Knowledge (XXG)

Electrical capacitance tomography

Source đź“ť

81:, the technique differs from conventional tomographic methods, in which high resolution images are formed of slices of a material. The measurement electrodes, which are metallic plates, must be sufficiently large to give a measureable change in capacitance. This means that very few electrodes are used, typically eight to sixteen electrodes. An N-electrode system can only provide N(N−1)/2 independent measurements. This means that the technique is limited to producing very low resolution images of approximate slices. However, ECT is fast, and relatively inexpensive. 41: 33: 106:
industries. Due to its very low spatial resolution, ECT has not yet been used in medical diagnostics. Potentially, ECT may have similar medical applications to electrical impedance tomography, such as monitoring lung function or detecting ischemia or hemorrhage in the brain.
17: 205:
Jaworski AJ and Dyakowski T, Application of electrical capacitance tomography for measurement of gas–solid flow characteristics in a pneumatic conveying system, Measurement Science and Technology, 12, 2001, pp 1109–19
89:
Applications of ECT include the measurement of flow of fluids in pipes and measurement of the concentration of one fluid in another, or the distribution of a solid in a fluid. ECT enables the visualization of
23: 22: 19: 18: 24: 116: 286:
Beck, M.S.; Byars, M.; Dyakowski, T.; Waterfall, R.; He, R.; Wang, S.J.; Yang, W.Q. (1997). "Principles and Industrial Applications of Electrical Capacitance Tomography".
216:
Rymarczyk, T.; Szumowski, J.; Adamkiewicz, P.; TchĂłrzewski, P.; Sikora, J. (2017). "Electrical Capacitance Tomography and Optical Detection in Quality Control System".
187:
M Soleimani, W R B Lionheart, Nonlinear image reconstruction in electrical capacitance tomography using experimental data, Meas. Sci. Technol., 16, 2005, pp 1987–1996
21: 196:
S M Huang, A Plaskowski, C G Xie and M S Beck, Capacitance-based tomographic flow imaging system, Electronics Letters, 24 (7), 1988, pp 418–19.
44:
Dynamic imaging in ECT - On the left, seven cylindrical objects moving along the probe. On the right, a series of probe cross-sectional images.
321:
Wanta, Damian; Makowiecka, Oliwia; Smolik, Waldemar T.; Kryszyn, Jacek; Domański, Grzegorz; Midura, Mateusz; Wróblewski, Przemysław (2022).
66:
Although capacitance sensing methods were in widespread use the idea of using capacitance measurement to form images is attributed to
20: 126: 411: 406: 121: 60: 131: 355: 323:"Numerical Evaluation of Complex Capacitance Measurement Using Pulse Excitation in Electrical Capacitance Tomography" 416: 59:
distribution in the interior of an object from external capacitance measurements. It is a close relative of
260: 155:
Wanta, Damian; Smolik, Waldemar T.; Kryszyn, Jacek; Wróblewski, Przemysław; Midura, Mateusz (2022).
67: 383: 303: 136: 99: 375: 233: 157:"A Run-Time Reconfiguration Method for an FPGA-Based Electrical Capacitance Tomography System" 95: 367: 334: 295: 268: 225: 168: 91: 264: 400: 307: 103: 387: 56: 251:
York, T. A. (2001). "Status of electrical tomography in industrial applications".
339: 322: 173: 156: 299: 78: 28:
ECT image sequence - An object made of acrylic glass, rotating inside a probe.
371: 237: 379: 229: 40: 36:
Electrical capacitance tomography system with connected 16-electrode sensor
32: 356:"Capacitively Coupled Electrical Impedance Tomography for Brain Imaging" 272: 94:, which play an important role in the technological processes of the 71: 39: 31: 15: 63:
and is proposed as a method for industrial process monitoring.
117:
Three-dimensional electrical capacitance tomography
55:) is a method for determination of the dielectric 8: 338: 172: 147: 7: 360:IEEE Transactions on Medical Imaging 354:Jiang, Y. D.; Soleimani, M. (2019). 14: 127:Electrical resistivity tomography 49:Electrical capacitance tomography 122:Electrical impedance tomography 61:electrical impedance tomography 1: 253:Journal of Electronic Imaging 132:Industrial Tomography Systems 340:10.3390/electronics11121864 174:10.3390/electronics11040545 433: 300:10.1177/002029409703000702 218:PrzeglÄ…d Elektrotechniczny 372:10.1109/TMI.2019.2895035 77:Although usually called 288:Measurement and Control 412:Nondestructive testing 407:Electrical engineering 230:10.15199/48.2017.12.53 45: 37: 29: 43: 35: 27: 265:2001JEI....10..608Y 137:Process tomography 70:and co-workers at 46: 38: 30: 273:10.1117/1.1377308 25: 424: 417:Inverse problems 392: 391: 366:(9): 2104–2113. 351: 345: 344: 342: 318: 312: 311: 283: 277: 276: 248: 242: 241: 213: 207: 203: 197: 194: 188: 185: 179: 178: 176: 152: 26: 432: 431: 427: 426: 425: 423: 422: 421: 397: 396: 395: 353: 352: 348: 320: 319: 315: 285: 284: 280: 250: 249: 245: 224:(12): 213–216. 215: 214: 210: 204: 200: 195: 191: 186: 182: 154: 153: 149: 145: 113: 92:multiphase flow 87: 16: 12: 11: 5: 430: 428: 420: 419: 414: 409: 399: 398: 394: 393: 346: 313: 294:(7): 197–200. 278: 243: 208: 198: 189: 180: 146: 144: 141: 140: 139: 134: 129: 124: 119: 112: 109: 86: 83: 74:in the 1980s. 13: 10: 9: 6: 4: 3: 2: 429: 418: 415: 413: 410: 408: 405: 404: 402: 389: 385: 381: 377: 373: 369: 365: 361: 357: 350: 347: 341: 336: 332: 328: 324: 317: 314: 309: 305: 301: 297: 293: 289: 282: 279: 274: 270: 266: 262: 258: 254: 247: 244: 239: 235: 231: 227: 223: 219: 212: 209: 202: 199: 193: 190: 184: 181: 175: 170: 166: 162: 158: 151: 148: 142: 138: 135: 133: 130: 128: 125: 123: 120: 118: 115: 114: 110: 108: 105: 101: 100:petrochemical 97: 93: 84: 82: 80: 75: 73: 69: 64: 62: 58: 54: 50: 42: 34: 363: 359: 349: 333:(12): 1864. 330: 326: 316: 291: 287: 281: 256: 252: 246: 221: 217: 211: 201: 192: 183: 164: 160: 150: 88: 85:Applications 76: 68:Maurice Beck 65: 57:permittivity 52: 48: 47: 327:Electronics 161:Electronics 401:Categories 259:(3): 608. 167:(4): 545. 143:References 79:tomography 308:115040670 238:0033-2097 388:73448025 380:30703015 111:See also 96:chemical 261:Bibcode 386:  378:  306:  236:  384:S2CID 304:S2CID 72:UMIST 376:PMID 234:ISSN 104:food 102:and 368:doi 335:doi 296:doi 269:doi 226:doi 169:doi 53:ECT 403:: 382:. 374:. 364:38 362:. 358:. 331:11 329:. 325:. 302:. 292:30 290:. 267:. 257:10 255:. 232:. 222:93 220:. 165:11 163:. 159:. 98:, 390:. 370:: 343:. 337:: 310:. 298:: 275:. 271:: 263:: 240:. 228:: 177:. 171:: 51:(

Index



permittivity
electrical impedance tomography
Maurice Beck
UMIST
tomography
multiphase flow
chemical
petrochemical
food
Three-dimensional electrical capacitance tomography
Electrical impedance tomography
Electrical resistivity tomography
Industrial Tomography Systems
Process tomography
"A Run-Time Reconfiguration Method for an FPGA-Based Electrical Capacitance Tomography System"
doi
10.3390/electronics11040545
doi
10.15199/48.2017.12.53
ISSN
0033-2097
Bibcode
2001JEI....10..608Y
doi
10.1117/1.1377308
doi
10.1177/002029409703000702
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑