Knowledge (XXG)

Euglena gracilis

Source đź“ť

46: 258: 869: 363:
surrounded by four envelopes. The two inner ones are derived from the inner and outer chloroplast envelopes of the primary plastid of the alga that was taken up during the symbiotic event. The two outermost are derived from the plasma membrane of the alga (third) and the phagosome of the host (fourth).
362:
The plastids contain three membranes. These membranes are an evolutionary vestige of the secondary endosymbiotic event that occurred between a phagotrophic eukaryovorous euglenid and a Pyramimonas-related green alga. The plastids of Euglena are unusual since most secondary plastids are
325:
The morphology is characterized by a spindle-shaped cell with a length ranging from 40 to 150 micrometers. The cell contains a pellicle which is a flexible outer covering made up of proteinaceous strips called pellicular strips. This pellicle provides shape and structure to the cell. The movement of
244:
was discovered as an effective bioindicator for phenol pollution in freshwater ecosystems and drainage. Their brief generating duration and particular biological reactions make it optimal for measuring phenol concentrations in the natural environment. The reported morphological abnormalities and
334:
contains a light-sensitive eyespot, or stigma, which enables it to exhibit phototaxis by moving towards light sources for photosynthesis. The cell also possesses a contractile vacuole responsible for osmoregulation, helping maintain proper water balance within the cell.
33: 375:
production due to their high lipid content. Its lipids may be suitable for biodiesel production due to their saturation, such as fatty acyl-CoA reductase and wax synthase. These ratios vary on environmental and cultivation conditions.
350:, serving as a reserve carbohydrate for energy storage. Structurally, paramylon is a linear β-1,3-glucan, distinct from the storage polysaccharide starch of plants and some species of 628:
O'Neill, Ellis C.; Trick, Martin; Hill, Lionel; Rejzek, Martin; Dusi, Renata G.; Hamilton, Christopher J.; Zimba, Paul V.; Henrissat, Bernard; Field, Robert A. (2015).
203:. It has a highly flexible cell surface, allowing it to change shape from a thin cell up to 100 ÎĽm long to a sphere of approximately 20 ÎĽm. Each cell has two 330:
is primarily achieved by its flagellum that emerges from a flagellar pocket. It has forward and backwards movement, as well as changes in its direction. Additionally,
249:
as a bioindicator can determine the level of phenol exposure in marine ecosystems and adopt appropriate mitigation actions to protect water quality and biodiversity.
982: 1021: 563:
Montegut-Felkner, Ann E.; Triemer, Richard E. (1997). "Phylogenetic Relationships of Selected Euglenoid Genera Based on Morphological and Molecular Data".
956: 995: 690: 419:: Evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya" 508:
Lukáčová, Alexandra; Lihanová, Diana; Beck, Terézia; Alberty, Roman; Vešelényiová, Dominika; Krajčovič, Juraj; Vesteg, Matej (2023-08-12).
781: 1057: 1090: 1008: 1000: 1085: 873: 245:
unusual cell division reveal important information about the biological impacts of phenol on marine organisms. Using
1026: 234:, and the relationship of molecular structure to the biological function of subcellular particles, among others. 467: 45: 885: 674: 283: 143: 1062: 1036: 930: 572: 175: 922: 389: 606: 588: 393: 40: 987: 846: 759: 741: 686: 655: 535: 487: 448: 836: 826: 749: 731: 645: 634:
reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry"
580: 543: 525: 479: 438: 430: 1044: 314: 714:
Gissibl, Alexander; Sun, Angela; Care, Andrew; Nevalainen, Helena; Sunna, Anwar (2019).
576: 548: 509: 257: 841: 810: 754: 715: 443: 414: 231: 227: 220: 196: 90: 1079: 584: 483: 592: 310: 200: 1013: 969: 188: 159: 110: 32: 268: 100: 67: 908: 831: 745: 736: 539: 503: 501: 491: 943: 917: 372: 343: 192: 57: 850: 815:
and Its Industrial Contribution to Sustainable Development Goals: A Review"
763: 659: 468:"Euglena: An Experimental Organism for Biochemical and Biophysical Studies" 452: 1049: 868: 902: 530: 434: 212: 208: 207:, only one of which emerges from the flagellar pocket (reservoir) in the 204: 77: 510:"The Influence of Phenol on the Growth, Morphology and Cell Division of 961: 650: 629: 183: 120: 974: 879: 673:
Barsanti, Laura; Gualtieri, Paolo (2020-01-01), Konur, Ozcan (ed.),
948: 256: 351: 178: 935: 883: 415:"Unusual features of fibrillarin cDNA and gene structure in 413:
Russell, A. G.; Watanabe, Y; Charette, JM; Gray, MW (2005).
223:, particularly for studying cell biology and biochemistry. 809:
Harada R, Nomura T, Yamada K, Mochida K, Suzuki K (2020).
286:
to both, although a later molecular analysis showed that
211:
of the cell, and can move by swimming, or by so-called
472:
JAMA: The Journal of the American Medical Association
309:
has many unclassified genes which can make complex
892: 683:Handbook of Algal Science, Technology and Medicine 219:has been used extensively in the laboratory as a 371:Microalgae are considered a possible source for 238:is the most studied member of the Euglenaceae. 392:to produce a flour used to manufacture various 819:Frontiers in Bioengineering and Biotechnology 724:Frontiers in Bioengineering and Biotechnology 8: 346:is a unique storage polysaccharide found in 294:than to certain other species recognized as 226:Other areas of their use include studies of 267:A morphological and molecular study of the 880: 31: 20: 840: 830: 775: 773: 753: 735: 649: 547: 529: 442: 358:The origin of the middle plastid membrane 16:Species of single-celled Eukaryote algae 405: 709: 707: 7: 1037:8c6c7f31-5f59-4194-80ea-d127c964bd9f 811:"Genetic Engineering Strategies for 786:s Middle Plastid Envelope Membrane" 466:Wacker, Warren E. C. (1962-09-29). 685:, Academic Press, pp. 61–70, 275:in close kinship with the species 14: 867: 585:10.1111/j.0022-3646.1997.00512.x 484:10.1001/jama.1962.03050390052015 44: 782:"On the Inside: The Origins of 609:. ScienceDaily. August 14, 2015 780:Minorsky, Peter (2020-12-10). 1: 720:: Synthesis and Applications" 290:was more closely related to 607:"The potential in your pond" 305:was sequenced, showing that 174:is a freshwater species of 1107: 396:-rich, non-animal foods. 149: 142: 41:Scientific classification 39: 30: 23: 832:10.3389/fbioe.2020.00790 737:10.3389/fbioe.2019.00108 675:"Chapter 4 - Anatomy of 630:"The transcriptome of 423:Nucleic Acids Research 390:genetically engineered 264: 301:The transcriptome of 281:Peranema trichophorum 260: 1091:Morphology (biology) 876:at Wikimedia Commons 638:Molecular BioSystems 565:Journal of Phycology 531:10.3390/life13081734 524:(8). MDPI AG: 1734. 213:"euglenoid" movement 577:1997JPcgy..33..512M 187:. It has secondary 1086:Euglenozoa species 716:"Bioproducts From 651:10.1039/C5MB00319A 435:10.1093/nar/gki574 277:Khawkinea quartana 265: 1073: 1072: 886:Taxon identifiers 872:Media related to 784:Euglena gracilis' 692:978-0-12-818305-2 215:across surfaces. 167: 166: 1098: 1066: 1065: 1053: 1052: 1040: 1039: 1030: 1029: 1017: 1016: 1014:NHMSYS0000602614 1004: 1003: 991: 990: 978: 977: 965: 964: 952: 951: 939: 938: 926: 925: 913: 912: 911: 894:Euglena gracilis 881: 874:Euglena gracilis 871: 855: 854: 844: 834: 813:Euglena gracilis 806: 800: 799: 797: 796: 777: 768: 767: 757: 739: 718:Euglena gracilis 711: 702: 701: 700: 699: 677:Euglena gracilis 670: 664: 663: 653: 632:Euglena gracilis 625: 619: 618: 616: 614: 603: 597: 596: 560: 554: 553: 551: 533: 512:Euglena gracilis 505: 496: 495: 463: 457: 456: 446: 417:Euglena gracilis 410: 386:Euglena gracilis 348:Euglena gracilis 315:natural products 262:Euglena gracilis 236:Euglena gracilis 195:able to feed by 171:Euglena gracilis 155: 153:Euglena gracilis 135:E. gracilis 49: 48: 35: 25:Euglena gracilis 21: 1106: 1105: 1101: 1100: 1099: 1097: 1096: 1095: 1076: 1075: 1074: 1069: 1061: 1056: 1048: 1045:Observation.org 1043: 1035: 1033: 1025: 1020: 1012: 1007: 999: 994: 986: 981: 973: 968: 960: 955: 947: 942: 934: 929: 921: 916: 907: 906: 901: 888: 864: 859: 858: 808: 807: 803: 794: 792: 779: 778: 771: 713: 712: 705: 697: 695: 693: 672: 671: 667: 644:(10): 2808–21. 627: 626: 622: 612: 610: 605: 604: 600: 562: 561: 557: 507: 506: 499: 465: 464: 460: 412: 411: 407: 402: 382: 369: 360: 341: 323: 255: 163: 157: 151: 138: 43: 17: 12: 11: 5: 1104: 1102: 1094: 1093: 1088: 1078: 1077: 1071: 1070: 1068: 1067: 1054: 1041: 1031: 1018: 1005: 992: 979: 966: 953: 940: 927: 914: 898: 896: 890: 889: 884: 878: 877: 863: 862:External links 860: 857: 856: 801: 769: 703: 691: 665: 620: 598: 555: 497: 458: 429:(9): 2781–91. 404: 403: 401: 398: 381: 378: 368: 365: 359: 356: 340: 339:Energy storage 337: 322: 319: 254: 251: 232:photoreception 228:photosynthesis 221:model organism 197:photosynthesis 165: 164: 158: 147: 146: 140: 139: 132: 130: 126: 125: 118: 114: 113: 108: 104: 103: 98: 94: 93: 91:Euglenophyceae 88: 81: 80: 75: 71: 70: 65: 61: 60: 55: 51: 50: 37: 36: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 1103: 1092: 1089: 1087: 1084: 1083: 1081: 1064: 1059: 1055: 1051: 1046: 1042: 1038: 1032: 1028: 1023: 1019: 1015: 1010: 1006: 1002: 997: 993: 989: 984: 980: 976: 971: 967: 963: 958: 954: 950: 945: 941: 937: 932: 928: 924: 919: 915: 910: 904: 900: 899: 897: 895: 891: 887: 882: 875: 870: 866: 865: 861: 852: 848: 843: 838: 833: 828: 824: 820: 816: 814: 805: 802: 791: 787: 785: 776: 774: 770: 765: 761: 756: 751: 747: 743: 738: 733: 729: 725: 721: 719: 710: 708: 704: 694: 688: 684: 680: 678: 669: 666: 661: 657: 652: 647: 643: 639: 635: 633: 624: 621: 608: 602: 599: 594: 590: 586: 582: 578: 574: 570: 566: 559: 556: 550: 545: 541: 537: 532: 527: 523: 519: 515: 513: 504: 502: 498: 493: 489: 485: 481: 477: 473: 469: 462: 459: 454: 450: 445: 440: 436: 432: 428: 424: 420: 418: 409: 406: 399: 397: 395: 391: 387: 384:In industry, 379: 377: 374: 366: 364: 357: 355: 353: 349: 345: 338: 336: 333: 329: 320: 318: 316: 312: 311:carbohydrates 308: 304: 299: 297: 293: 292:Astasia longa 289: 285: 282: 278: 274: 270: 263: 259: 252: 250: 248: 243: 239: 237: 233: 229: 224: 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 185: 181:in the genus 180: 177: 176:single-celled 173: 172: 161: 156: 154: 148: 145: 144:Binomial name 141: 137: 136: 131: 128: 127: 124: 123: 119: 116: 115: 112: 109: 106: 105: 102: 99: 96: 95: 92: 89: 86: 83: 82: 79: 76: 73: 72: 69: 66: 63: 62: 59: 56: 53: 52: 47: 42: 38: 34: 29: 26: 22: 19: 893: 822: 818: 812: 804: 793:. Retrieved 789: 783: 727: 723: 717: 696:, retrieved 682: 676: 668: 641: 637: 631: 623: 613:December 14, 611:. Retrieved 601: 571:(3): 512–9. 568: 564: 558: 521: 517: 511: 478:(13): 1150. 475: 471: 461: 426: 422: 416: 408: 385: 383: 370: 361: 347: 342: 331: 327: 324: 306: 302: 300: 295: 291: 287: 280: 276: 272: 266: 261: 246: 241: 240: 235: 225: 216: 201:phagocytosis 189:chloroplasts 182: 170: 169: 168: 152: 150: 134: 133: 121: 84: 24: 18: 970:iNaturalist 332:E. gracilis 328:E. gracilis 307:E. gracilis 303:E. gracilis 288:E. gracilis 273:E. gracilis 247:E. gracilis 242:E. gracilis 217:E. gracilis 191:, and is a 111:Euglenaceae 1080:Categories 795:2023-12-15 698:2023-12-15 400:References 321:Morphology 269:Euglenozoa 101:Euglenales 68:Euglenozoa 918:AlgaeBase 746:2296-4185 540:2075-1729 492:0098-7484 373:biodiesel 344:Paramylon 193:mixotroph 129:Species: 78:Euglenida 58:Eukaryota 988:11225822 903:Wikidata 851:32760709 764:31157220 660:26289754 593:83579360 549:10455851 453:15894796 367:Biofuels 253:Taxonomy 209:anterior 205:flagella 107:Family: 64:Phylum: 54:Domain: 962:7465722 909:Q309852 842:7371780 825:: 790. 790:Plantae 755:6530250 573:Bibcode 444:1126904 394:protein 380:As food 296:Euglena 279:, with 184:Euglena 122:Euglena 117:Genus: 97:Order: 74:Class: 1063:163460 1050:192709 1034:NZOR: 975:506181 949:EUGLGR 936:918864 849:  839:  762:  752:  744:  689:  658:  591:  546:  538:  490:  451:  441:  162:, 1883 1058:WoRMS 983:IRMNG 923:30510 589:S2CID 284:basal 160:Klebs 85:Clade 1027:3039 1022:NCBI 1001:9655 996:ITIS 957:GBIF 944:EPPO 847:PMID 760:PMID 742:ISSN 687:ISBN 656:PMID 615:2023 536:ISSN 518:Life 488:ISSN 449:PMID 352:alga 326:the 313:and 271:put 179:alga 1009:NBN 931:EoL 837:PMC 827:doi 750:PMC 732:doi 646:doi 581:doi 544:PMC 526:doi 480:doi 476:181 439:PMC 431:doi 388:is 298:. 199:or 1082:: 1060:: 1047:: 1024:: 1011:: 998:: 985:: 972:: 959:: 946:: 933:: 920:: 905:: 845:. 835:. 821:. 817:. 788:. 772:^ 758:. 748:. 740:. 730:. 726:. 722:. 706:^ 681:, 654:. 642:11 640:. 636:. 587:. 579:. 569:33 567:. 542:. 534:. 522:13 520:. 516:. 500:^ 486:. 474:. 470:. 447:. 437:. 427:33 425:. 421:. 354:. 317:. 230:, 87:: 853:. 829:: 823:8 798:. 766:. 734:: 728:7 679:" 662:. 648:: 617:. 595:. 583:: 575:: 552:. 528:: 514:" 494:. 482:: 455:. 433::

Index


Scientific classification
Edit this classification
Eukaryota
Euglenozoa
Euglenida
Euglenophyceae
Euglenales
Euglenaceae
Euglena
Binomial name
Klebs
single-celled
alga
Euglena
chloroplasts
mixotroph
photosynthesis
phagocytosis
flagella
anterior
"euglenoid" movement
model organism
photosynthesis
photoreception

Euglenozoa
basal
carbohydrates
natural products

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑