Knowledge (XXG)

Expander cycle

Source 📝

119: 486: 473: 447: 434: 1083: 31: 1901: 499: 460: 525: 512: 227:
gas-generators are in practice miniature rocket engines, with all the complexity that implies. Blocking even a small part of a gas generator can lead to a hot spot, which can cause violent loss of the engine. Using the engine bell as a 'gas generator' also makes it very tolerant of fuel contamination because of the wider fuel flow channels used.
60:(70,000 lbf) of thrust, there is no longer enough nozzle area to heat enough fuel to drive the turbines and hence the fuel pumps. Higher thrust levels can be achieved using a bypass expander cycle where a portion of the fuel bypasses the turbine and or thrust chamber cooling passages and goes directly to the main chamber injector. Non-toroidal 226:
engineers were worried that insulation foam mounted on the inside of the tank might break off and damage the engine. They tested this by putting loose foam in a fuel tank and running it through the engine. The RL10 chewed it up without problems or noticeable degradation in performance. Conventional
233:
Because a bell-type expander-cycle engine is thrust limited, it can easily be designed to withstand its maximum thrust conditions. In other engine types, a stuck fuel valve or similar problem can lead to engine thrust spiraling out of control due to unintended feedback systems. Other engine types
126:
This operational cycle is a modification of the traditional expander cycle. In the bleed (or open) cycle, instead of routing all of the heated propellant through the turbine and sending it back to be combusted, only a small portion of the heated propellant is used to drive the turbine and is then
49:. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase. The now heated and gaseous fuel then powers the turbine that drives the engine's fuel and oxidizer pumps before being injected into the combustion chamber and burned. 1081:, Greene, William D., "Dual expander cycle rocket engine with an intermediate, closed-cycle heat exchanger", issued 2008-09-02, assigned to The United States of America as represented by the Administrator of the National Aeronautics and Space Administration 162:. The use of hot gases of the same chemistry as the liquid for the turbine and pump side of the turbopumps eliminates the need for purges and some failure modes. Additionally, when the density of the fuel and oxidizer is significantly different, as it is in the 64:
engines are not subject to the limitations from the square-cube law because the engine's linear shape does not scale isometrically: the fuel flow and nozzle area scale linearly with the engine's width. All expander cycle engines need to use a
56:. When a bell-shaped nozzle is scaled, the nozzle surface area with which to heat the fuel increases as the square of the radius, but the volume of fuel to be heated increases as the cube of the radius. Thus beyond approximately 300 127:
bled off, being vented overboard without going through the combustion chamber. The other portion is injected into the combustion chamber. Bleeding off the turbine exhaust allows for a higher turbopump efficiency by decreasing
173:
case, the optimal turbopump speeds differ so much that they need a gearbox between the fuel and oxidizer pumps. The use of dual expander cycle, with separate turbines, eliminates this failure-prone piece of equipment.
1029: 131:
and maximizing the pressure drop through the turbine. Compared with a standard expander cycle, this allows higher engine thrust at the cost of efficiency by dumping the turbine exhaust.
208:
After they have turned gaseous, the propellants are usually near room temperature, and do very little or no damage to the turbine, allowing the engine to be reusable. In contrast
364: 244:, pump-fed engines and hence, expander cycle engines have higher combustion chamber pressures. Increased combustion chamber pressures allow for a reduced throat area A 1235: 1937: 1631: 1749: 92:
of some kind to start the turbine and run the engine until the heat input from the thrust chamber and nozzle skirt increases as the chamber pressure builds up.
1048: 1370: 234:
require complex mechanical or electronic controllers to ensure this does not happen. Expander cycles are by design incapable of malfunctioning that way.
923: 1647: 1208: 2099: 967: 34:
Expander rocket cycle. Expander rocket engine (closed cycle). Heat from the nozzle and combustion chamber powers the fuel and oxidizer pumps.
885: 2259: 1228: 1101: 1930: 1552: 1000: 2165: 1626: 1042: 297: 155: 2249: 213: 151: 2203: 2254: 1652: 1517: 1221: 1923: 1756: 1611: 1580: 1575: 178: 2150: 209: 1153:
WATANABE, DAIKI; MANAKO, HIROYASU; ONGA, TADAOKI; TAMURA, TAKASHI; IKEDA, KAZUFUMI; ISONO, MITSUNORI (December 2016).
938: 335: 323: 315: 2239: 2064: 1954: 2218: 1711: 1570: 193:. In the second case, you could use the fuel to cool the whole engine and a heat exchanger to boil the oxidizer. 1744: 1503: 1477: 1419: 1403: 1393: 1181: 830: 2173: 2244: 2198: 2183: 2129: 1800: 1773: 1728: 1716: 1696: 1462: 1424: 1398: 942: 835: 118: 1097: 1851: 1701: 1601: 1343: 2044: 2004: 1436: 1429: 1244: 1078: 395: 292: 103: 859: 2188: 1547: 1542: 1446: 1360: 190: 53: 2193: 2094: 1946: 1706: 1691: 1606: 1493: 1472: 1441: 840: 825: 359: 241: 43: 1900: 977: 2050: 1905: 1871: 1836: 1676: 331: 273: 96: 301: 281: 1154: 2213: 2035: 1866: 1821: 1721: 1621: 1323: 1297: 1038: 898: 185:
to boil the second fluid. In the first case, for example, you could use the fuel to cool the
2155: 1886: 1876: 1826: 1532: 1285: 651: 61: 1006: 2178: 1498: 1302: 1268: 138:
was the world's first expander bleed cycle engine to be put into operational service. The
70: 1155:"Combustion Stability Improvement of LE-9 Engine for Booster Stage of H3 Launch Vehicle" 2145: 2104: 2074: 2009: 1999: 1994: 1969: 1831: 1766: 1307: 182: 66: 57: 17: 30: 2233: 2208: 2124: 2079: 2040: 2014: 1984: 1979: 1841: 1761: 1616: 1585: 1365: 1355: 1350: 1273: 1263: 452: 439: 186: 89: 82: 922:
Atsumi, Masahiro; Yoshikawa, Kimito; Ogawara, Akira; Onga, Tadaoki (December 2011).
2114: 2109: 2084: 2030: 1989: 1846: 1805: 1778: 1537: 1333: 1328: 128: 52:
Because of the necessary phase change, the expander cycle is thrust limited by the
177:
Dual expander cycle can be implemented by either using separated sections on the
1861: 1856: 1662: 351: 344: 289: 2119: 1881: 1338: 1128: 181:
for the fuel and the oxidizer, or by using a single fluid for cooling and a
1031:
Rocket Propulsion Elements: an introduction to the engineering of rockets
163: 107: 1213: 1915: 1657: 1290: 973: 410: 338: 304: 122:
Expander bleed cycle. Expander open cycle (Also named coolant tap-off).
78: 74: 1280: 1258: 884:
Sippel, Martin; Imoto, Takayuki; Haeseler, Dietrich (July 23, 2003).
504: 465: 400: 310: 158:, the expander cycle can be implemented on two separate paths as the 46: 1185: 893:. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1129:"First Look Inside Blue Origin's New Glenn Factory w/ Jeff Bezos!" 1037:(Seventh ed.). John Wiley & Sons, Inc. pp. 221–227. 530: 517: 491: 478: 416: 405: 390: 347: 201:
The expander cycle has a number of advantages over other designs:
135: 117: 29: 894: 421: 384: 356: 326: 318: 284: 276: 223: 139: 99: 1919: 1217: 170: 154:
can be implemented separately on the oxidizer and fuel on the
142:
is the world's first first stage expander bleed cycle engine.
1028:
Sutton, George P.; Biblarz, Oscar (2000). "Section 6.6".
248:, and therefore, leads to a larger expansion ratio, e = A 1098:"Pratt & Whitney Space Propulsion – RL60 fact sheet" 260:, which ultimately leads to higher vacuum performance. 1073: 1071: 1069: 887:
Studies on Expander Bleed Cycle Engines for Launchers
2164: 2138: 2063: 2023: 1964: 1953: 1814: 1793: 1737: 1684: 1675: 1640: 1594: 1563: 1525: 1516: 1486: 1455: 1412: 1386: 1379: 1316: 1251: 216:
engines operate their turbines at high temperature.
365:Demonstration Rocket for Agile Cislunar Operations 95:Some examples of an expander cycle engine are the 372:Comparison of upper-stage expander-cycle engines 972:(in Japanese). Turbomachinery Society of Japan/ 1005:(in Japanese). Nikkei Business. Archived from 269:Expander cycle engines include the following: 1931: 1229: 1123: 1121: 8: 1162:Mitsubishi Heavy Industries Technical Review 931:Mitsubishi Heavy Industries Technical Review 1961: 1938: 1924: 1916: 1681: 1522: 1383: 1236: 1222: 1214: 1648:Atmosphere-breathing electric propulsion 375: 2100:Homogeneous charge compression ignition 1182:"RL10 Engine | Aerojet Rocketdyne" 851: 88:Some expander cycle engines may use a 7: 999:Shinya Matsuura (February 2, 2021). 256:for an identical nozzle exit area A 1553:Field-emission electric propulsion 25: 1627:Microwave electrothermal thruster 1899: 924:"Development of the LE-X Engine" 592:1471 kN (330,000 lbf) 589:137.2 kN (30,840 lbf) 580:88.36 kN (19,860 lbf) 523: 510: 497: 484: 471: 458: 445: 432: 586:68.6 kN (15,400 lbf) 574:765 kN (172,000 lbf) 189:, and the oxidizer to cool the 1757:Pulsed nuclear thermal rocket‎ 1653:High Power Electric Propulsion 1002:H3ロケットの主エンジン「LE-9」熱効率向上で世界初に挑戦 583:250 kN (56,200 lbf) 577:180 kN (40,000 lbf) 571:110 kN (25,000 lbf) 367:(DRACO) nuclear thermal engine 222:During the development of the 27:Rocket engine operation method 1: 1612:Helicon double-layer thruster 1581:Electrodeless plasma thruster 1576:Magnetoplasmadynamic thruster 976:. p. 10. Archived from 966:Akira Konno (October 1993). 2005:Stirling (pseudo/adiabatic) 939:Mitsubishi Heavy Industries 324:Mitsubishi Heavy Industries 316:Mitsubishi Heavy Industries 179:regenerative cooling system 2276: 2260:Engineering thermodynamics 1079:US patent 7,418,814 B1 492:People's Republic of China 479:People's Republic of China 150:In a similar way that the 1897: 1571:Pulsed inductive thruster 237:Higher vacuum performance 1745:Nuclear pulse propulsion 1504:Electric-pump-fed engine 1404:Hybrid-propellant rocket 1394:Liquid-propellant rocket 1001: 968: 831:Combustion tap-off cycle 81:that easily reaches its 2250:Rocket engines by cycle 1801:Beam-powered propulsion 1774:Fission-fragment rocket 1729:Nuclear photonic rocket 1697:Nuclear electric rocket 1463:Staged combustion cycle 1399:Solid-propellant rocket 969:わが国の液体ロケットエンジンの現状と今後の展望 941:: 36–43. Archived from 836:Staged combustion cycle 688:Chamber pressure (MPa) 18:Expander cycle (rocket) 1852:Non-rocket spacelaunch 1702:Nuclear thermal rocket 1602:Pulsed plasma thruster 558:Expander bleed cycle, 123: 42:is a power cycle of a 35: 2255:Spacecraft propulsion 1518:Electrical propulsion 1245:Spacecraft propulsion 563:Expander bleed cycle 543:Expander bleed cycle 121: 33: 2189:Regenerative cooling 2067:combustion / thermal 1966:Without phase change 1957:combustion / thermal 1947:Thermodynamic cycles 1750:Antimatter-catalyzed 1548:Hall-effect thruster 1361:Solar thermal rocket 114:Expander bleed cycle 1692:Direct Fusion Drive 1607:Vacuum arc thruster 1494:Pressure-fed engine 1473:Gas-generator cycle 1380:Chemical propulsion 1317:Physical propulsion 1209:Rocket power cycles 1009:on January 24, 2022 841:Pressure-fed engine 826:Gas-generator cycle 378: 302:Pratt & Whitney 282:Pratt & Whitney 242:pressure-fed engine 160:dual expander cycle 44:bipropellant rocket 1906:Spaceflight portal 1872:Reactionless drive 1837:Aerogravity assist 1677:Nuclear propulsion 428:Country of origin 376: 332:Aerojet Rocketdyne 274:Aerojet Rocketdyne 187:combustion chamber 124: 97:Aerojet Rocketdyne 36: 2240:Rocket propulsion 2227: 2226: 2204:Vapor-compression 2130:Staged combustion 2059: 2058: 2024:With phase change 1913: 1912: 1867:Atmospheric entry 1822:Orbital mechanics 1789: 1788: 1671: 1670: 1622:Resistojet rocket 1512: 1511: 1487:Intake mechanisms 1420:Liquid propellant 1324:Cold gas thruster 817: 816: 560:chamber expander 214:staged combustion 152:staged combustion 16:(Redirected from 2267: 2199:Vapor absorption 1962: 1940: 1933: 1926: 1917: 1903: 1887:Alcubierre drive 1877:Field propulsion 1827:Orbital maneuver 1815:Related concepts 1682: 1533:Colloid thruster 1523: 1384: 1286:Specific impulse 1238: 1231: 1224: 1215: 1197: 1196: 1194: 1193: 1184:. Archived from 1178: 1172: 1171: 1169: 1168: 1159: 1150: 1144: 1143: 1141: 1139: 1125: 1116: 1115: 1113: 1112: 1106: 1100:. Archived from 1094: 1088: 1087: 1086: 1082: 1075: 1064: 1063: 1061: 1059: 1053: 1047:. Archived from 1036: 1025: 1019: 1018: 1016: 1014: 996: 990: 989: 987: 985: 963: 957: 956: 954: 953: 947: 928: 919: 913: 912: 910: 909: 903: 897:. Archived from 892: 881: 875: 874: 872: 870: 856: 529: 527: 526: 516: 514: 513: 503: 501: 500: 490: 488: 487: 477: 475: 474: 464: 462: 461: 451: 449: 448: 438: 436: 435: 379: 136:Mitsubishi LE-5A 21: 2275: 2274: 2270: 2269: 2268: 2266: 2265: 2264: 2230: 2229: 2228: 2223: 2160: 2134: 2066: 2055: 2045:Organic Rankine 2019: 1973: 1970:hot air engines 1967: 1956: 1949: 1944: 1914: 1909: 1893: 1810: 1785: 1733: 1667: 1636: 1590: 1564:Electromagnetic 1559: 1508: 1499:Pump-fed engine 1482: 1451: 1408: 1375: 1312: 1303:Rocket equation 1269:Reaction engine 1247: 1242: 1205: 1200: 1191: 1189: 1180: 1179: 1175: 1166: 1164: 1157: 1152: 1151: 1147: 1137: 1135: 1127: 1126: 1119: 1110: 1108: 1104: 1096: 1095: 1091: 1084: 1077: 1076: 1067: 1057: 1055: 1051: 1045: 1034: 1027: 1026: 1022: 1012: 1010: 1003: 998: 997: 993: 983: 981: 980:on May 28, 2021 970: 965: 964: 960: 951: 949: 945: 926: 921: 920: 916: 907: 905: 901: 890: 883: 882: 878: 868: 866: 858: 857: 853: 849: 822: 719: 657: 568:Thrust, vacuum 559: 524: 522: 511: 509: 498: 496: 485: 483: 472: 470: 459: 457: 446: 444: 433: 431: 377:Specifications 374: 267: 259: 255: 251: 247: 230:Inherent safety 205:Low temperature 199: 167: 156:full flow cycle 148: 140:Mitsubishi LE-9 116: 71:liquid hydrogen 54:square–cube law 28: 23: 22: 15: 12: 11: 5: 2273: 2271: 2263: 2262: 2257: 2252: 2247: 2245:Rocket engines 2242: 2232: 2231: 2225: 2224: 2222: 2221: 2216: 2211: 2206: 2201: 2196: 2191: 2186: 2181: 2176: 2170: 2168: 2162: 2161: 2159: 2158: 2153: 2148: 2142: 2140: 2136: 2135: 2133: 2132: 2127: 2122: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2082: 2077: 2071: 2069: 2061: 2060: 2057: 2056: 2054: 2053: 2048: 2038: 2033: 2027: 2025: 2021: 2020: 2018: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1982: 1976: 1974: 1965: 1959: 1951: 1950: 1945: 1943: 1942: 1935: 1928: 1920: 1911: 1910: 1898: 1895: 1894: 1892: 1891: 1890: 1889: 1884: 1874: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1834: 1832:Gravity assist 1829: 1824: 1818: 1816: 1812: 1811: 1809: 1808: 1803: 1797: 1795: 1794:External power 1791: 1790: 1787: 1786: 1784: 1783: 1782: 1781: 1771: 1770: 1769: 1767:Bussard ramjet 1759: 1754: 1753: 1752: 1741: 1739: 1735: 1734: 1732: 1731: 1726: 1725: 1724: 1719: 1714: 1709: 1699: 1694: 1688: 1686: 1679: 1673: 1672: 1669: 1668: 1666: 1665: 1660: 1655: 1650: 1644: 1642: 1638: 1637: 1635: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1598: 1596: 1595:Electrothermal 1592: 1591: 1589: 1588: 1583: 1578: 1573: 1567: 1565: 1561: 1560: 1558: 1557: 1556: 1555: 1550: 1545: 1535: 1529: 1527: 1520: 1514: 1513: 1510: 1509: 1507: 1506: 1501: 1496: 1490: 1488: 1484: 1483: 1481: 1480: 1475: 1470: 1468:Expander cycle 1465: 1459: 1457: 1453: 1452: 1450: 1449: 1444: 1439: 1437:Monopropellant 1434: 1433: 1432: 1427: 1416: 1414: 1410: 1409: 1407: 1406: 1401: 1396: 1390: 1388: 1381: 1377: 1376: 1374: 1373: 1368: 1363: 1358: 1353: 1348: 1347: 1346: 1336: 1331: 1326: 1320: 1318: 1314: 1313: 1311: 1310: 1308:Thermal rocket 1305: 1300: 1295: 1294: 1293: 1288: 1278: 1277: 1276: 1271: 1261: 1255: 1253: 1249: 1248: 1243: 1241: 1240: 1233: 1226: 1218: 1212: 1211: 1204: 1203:External links 1201: 1199: 1198: 1173: 1145: 1117: 1089: 1065: 1043: 1020: 991: 958: 914: 876: 850: 848: 845: 844: 843: 838: 833: 828: 821: 818: 815: 814: 811: 808: 806: 804: 801: 798: 796: 793: 792:Dry mass (kg) 789: 788: 785: 782: 779: 777: 775: 772: 770: 767: 763: 762: 760: 757: 755: 753: 751: 749: 747: 745: 741: 740: 738: 735: 733: 731: 728: 725: 723: 721: 717: 713: 712: 709: 706: 703: 700: 697: 694: 692: 689: 685: 684: 681: 678: 675: 672: 669: 666: 663: 660: 655: 648: 647: 644: 641: 639: 636: 633: 630: 628: 625: 621: 620: 617: 614: 612: 609: 606: 603: 601: 598: 597:Mixture ratio 594: 593: 590: 587: 584: 581: 578: 575: 572: 569: 565: 564: 561: 556: 553: 550: 547: 544: 541: 538: 534: 533: 520: 507: 494: 481: 468: 455: 442: 429: 425: 424: 419: 414: 408: 403: 398: 393: 388: 382: 373: 370: 369: 368: 362: 354: 342: 329: 321: 313: 307: 295: 287: 279: 266: 263: 262: 261: 257: 253: 249: 245: 240:Compared to a 238: 235: 231: 228: 220: 217: 206: 198: 195: 183:heat exchanger 165: 147: 144: 115: 112: 67:cryogenic fuel 40:expander cycle 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2272: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2237: 2235: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2194:Transcritical 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2174:Hampson–Linde 2172: 2171: 2169: 2167: 2166:Refrigeration 2163: 2157: 2154: 2152: 2149: 2147: 2144: 2143: 2141: 2137: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2095:Gas-generator 2093: 2091: 2088: 2086: 2083: 2081: 2080:Brayton/Joule 2078: 2076: 2073: 2072: 2070: 2068: 2062: 2052: 2049: 2046: 2042: 2039: 2037: 2034: 2032: 2029: 2028: 2026: 2022: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1985:Brayton/Joule 1983: 1981: 1978: 1977: 1975: 1971: 1963: 1960: 1958: 1952: 1948: 1941: 1936: 1934: 1929: 1927: 1922: 1921: 1918: 1908: 1907: 1902: 1896: 1888: 1885: 1883: 1880: 1879: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1842:Oberth effect 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1819: 1817: 1813: 1807: 1804: 1802: 1799: 1798: 1796: 1792: 1780: 1777: 1776: 1775: 1772: 1768: 1765: 1764: 1763: 1762:Fusion rocket 1760: 1758: 1755: 1751: 1748: 1747: 1746: 1743: 1742: 1740: 1736: 1730: 1727: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1704: 1703: 1700: 1698: 1695: 1693: 1690: 1689: 1687: 1685:Closed system 1683: 1680: 1678: 1674: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1645: 1643: 1639: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1617:Arcjet rocket 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1599: 1597: 1593: 1587: 1586:Plasma magnet 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1568: 1566: 1562: 1554: 1551: 1549: 1546: 1544: 1541: 1540: 1539: 1536: 1534: 1531: 1530: 1528: 1526:Electrostatic 1524: 1521: 1519: 1515: 1505: 1502: 1500: 1497: 1495: 1492: 1491: 1489: 1485: 1479: 1478:Tap-off cycle 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1460: 1458: 1454: 1448: 1447:Tripropellant 1445: 1443: 1440: 1438: 1435: 1431: 1428: 1426: 1423: 1422: 1421: 1418: 1417: 1415: 1411: 1405: 1402: 1400: 1397: 1395: 1392: 1391: 1389: 1385: 1382: 1378: 1372: 1369: 1367: 1366:Photon rocket 1364: 1362: 1359: 1357: 1356:Magnetic sail 1354: 1352: 1351:Electric sail 1349: 1345: 1342: 1341: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1321: 1319: 1315: 1309: 1306: 1304: 1301: 1299: 1296: 1292: 1289: 1287: 1284: 1283: 1282: 1279: 1275: 1274:Reaction mass 1272: 1270: 1267: 1266: 1265: 1264:Rocket engine 1262: 1260: 1257: 1256: 1254: 1250: 1246: 1239: 1234: 1232: 1227: 1225: 1220: 1219: 1216: 1210: 1207: 1206: 1202: 1188:on 2017-04-30 1187: 1183: 1177: 1174: 1163: 1156: 1149: 1146: 1134: 1130: 1124: 1122: 1118: 1107:on 2012-03-28 1103: 1099: 1093: 1090: 1080: 1074: 1072: 1070: 1066: 1054:on 2016-01-19 1050: 1046: 1044:0-471-32642-9 1040: 1033: 1032: 1024: 1021: 1008: 1004: 995: 992: 979: 975: 971: 962: 959: 948:on 2015-12-24 944: 940: 936: 932: 925: 918: 915: 904:on 2016-03-03 900: 896: 889: 888: 880: 877: 865: 861: 855: 852: 846: 842: 839: 837: 834: 832: 829: 827: 824: 823: 819: 812: 809: 807: 805: 802: 799: 797: 794: 791: 790: 786: 783: 780: 778: 776: 773: 771: 768: 765: 764: 761: 758: 756: 754: 752: 750: 748: 746: 744:LOX TP (rpm) 743: 742: 739: 736: 734: 732: 729: 726: 724: 722: 715: 714: 710: 707: 704: 701: 698: 695: 693: 690: 687: 686: 682: 679: 676: 673: 670: 667: 664: 661: 659:, vacuum (s) 658: 654: 650: 649: 645: 642: 640: 637: 634: 631: 629: 626: 624:Nozzle ratio 623: 622: 618: 615: 613: 610: 607: 604: 602: 599: 596: 595: 591: 588: 585: 582: 579: 576: 573: 570: 567: 566: 562: 557: 554: 551: 548: 545: 542: 539: 536: 535: 532: 521: 519: 508: 506: 495: 493: 482: 480: 469: 467: 456: 454: 453:United States 443: 441: 440:United States 430: 427: 426: 423: 420: 418: 415: 412: 409: 407: 404: 402: 399: 397: 394: 392: 389: 386: 383: 381: 380: 371: 366: 363: 361: 358: 355: 353: 349: 346: 343: 340: 337: 333: 330: 328: 325: 322: 320: 317: 314: 312: 308: 306: 303: 299: 296: 294: 291: 288: 286: 283: 280: 278: 275: 272: 271: 270: 264: 243: 239: 236: 232: 229: 225: 221: 218: 215: 211: 210:gas-generator 207: 204: 203: 202: 196: 194: 192: 188: 184: 180: 175: 172: 168: 161: 157: 153: 146:Dual expander 145: 143: 141: 137: 132: 130: 120: 113: 111: 109: 105: 101: 98: 93: 91: 90:gas generator 86: 84: 83:boiling point 80: 76: 72: 68: 63: 59: 55: 50: 48: 45: 41: 32: 19: 2089: 2051:Regenerative 1980:Bell Coleman 1904: 1847:Space launch 1779:Fission sail 1707:Radioisotope 1538:Ion thruster 1467: 1456:Power cycles 1442:Bipropellant 1334:Steam rocket 1329:Water rocket 1190:. Retrieved 1186:the original 1176: 1165:. Retrieved 1161: 1148: 1136:. Retrieved 1132: 1109:. Retrieved 1102:the original 1092: 1058:26 September 1056:. Retrieved 1049:the original 1030: 1023: 1011:. Retrieved 1007:the original 994: 982:. Retrieved 978:the original 961: 950:. Retrieved 943:the original 934: 930: 917: 906:. Retrieved 899:the original 886: 879: 867:. Retrieved 863: 854: 652: 268: 200: 176: 159: 149: 133: 129:backpressure 125: 104:Vinci engine 94: 87: 77:, or liquid 51: 39: 37: 2219:Ionocaloric 2214:Vuilleumier 2036:Hygroscopic 1862:Aerocapture 1857:Aerobraking 1738:Open system 1722:"Lightbulb" 1663:Mass driver 1413:Propellants 1344:Diffractive 1013:January 23, 984:January 24, 869:21 February 864:www.esa.int 766:Length (m) 345:Blue Origin 290:ArianeGroup 2234:Categories 2184:Pulse tube 2156:Mixed/dual 1882:Warp drive 1712:Salt-water 1430:Hypergolic 1339:Solar sail 1192:2017-06-06 1167:2024-03-13 1111:2008-12-28 952:2016-09-25 908:2016-09-25 860:"Ariane 6" 847:References 319:LE-5A / 5B 197:Advantages 2179:Kleemenko 2065:Internal 1425:Cryogenic 1138:16 August 720:TP (rpm) 555:Expander 552:Expander 549:Expander 546:Expander 540:Expander 219:Tolerance 73:, liquid 62:aerospike 2146:Combined 2105:Humphrey 2090:Expander 2075:Atkinson 2010:Stoddard 2000:Stirling 1995:Ericsson 1955:External 1717:Gas core 1252:Concepts 820:See also 309:Chinese 108:Ariane 6 102:and the 69:such as 2209:Siemens 2125:Scuderi 2041:Rankine 1806:Tethers 1658:MagBeam 1543:Gridded 1298:Staging 1291:Delta-v 1133:YouTube 974:J-STAGE 759:18,000 737:52,000 730:98,180 727:65,000 411:RD-0146 341:(MB-60) 339:MARC-60 305:RD-0146 79:propane 75:methane 2115:Miller 2110:Lenoir 2085:Diesel 2031:Kalina 2015:Manson 1990:Carnot 1632:VASIMR 1281:Thrust 1259:Rocket 1085:  1041:  781:3.358 691:4.412 674:455.2 671:442.6 537:Cycle 528:  515:  505:Russia 502:  489:  476:  466:France 463:  450:  437:  401:YF-75D 334:& 311:YF-75D 300:& 191:nozzle 47:engine 2139:Mixed 1641:Other 1387:State 1158:(PDF) 1105:(PDF) 1052:(PDF) 1035:(PDF) 946:(PDF) 937:(4). 927:(PDF) 902:(PDF) 891:(PDF) 813:2400 784:2.79 769:4.14 711:10.0 708:3.58 600:5.88 531:Japan 518:Japan 417:LE-5B 406:YF-79 396:Vinci 391:BE-3U 348:BE-3U 293:Vinci 265:Usage 2151:HEHC 2120:Otto 1371:WINE 1140:2024 1060:2016 1039:ISBN 1015:2022 986:2022 895:AIAA 871:2017 810:285 803:265 800:280 795:277 787:3.8 774:4.2 705:5.9 702:7.0 699:4.1 696:6.1 683:426 680:447 677:470 668:457 665:445 662:462 643:110 638:160 632:240 627:280 619:5.9 611:6.0 608:6.0 605:5.8 422:LE-9 387:B-2 385:RL10 357:Avio 352:BE-7 350:and 327:LE-9 298:CADB 285:RL60 277:RL10 224:RL10 134:The 106:for 100:RL10 38:The 646:37 635:80 360:M10 336:MHI 212:or 171:LOX 2236:: 1160:. 1131:. 1120:^ 1068:^ 935:48 933:. 929:. 862:. 716:LH 656:sp 616:5 413:D 254:th 252:/A 246:th 110:. 85:. 58:kN 2047:) 2043:( 1972:) 1968:( 1939:e 1932:t 1925:v 1237:e 1230:t 1223:v 1195:. 1170:. 1142:. 1114:. 1062:. 1017:. 988:. 955:. 911:. 873:. 718:2 653:I 258:e 250:e 169:/ 166:2 164:H 20:)

Index

Expander cycle (rocket)

bipropellant rocket
engine
square–cube law
kN
aerospike
cryogenic fuel
liquid hydrogen
methane
propane
boiling point
gas generator
Aerojet Rocketdyne
RL10
Vinci engine
Ariane 6

backpressure
Mitsubishi LE-5A
Mitsubishi LE-9
staged combustion
full flow cycle
H2
LOX
regenerative cooling system
heat exchanger
combustion chamber
nozzle
gas-generator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.