Knowledge (XXG)

Expander cycle

Source 📝

108: 475: 462: 436: 423: 1072: 20: 1890: 488: 449: 514: 501: 216:
gas-generators are in practice miniature rocket engines, with all the complexity that implies. Blocking even a small part of a gas generator can lead to a hot spot, which can cause violent loss of the engine. Using the engine bell as a 'gas generator' also makes it very tolerant of fuel contamination because of the wider fuel flow channels used.
49:(70,000 lbf) of thrust, there is no longer enough nozzle area to heat enough fuel to drive the turbines and hence the fuel pumps. Higher thrust levels can be achieved using a bypass expander cycle where a portion of the fuel bypasses the turbine and or thrust chamber cooling passages and goes directly to the main chamber injector. Non-toroidal 215:
engineers were worried that insulation foam mounted on the inside of the tank might break off and damage the engine. They tested this by putting loose foam in a fuel tank and running it through the engine. The RL10 chewed it up without problems or noticeable degradation in performance. Conventional
222:
Because a bell-type expander-cycle engine is thrust limited, it can easily be designed to withstand its maximum thrust conditions. In other engine types, a stuck fuel valve or similar problem can lead to engine thrust spiraling out of control due to unintended feedback systems. Other engine types
115:
This operational cycle is a modification of the traditional expander cycle. In the bleed (or open) cycle, instead of routing all of the heated propellant through the turbine and sending it back to be combusted, only a small portion of the heated propellant is used to drive the turbine and is then
38:. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase. The now heated and gaseous fuel then powers the turbine that drives the engine's fuel and oxidizer pumps before being injected into the combustion chamber and burned. 1070:, Greene, William D., "Dual expander cycle rocket engine with an intermediate, closed-cycle heat exchanger", issued 2008-09-02, assigned to The United States of America as represented by the Administrator of the National Aeronautics and Space Administration 151:. The use of hot gases of the same chemistry as the liquid for the turbine and pump side of the turbopumps eliminates the need for purges and some failure modes. Additionally, when the density of the fuel and oxidizer is significantly different, as it is in the 53:
engines are not subject to the limitations from the square-cube law because the engine's linear shape does not scale isometrically: the fuel flow and nozzle area scale linearly with the engine's width. All expander cycle engines need to use a
45:. When a bell-shaped nozzle is scaled, the nozzle surface area with which to heat the fuel increases as the square of the radius, but the volume of fuel to be heated increases as the cube of the radius. Thus beyond approximately 300 116:
bled off, being vented overboard without going through the combustion chamber. The other portion is injected into the combustion chamber. Bleeding off the turbine exhaust allows for a higher turbopump efficiency by decreasing
162:
case, the optimal turbopump speeds differ so much that they need a gearbox between the fuel and oxidizer pumps. The use of dual expander cycle, with separate turbines, eliminates this failure-prone piece of equipment.
1018: 120:
and maximizing the pressure drop through the turbine. Compared with a standard expander cycle, this allows higher engine thrust at the cost of efficiency by dumping the turbine exhaust.
197:
After they have turned gaseous, the propellants are usually near room temperature, and do very little or no damage to the turbine, allowing the engine to be reusable. In contrast
353: 233:, pump-fed engines and hence, expander cycle engines have higher combustion chamber pressures. Increased combustion chamber pressures allow for a reduced throat area A 1224: 1926: 1620: 1738: 81:
of some kind to start the turbine and run the engine until the heat input from the thrust chamber and nozzle skirt increases as the chamber pressure builds up.
1037: 1359: 223:
require complex mechanical or electronic controllers to ensure this does not happen. Expander cycles are by design incapable of malfunctioning that way.
912: 1636: 1197: 2088: 956: 23:
Expander rocket cycle. Expander rocket engine (closed cycle). Heat from the nozzle and combustion chamber powers the fuel and oxidizer pumps.
874: 2248: 1217: 1090: 1919: 1541: 989: 2154: 1615: 1031: 286: 144: 2238: 202: 140: 2192: 2243: 1641: 1506: 1210: 1912: 1745: 1600: 1569: 1564: 167: 2139: 198: 1142:
WATANABE, DAIKI; MANAKO, HIROYASU; ONGA, TADAOKI; TAMURA, TAKASHI; IKEDA, KAZUFUMI; ISONO, MITSUNORI (December 2016).
927: 324: 312: 304: 2228: 2053: 1943: 2207: 1700: 1559: 182:. In the second case, you could use the fuel to cool the whole engine and a heat exchanger to boil the oxidizer. 1733: 1492: 1466: 1408: 1392: 1382: 1170: 819: 2162: 2233: 2187: 2172: 2118: 1789: 1762: 1717: 1705: 1685: 1451: 1413: 1387: 931: 824: 107: 1086: 1840: 1690: 1590: 1332: 2033: 1993: 1425: 1418: 1233: 1067: 384: 281: 92: 848: 2177: 1536: 1531: 1435: 1349: 179: 42: 2182: 2083: 1935: 1695: 1680: 1595: 1482: 1461: 1430: 829: 814: 348: 230: 32: 1889: 966: 2039: 1894: 1860: 1825: 1665: 320: 262: 85: 290: 270: 1143: 2202: 2024: 1855: 1810: 1710: 1610: 1312: 1286: 1027: 887: 174:
to boil the second fluid. In the first case, for example, you could use the fuel to cool the
2144: 1875: 1865: 1815: 1521: 1274: 640: 50: 995: 2167: 1487: 1291: 1257: 127:
was the world's first expander bleed cycle engine to be put into operational service. The
59: 1144:"Combustion Stability Improvement of LE-9 Engine for Booster Stage of H3 Launch Vehicle" 2134: 2093: 2063: 1998: 1988: 1983: 1958: 1820: 1755: 1296: 171: 55: 46: 19: 2222: 2197: 2113: 2068: 2029: 2003: 1973: 1968: 1830: 1750: 1605: 1574: 1354: 1344: 1339: 1262: 1252: 441: 428: 175: 78: 71: 911:
Atsumi, Masahiro; Yoshikawa, Kimito; Ogawara, Akira; Onga, Tadaoki (December 2011).
2103: 2098: 2073: 2019: 1978: 1835: 1794: 1767: 1526: 1322: 1317: 117: 41:
Because of the necessary phase change, the expander cycle is thrust limited by the
166:
Dual expander cycle can be implemented by either using separated sections on the
1850: 1845: 1651: 340: 333: 278: 2108: 1870: 1327: 1117: 170:
for the fuel and the oxidizer, or by using a single fluid for cooling and a
1020:
Rocket Propulsion Elements: an introduction to the engineering of rockets
152: 96: 1202: 1904: 1646: 1279: 962: 399: 327: 293: 111:
Expander bleed cycle. Expander open cycle (Also named coolant tap-off).
67: 63: 1269: 1247: 873:
Sippel, Martin; Imoto, Takayuki; Haeseler, Dietrich (July 23, 2003).
493: 454: 389: 299: 147:, the expander cycle can be implemented on two separate paths as the 35: 1174: 882:. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1118:"First Look Inside Blue Origin's New Glenn Factory w/ Jeff Bezos!" 1026:(Seventh ed.). John Wiley & Sons, Inc. pp. 221–227. 519: 506: 480: 467: 405: 394: 379: 336: 190:
The expander cycle has a number of advantages over other designs:
124: 106: 18: 883: 410: 373: 345: 315: 307: 273: 265: 212: 128: 88: 1908: 1206: 159: 143:
can be implemented separately on the oxidizer and fuel on the
131:
is the world's first first stage expander bleed cycle engine.
1017:
Sutton, George P.; Biblarz, Oscar (2000). "Section 6.6".
237:, and therefore, leads to a larger expansion ratio, e = A 1087:"Pratt & Whitney Space Propulsion – RL60 fact sheet" 249:, which ultimately leads to higher vacuum performance. 1062: 1060: 1058: 876:
Studies on Expander Bleed Cycle Engines for Launchers
2153: 2127: 2052: 2012: 1953: 1942: 1803: 1782: 1726: 1673: 1664: 1629: 1583: 1552: 1514: 1505: 1475: 1444: 1401: 1375: 1368: 1305: 1240: 205:
engines operate their turbines at high temperature.
354:Demonstration Rocket for Agile Cislunar Operations 84:Some examples of an expander cycle engine are the 361:Comparison of upper-stage expander-cycle engines 961:(in Japanese). Turbomachinery Society of Japan/ 994:(in Japanese). Nikkei Business. Archived from 258:Expander cycle engines include the following: 1920: 1218: 1112: 1110: 8: 1151:Mitsubishi Heavy Industries Technical Review 920:Mitsubishi Heavy Industries Technical Review 1950: 1927: 1913: 1905: 1670: 1511: 1372: 1225: 1211: 1203: 1637:Atmosphere-breathing electric propulsion 364: 2089:Homogeneous charge compression ignition 1171:"RL10 Engine | Aerojet Rocketdyne" 840: 77:Some expander cycle engines may use a 7: 988:Shinya Matsuura (February 2, 2021). 245:for an identical nozzle exit area A 1542:Field-emission electric propulsion 14: 1616:Microwave electrothermal thruster 1888: 913:"Development of the LE-X Engine" 581:1471 kN (330,000 lbf) 578:137.2 kN (30,840 lbf) 569:88.36 kN (19,860 lbf) 512: 499: 486: 473: 460: 447: 434: 421: 575:68.6 kN (15,400 lbf) 563:765 kN (172,000 lbf) 178:, and the oxidizer to cool the 1746:Pulsed nuclear thermal rocket‎ 1642:High Power Electric Propulsion 991:H3ロケットの主エンジン「LE-9」熱効率向上で世界初に挑戦 572:250 kN (56,200 lbf) 566:180 kN (40,000 lbf) 560:110 kN (25,000 lbf) 356:(DRACO) nuclear thermal engine 211:During the development of the 16:Rocket engine operation method 1: 1601:Helicon double-layer thruster 1570:Electrodeless plasma thruster 1565:Magnetoplasmadynamic thruster 965:. p. 10. Archived from 955:Akira Konno (October 1993). 1994:Stirling (pseudo/adiabatic) 928:Mitsubishi Heavy Industries 313:Mitsubishi Heavy Industries 305:Mitsubishi Heavy Industries 168:regenerative cooling system 2265: 2249:Engineering thermodynamics 1068:US patent 7,418,814 B1 481:People's Republic of China 468:People's Republic of China 139:In a similar way that the 1886: 1560:Pulsed inductive thruster 226:Higher vacuum performance 1734:Nuclear pulse propulsion 1493:Electric-pump-fed engine 1393:Hybrid-propellant rocket 1383:Liquid-propellant rocket 990: 957: 820:Combustion tap-off cycle 70:that easily reaches its 2239:Rocket engines by cycle 1790:Beam-powered propulsion 1763:Fission-fragment rocket 1718:Nuclear photonic rocket 1686:Nuclear electric rocket 1452:Staged combustion cycle 1388:Solid-propellant rocket 958:わが国の液体ロケットエンジンの現状と今後の展望 930:: 36–43. Archived from 825:Staged combustion cycle 677:Chamber pressure (MPa) 1841:Non-rocket spacelaunch 1691:Nuclear thermal rocket 1591:Pulsed plasma thruster 547:Expander bleed cycle, 112: 31:is a power cycle of a 24: 2244:Spacecraft propulsion 1507:Electrical propulsion 1234:Spacecraft propulsion 552:Expander bleed cycle 532:Expander bleed cycle 110: 22: 2178:Regenerative cooling 2056:combustion / thermal 1955:Without phase change 1946:combustion / thermal 1936:Thermodynamic cycles 1739:Antimatter-catalyzed 1537:Hall-effect thruster 1350:Solar thermal rocket 103:Expander bleed cycle 1681:Direct Fusion Drive 1596:Vacuum arc thruster 1483:Pressure-fed engine 1462:Gas-generator cycle 1369:Chemical propulsion 1306:Physical propulsion 1198:Rocket power cycles 998:on January 24, 2022 830:Pressure-fed engine 815:Gas-generator cycle 367: 291:Pratt & Whitney 271:Pratt & Whitney 231:pressure-fed engine 149:dual expander cycle 33:bipropellant rocket 1895:Spaceflight portal 1861:Reactionless drive 1826:Aerogravity assist 1666:Nuclear propulsion 417:Country of origin 365: 321:Aerojet Rocketdyne 263:Aerojet Rocketdyne 176:combustion chamber 113: 86:Aerojet Rocketdyne 25: 2229:Rocket propulsion 2216: 2215: 2193:Vapor-compression 2119:Staged combustion 2048: 2047: 2013:With phase change 1902: 1901: 1856:Atmospheric entry 1811:Orbital mechanics 1778: 1777: 1660: 1659: 1611:Resistojet rocket 1501: 1500: 1476:Intake mechanisms 1409:Liquid propellant 1313:Cold gas thruster 806: 805: 549:chamber expander 203:staged combustion 141:staged combustion 2256: 2188:Vapor absorption 1951: 1929: 1922: 1915: 1906: 1892: 1876:Alcubierre drive 1866:Field propulsion 1816:Orbital maneuver 1804:Related concepts 1671: 1522:Colloid thruster 1512: 1373: 1275:Specific impulse 1227: 1220: 1213: 1204: 1186: 1185: 1183: 1182: 1173:. Archived from 1167: 1161: 1160: 1158: 1157: 1148: 1139: 1133: 1132: 1130: 1128: 1114: 1105: 1104: 1102: 1101: 1095: 1089:. Archived from 1083: 1077: 1076: 1075: 1071: 1064: 1053: 1052: 1050: 1048: 1042: 1036:. Archived from 1025: 1014: 1008: 1007: 1005: 1003: 985: 979: 978: 976: 974: 952: 946: 945: 943: 942: 936: 917: 908: 902: 901: 899: 898: 892: 886:. Archived from 881: 870: 864: 863: 861: 859: 845: 518: 516: 515: 505: 503: 502: 492: 490: 489: 479: 477: 476: 466: 464: 463: 453: 451: 450: 440: 438: 437: 427: 425: 424: 368: 125:Mitsubishi LE-5A 2264: 2263: 2259: 2258: 2257: 2255: 2254: 2253: 2219: 2218: 2217: 2212: 2149: 2123: 2055: 2044: 2034:Organic Rankine 2008: 1962: 1959:hot air engines 1956: 1945: 1938: 1933: 1903: 1898: 1882: 1799: 1774: 1722: 1656: 1625: 1579: 1553:Electromagnetic 1548: 1497: 1488:Pump-fed engine 1471: 1440: 1397: 1364: 1301: 1292:Rocket equation 1258:Reaction engine 1236: 1231: 1194: 1189: 1180: 1178: 1169: 1168: 1164: 1155: 1153: 1146: 1141: 1140: 1136: 1126: 1124: 1116: 1115: 1108: 1099: 1097: 1093: 1085: 1084: 1080: 1073: 1066: 1065: 1056: 1046: 1044: 1040: 1034: 1023: 1016: 1015: 1011: 1001: 999: 992: 987: 986: 982: 972: 970: 969:on May 28, 2021 959: 954: 953: 949: 940: 938: 934: 915: 910: 909: 905: 896: 894: 890: 879: 872: 871: 867: 857: 855: 847: 846: 842: 838: 811: 708: 646: 557:Thrust, vacuum 548: 513: 511: 500: 498: 487: 485: 474: 472: 461: 459: 448: 446: 435: 433: 422: 420: 366:Specifications 363: 256: 248: 244: 240: 236: 219:Inherent safety 194:Low temperature 188: 156: 145:full flow cycle 137: 129:Mitsubishi LE-9 105: 60:liquid hydrogen 43:square–cube law 17: 12: 11: 5: 2262: 2260: 2252: 2251: 2246: 2241: 2236: 2234:Rocket engines 2231: 2221: 2220: 2214: 2213: 2211: 2210: 2205: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2165: 2159: 2157: 2151: 2150: 2148: 2147: 2142: 2137: 2131: 2129: 2125: 2124: 2122: 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2060: 2058: 2050: 2049: 2046: 2045: 2043: 2042: 2037: 2027: 2022: 2016: 2014: 2010: 2009: 2007: 2006: 2001: 1996: 1991: 1986: 1981: 1976: 1971: 1965: 1963: 1954: 1948: 1940: 1939: 1934: 1932: 1931: 1924: 1917: 1909: 1900: 1899: 1887: 1884: 1883: 1881: 1880: 1879: 1878: 1873: 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1821:Gravity assist 1818: 1813: 1807: 1805: 1801: 1800: 1798: 1797: 1792: 1786: 1784: 1783:External power 1780: 1779: 1776: 1775: 1773: 1772: 1771: 1770: 1760: 1759: 1758: 1756:Bussard ramjet 1748: 1743: 1742: 1741: 1730: 1728: 1724: 1723: 1721: 1720: 1715: 1714: 1713: 1708: 1703: 1698: 1688: 1683: 1677: 1675: 1668: 1662: 1661: 1658: 1657: 1655: 1654: 1649: 1644: 1639: 1633: 1631: 1627: 1626: 1624: 1623: 1618: 1613: 1608: 1603: 1598: 1593: 1587: 1585: 1584:Electrothermal 1581: 1580: 1578: 1577: 1572: 1567: 1562: 1556: 1554: 1550: 1549: 1547: 1546: 1545: 1544: 1539: 1534: 1524: 1518: 1516: 1509: 1503: 1502: 1499: 1498: 1496: 1495: 1490: 1485: 1479: 1477: 1473: 1472: 1470: 1469: 1464: 1459: 1457:Expander cycle 1454: 1448: 1446: 1442: 1441: 1439: 1438: 1433: 1428: 1426:Monopropellant 1423: 1422: 1421: 1416: 1405: 1403: 1399: 1398: 1396: 1395: 1390: 1385: 1379: 1377: 1370: 1366: 1365: 1363: 1362: 1357: 1352: 1347: 1342: 1337: 1336: 1335: 1325: 1320: 1315: 1309: 1307: 1303: 1302: 1300: 1299: 1297:Thermal rocket 1294: 1289: 1284: 1283: 1282: 1277: 1267: 1266: 1265: 1260: 1250: 1244: 1242: 1238: 1237: 1232: 1230: 1229: 1222: 1215: 1207: 1201: 1200: 1193: 1192:External links 1190: 1188: 1187: 1162: 1134: 1106: 1078: 1054: 1032: 1009: 980: 947: 903: 865: 839: 837: 834: 833: 832: 827: 822: 817: 810: 807: 804: 803: 800: 797: 795: 793: 790: 787: 785: 782: 781:Dry mass (kg) 778: 777: 774: 771: 768: 766: 764: 761: 759: 756: 752: 751: 749: 746: 744: 742: 740: 738: 736: 734: 730: 729: 727: 724: 722: 720: 717: 714: 712: 710: 706: 702: 701: 698: 695: 692: 689: 686: 683: 681: 678: 674: 673: 670: 667: 664: 661: 658: 655: 652: 649: 644: 637: 636: 633: 630: 628: 625: 622: 619: 617: 614: 610: 609: 606: 603: 601: 598: 595: 592: 590: 587: 586:Mixture ratio 583: 582: 579: 576: 573: 570: 567: 564: 561: 558: 554: 553: 550: 545: 542: 539: 536: 533: 530: 527: 523: 522: 509: 496: 483: 470: 457: 444: 431: 418: 414: 413: 408: 403: 397: 392: 387: 382: 377: 371: 362: 359: 358: 357: 351: 343: 331: 318: 310: 302: 296: 284: 276: 268: 255: 252: 251: 250: 246: 242: 238: 234: 229:Compared to a 227: 224: 220: 217: 209: 206: 195: 187: 184: 172:heat exchanger 154: 136: 133: 104: 101: 56:cryogenic fuel 29:expander cycle 15: 13: 10: 9: 6: 4: 3: 2: 2261: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2226: 2224: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2183:Transcritical 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2163:Hampson–Linde 2161: 2160: 2158: 2156: 2155:Refrigeration 2152: 2146: 2143: 2141: 2138: 2136: 2133: 2132: 2130: 2126: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2084:Gas-generator 2082: 2080: 2077: 2075: 2072: 2070: 2069:Brayton/Joule 2067: 2065: 2062: 2061: 2059: 2057: 2051: 2041: 2038: 2035: 2031: 2028: 2026: 2023: 2021: 2018: 2017: 2015: 2011: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1974:Brayton/Joule 1972: 1970: 1967: 1966: 1964: 1960: 1952: 1949: 1947: 1941: 1937: 1930: 1925: 1923: 1918: 1916: 1911: 1910: 1907: 1897: 1896: 1891: 1885: 1877: 1874: 1872: 1869: 1868: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1831:Oberth effect 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1808: 1806: 1802: 1796: 1793: 1791: 1788: 1787: 1785: 1781: 1769: 1766: 1765: 1764: 1761: 1757: 1754: 1753: 1752: 1751:Fusion rocket 1749: 1747: 1744: 1740: 1737: 1736: 1735: 1732: 1731: 1729: 1725: 1719: 1716: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1693: 1692: 1689: 1687: 1684: 1682: 1679: 1678: 1676: 1674:Closed system 1672: 1669: 1667: 1663: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1634: 1632: 1628: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1606:Arcjet rocket 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1588: 1586: 1582: 1576: 1575:Plasma magnet 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1557: 1555: 1551: 1543: 1540: 1538: 1535: 1533: 1530: 1529: 1528: 1525: 1523: 1520: 1519: 1517: 1515:Electrostatic 1513: 1510: 1508: 1504: 1494: 1491: 1489: 1486: 1484: 1481: 1480: 1478: 1474: 1468: 1467:Tap-off cycle 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1449: 1447: 1443: 1437: 1436:Tripropellant 1434: 1432: 1429: 1427: 1424: 1420: 1417: 1415: 1412: 1411: 1410: 1407: 1406: 1404: 1400: 1394: 1391: 1389: 1386: 1384: 1381: 1380: 1378: 1374: 1371: 1367: 1361: 1358: 1356: 1355:Photon rocket 1353: 1351: 1348: 1346: 1345:Magnetic sail 1343: 1341: 1340:Electric sail 1338: 1334: 1331: 1330: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1310: 1308: 1304: 1298: 1295: 1293: 1290: 1288: 1285: 1281: 1278: 1276: 1273: 1272: 1271: 1268: 1264: 1263:Reaction mass 1261: 1259: 1256: 1255: 1254: 1253:Rocket engine 1251: 1249: 1246: 1245: 1243: 1239: 1235: 1228: 1223: 1221: 1216: 1214: 1209: 1208: 1205: 1199: 1196: 1195: 1191: 1177:on 2017-04-30 1176: 1172: 1166: 1163: 1152: 1145: 1138: 1135: 1123: 1119: 1113: 1111: 1107: 1096:on 2012-03-28 1092: 1088: 1082: 1079: 1069: 1063: 1061: 1059: 1055: 1043:on 2016-01-19 1039: 1035: 1033:0-471-32642-9 1029: 1022: 1021: 1013: 1010: 997: 993: 984: 981: 968: 964: 960: 951: 948: 937:on 2015-12-24 933: 929: 925: 921: 914: 907: 904: 893:on 2016-03-03 889: 885: 878: 877: 869: 866: 854: 850: 844: 841: 835: 831: 828: 826: 823: 821: 818: 816: 813: 812: 808: 801: 798: 796: 794: 791: 788: 786: 783: 780: 779: 775: 772: 769: 767: 765: 762: 760: 757: 754: 753: 750: 747: 745: 743: 741: 739: 737: 735: 733:LOX TP (rpm) 732: 731: 728: 725: 723: 721: 718: 715: 713: 711: 704: 703: 699: 696: 693: 690: 687: 684: 682: 679: 676: 675: 671: 668: 665: 662: 659: 656: 653: 650: 648:, vacuum (s) 647: 643: 639: 638: 634: 631: 629: 626: 623: 620: 618: 615: 613:Nozzle ratio 612: 611: 607: 604: 602: 599: 596: 593: 591: 588: 585: 584: 580: 577: 574: 571: 568: 565: 562: 559: 556: 555: 551: 546: 543: 540: 537: 534: 531: 528: 525: 524: 521: 510: 508: 497: 495: 484: 482: 471: 469: 458: 456: 445: 443: 442:United States 432: 430: 429:United States 419: 416: 415: 412: 409: 407: 404: 401: 398: 396: 393: 391: 388: 386: 383: 381: 378: 375: 372: 370: 369: 360: 355: 352: 350: 347: 344: 342: 338: 335: 332: 329: 326: 322: 319: 317: 314: 311: 309: 306: 303: 301: 297: 295: 292: 288: 285: 283: 280: 277: 275: 272: 269: 267: 264: 261: 260: 259: 253: 232: 228: 225: 221: 218: 214: 210: 207: 204: 200: 199:gas-generator 196: 193: 192: 191: 185: 183: 181: 177: 173: 169: 164: 161: 157: 150: 146: 142: 135:Dual expander 134: 132: 130: 126: 121: 119: 109: 102: 100: 98: 94: 90: 87: 82: 80: 79:gas generator 75: 73: 72:boiling point 69: 65: 61: 57: 52: 48: 44: 39: 37: 34: 30: 21: 2078: 2040:Regenerative 1969:Bell Coleman 1893: 1836:Space launch 1768:Fission sail 1696:Radioisotope 1527:Ion thruster 1456: 1445:Power cycles 1431:Bipropellant 1323:Steam rocket 1318:Water rocket 1179:. Retrieved 1175:the original 1165: 1154:. Retrieved 1150: 1137: 1125:. Retrieved 1121: 1098:. Retrieved 1091:the original 1081: 1047:26 September 1045:. Retrieved 1038:the original 1019: 1012: 1000:. Retrieved 996:the original 983: 971:. Retrieved 967:the original 950: 939:. Retrieved 932:the original 923: 919: 906: 895:. Retrieved 888:the original 875: 868: 856:. Retrieved 852: 843: 641: 257: 189: 165: 148: 138: 122: 118:backpressure 114: 93:Vinci engine 83: 76: 66:, or liquid 40: 28: 26: 2208:Ionocaloric 2203:Vuilleumier 2025:Hygroscopic 1851:Aerocapture 1846:Aerobraking 1727:Open system 1711:"Lightbulb" 1652:Mass driver 1402:Propellants 1333:Diffractive 1002:January 23, 973:January 24, 858:21 February 853:www.esa.int 755:Length (m) 334:Blue Origin 279:ArianeGroup 2223:Categories 2173:Pulse tube 2145:Mixed/dual 1871:Warp drive 1701:Salt-water 1419:Hypergolic 1328:Solar sail 1181:2017-06-06 1156:2024-03-13 1100:2008-12-28 941:2016-09-25 897:2016-09-25 849:"Ariane 6" 836:References 308:LE-5A / 5B 186:Advantages 2168:Kleemenko 2054:Internal 1414:Cryogenic 1127:16 August 709:TP (rpm) 544:Expander 541:Expander 538:Expander 535:Expander 529:Expander 208:Tolerance 62:, liquid 51:aerospike 2135:Combined 2094:Humphrey 2079:Expander 2064:Atkinson 1999:Stoddard 1989:Stirling 1984:Ericsson 1944:External 1706:Gas core 1241:Concepts 809:See also 298:Chinese 97:Ariane 6 91:and the 58:such as 2198:Siemens 2114:Scuderi 2030:Rankine 1795:Tethers 1647:MagBeam 1532:Gridded 1287:Staging 1280:Delta-v 1122:YouTube 963:J-STAGE 748:18,000 726:52,000 719:98,180 716:65,000 400:RD-0146 330:(MB-60) 328:MARC-60 294:RD-0146 68:propane 64:methane 2104:Miller 2099:Lenoir 2074:Diesel 2020:Kalina 2004:Manson 1979:Carnot 1621:VASIMR 1270:Thrust 1248:Rocket 1074:  1030:  770:3.358 680:4.412 663:455.2 660:442.6 526:Cycle 517:  504:  494:Russia 491:  478:  465:  455:France 452:  439:  426:  390:YF-75D 323:& 300:YF-75D 289:& 180:nozzle 36:engine 2128:Mixed 1630:Other 1376:State 1147:(PDF) 1094:(PDF) 1041:(PDF) 1024:(PDF) 935:(PDF) 926:(4). 916:(PDF) 891:(PDF) 880:(PDF) 802:2400 773:2.79 758:4.14 700:10.0 697:3.58 589:5.88 520:Japan 507:Japan 406:LE-5B 395:YF-79 385:Vinci 380:BE-3U 337:BE-3U 282:Vinci 254:Usage 2140:HEHC 2109:Otto 1360:WINE 1129:2024 1049:2016 1028:ISBN 1004:2022 975:2022 884:AIAA 860:2017 799:285 792:265 789:280 784:277 776:3.8 763:4.2 694:5.9 691:7.0 688:4.1 685:6.1 672:426 669:447 666:470 657:457 654:445 651:462 632:110 627:160 621:240 616:280 608:5.9 600:6.0 597:6.0 594:5.8 411:LE-9 376:B-2 374:RL10 346:Avio 341:BE-7 339:and 316:LE-9 287:CADB 274:RL60 266:RL10 213:RL10 123:The 95:for 89:RL10 27:The 635:37 624:80 349:M10 325:MHI 201:or 160:LOX 2225:: 1149:. 1120:. 1109:^ 1057:^ 924:48 922:. 918:. 851:. 705:LH 645:sp 605:5 402:D 243:th 241:/A 235:th 99:. 74:. 47:kN 2036:) 2032:( 1961:) 1957:( 1928:e 1921:t 1914:v 1226:e 1219:t 1212:v 1184:. 1159:. 1131:. 1103:. 1051:. 1006:. 977:. 944:. 900:. 862:. 707:2 642:I 247:e 239:e 158:/ 155:2 153:H

Index


bipropellant rocket
engine
square–cube law
kN
aerospike
cryogenic fuel
liquid hydrogen
methane
propane
boiling point
gas generator
Aerojet Rocketdyne
RL10
Vinci engine
Ariane 6

backpressure
Mitsubishi LE-5A
Mitsubishi LE-9
staged combustion
full flow cycle
H2
LOX
regenerative cooling system
heat exchanger
combustion chamber
nozzle
gas-generator
staged combustion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.