: 304: 301: 290: 286: 279: 276: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 224: 221: 216: 212: 207: 202: 198: 194: 190: 186: 181: 176: 172: 168: 164: 157: 155: 153: 149: 144: 140: 135: 130: 126: 122: 118: 114: 110: 103: 100: 94: 92: 85: 83: 81: 77: 72: 68: 64: 60: 56: 55:genetic drift 52: 48: 44: 36: 30: 26: 23: 22:Michael Lynch 19: 477: 473: 463: 418: 414: 404: 394:, retrieved 372: 362: 317: 313: 303: 292:. Retrieved 288: 278: 237: 233: 223: 170: 166: 116: 113:Trends Genet 112: 102: 89: 40: 17: 15: 53:and random 37:Description 533:Hypotheses 527:Categories 396:2021-09-23 294:2021-09-23 95:References 496:0027-8424 437:0027-8424 336:0027-8424 254:1471-0064 189:0027-8424 71:adaptable 63:gene pool 514:26884158 354:26966235 289:Sandwalk 262:27739533 215:23077252 197:41829939 143:20594608 505:4812759 455:1831267 345:4812742 270:5561271 206:3494944 134:2910838 59:fitness 512:  502:  494:  453:  443:  435:  387:  352:  342:  334:  268:  260:  252:  213:  203:  195:  187:  141:  131:  446:52253 266:S2CID 193:JSTOR 76:fixed 510:PMID 492:ISSN 451:PMID 433:ISSN 385:ISBN 350:PMID 332:ISSN 258:PMID 250:ISSN 211:PMID 185:ISSN 139:PMID 16:The 500:PMC 482:doi 478:113 441:PMC 423:doi 377:doi 340:PMC 322:doi 318:113 242:doi 201:PMC 175:doi 171:109 129:PMC 121:doi 529:: 508:. 498:. 490:. 476:. 472:. 449:. 439:. 431:. 419:88 417:. 413:. 383:, 371:, 348:. 338:. 330:. 316:. 312:. 287:. 264:. 256:. 248:. 238:17 236:. 232:. 209:. 199:. 191:. 183:. 169:. 165:. 151:^ 137:. 127:. 117:26 115:. 111:. 516:. 484:: 457:. 425:: 379:: 356:. 324:: 297:. 272:. 244:: 217:. 177:: 145:. 123::

Index

Michael Lynch

genetic variation
functional traits
natural selection
genetic drift
fitness
gene pool
mutation rates
adaptable
fixed
directional selection
"Evolution of the mutation rate"
doi
10.1016/j.tig.2010.05.003
PMC
2910838
PMID
20594608



"Drift-barrier hypothesis and mutation-rate evolution"
doi
10.1073/pnas.1216223109
ISSN
0027-8424
JSTOR
41829939
PMC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑