Knowledge (XXG)

Energy filtered transmission electron microscopy

Source đź“ť

22: 895: 907: 137:
technique, where an image recorded using electrons at the energy of the maximum of the absorption peak caused by a particular inner shell ionisation is divided by an image recorded just before the ionisation energy. It is often necessary to cross-correlate the images to compensate for relative drift
132:
Adjusting the slit to only allow electrons which have lost a specific amount of energy can be used to obtain elementally sensitive images. As the ionisation signal is often significantly smaller than the background signal, it is normally necessary to obtain more than one image at varying energies to
141:
Improved elemental maps can be obtained by taking a series of images, allowing quantitative analysis and improved accuracy of mapping where more than one element is involved. By taking a series of images, it is also possible to extract the EELS profile from particular features.
97:, in which only electrons of particular kinetic energies are used to form the image or diffraction pattern. The technique can be used to aid chemical analysis of the sample in conjunction with complementary techniques such as electron crystallography. 128:
The energy slit can be adjusted so as to only allow electrons which have not lost energy to pass through to form the image. This prevents inelastic scattering from contributing to the image, and hence produces an enhanced contrast image.
105:
If a very thin sample is illuminated with a beam of high-energy electrons, then a majority of the electrons will pass unhindered through the sample but some will interact with the sample, being scattered elastically or inelastically
121:
If the electron beam emerging from the sample is passed through a magnetic prism, then the flight path of the electrons will vary depending on their energy. This technique is used to form spectra in
125:(EELS), but it is also possible to place an adjustable slit to allow only electrons with a certain range of energies through, and reform an image using these electrons on a detector. 539: 118:). Inelastic scattering results in both a loss of energy and a change in momentum, which in the case of inner shell ionisation is characteristic of the element in the sample. 51: 522: 227: 666: 369: 656: 259: 559: 532: 467: 527: 671: 933: 487: 611: 477: 424: 866: 594: 579: 505: 616: 449: 302: 252: 201: 182: 122: 73: 215: 604: 599: 497: 472: 439: 151: 94: 676: 661: 641: 379: 444: 287: 911: 621: 584: 429: 899: 459: 245: 34: 44: 38: 30: 646: 564: 55: 871: 825: 651: 861: 574: 510: 384: 343: 764: 769: 589: 774: 333: 115: 938: 739: 724: 631: 626: 569: 434: 416: 348: 338: 282: 268: 810: 389: 353: 754: 749: 197: 178: 704: 636: 759: 714: 328: 171: 194:
Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS ATLAS
927: 790: 734: 394: 841: 851: 815: 709: 699: 374: 323: 212:
Imaging of nanometer-sized precipitates in solids by electron spectroscopic imaging
795: 729: 719: 876: 297: 292: 744: 399: 846: 312: 856: 800: 482: 111: 237: 820: 107: 173:
Transmission Electron Microscopy: A Textbook for Materials Science
133:
remove the background effect. The simplest method is known as the
805: 241: 216:
Ultramicroscopy, Volume 59, Issues 1-4, July 1995, Pages 15-31.
15: 233:
A Database of EELS fine structure fingerprints at Cornell
232: 834: 783: 692: 685: 552: 496: 458: 415: 408: 362: 311: 275: 170: 87:Energy-filtered transmission electron microscopy 43:but its sources remain unclear because it lacks 667:Serial block-face scanning electron microscopy 370:Detectors for transmission electron microscopy 253: 8: 689: 412: 260: 246: 238: 74:Learn how and when to remove this message 210:F. Hofer, P. Warbichler and W. Grogger, 177:. Kluwer Academic / Plenum Publishers. 138:of the sample between the two images. 7: 906: 169:Williams D.B., Carter C.B (1996). 14: 303:Timeline of microscope technology 123:electron energy loss spectroscopy 905: 894: 893: 152:Transmission electron microscopy 95:transmission electron microscopy 20: 662:Precession electron diffraction 934:Electron microscopy techniques 228:EFTEM imaging modes Carl Zeiss 192:Channing. C. Ahn, ed. (2004). 1: 955: 647:Immune electron microscopy 565:Annular dark-field imaging 380:Everhart–Thornley detector 889: 801:Hitachi High-Technologies 93:) is a technique used in 826:Thermo Fisher Scientific 652:Geometric phase analysis 540:Aberration-Corrected TEM 29:This article includes a 575:Charge contrast imaging 385:Field electron emission 58:more precise citations. 765:Thomas Eugene Everhart 116:inner shell ionisation 770:Vernon Ellis Cosslett 590:Dark-field microscopy 775:Vladimir K. Zworykin 425:Correlative light EM 334:Electron diffraction 740:Manfred von Ardenne 725:Gerasimos Danilatos 632:Electron tomography 627:Electron holography 570:Cathodoluminescence 349:Secondary electrons 339:Electron scattering 283:Electron microscopy 269:Electron microscopy 862:Digital Micrograph 468:Environmental SEM 390:Field emission gun 354:X-ray fluorescence 31:list of references 921: 920: 885: 884: 755:Nestor J. Zaluzec 750:Maximilian Haider 548: 547: 84: 83: 76: 946: 909: 908: 897: 896: 705:Bodo von Borries 690: 450:Photoemission EM 413: 262: 255: 248: 239: 207: 188: 176: 79: 72: 68: 65: 59: 54:this article by 45:inline citations 24: 23: 16: 954: 953: 949: 948: 947: 945: 944: 943: 924: 923: 922: 917: 881: 830: 779: 760:Ondrej Krivanek 681: 544: 492: 454: 440:Liquid-Phase EM 404: 363:Instrumentation 358: 316: 307: 271: 266: 224: 204: 191: 185: 168: 165: 163:Further reading 160: 148: 103: 80: 69: 63: 60: 49: 35:related reading 25: 21: 12: 11: 5: 952: 950: 942: 941: 936: 926: 925: 919: 918: 916: 915: 903: 890: 887: 886: 883: 882: 880: 879: 874: 869: 867:Direct methods 864: 859: 854: 849: 844: 838: 836: 832: 831: 829: 828: 823: 818: 813: 808: 803: 798: 793: 787: 785: 781: 780: 778: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 715:Ernst G. Bauer 712: 707: 702: 696: 694: 687: 683: 682: 680: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 608: 607: 597: 592: 587: 582: 577: 572: 567: 562: 556: 554: 550: 549: 546: 545: 543: 542: 537: 536: 535: 525: 520: 515: 514: 513: 502: 500: 494: 493: 491: 490: 485: 480: 475: 470: 464: 462: 456: 455: 453: 452: 447: 442: 437: 432: 427: 421: 419: 410: 406: 405: 403: 402: 397: 392: 387: 382: 377: 372: 366: 364: 360: 359: 357: 356: 351: 346: 341: 336: 331: 329:Bremsstrahlung 326: 320: 318: 309: 308: 306: 305: 300: 295: 290: 285: 279: 277: 273: 272: 267: 265: 264: 257: 250: 242: 236: 235: 230: 223: 222:External links 220: 219: 218: 208: 202: 189: 183: 164: 161: 159: 156: 155: 154: 147: 144: 114:scattering or 102: 99: 82: 81: 39:external links 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 951: 940: 937: 935: 932: 931: 929: 914: 913: 904: 902: 901: 892: 891: 888: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 839: 837: 833: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 791:Carl Zeiss AG 789: 788: 786: 784:Manufacturers 782: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 735:James Hillier 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 697: 695: 691: 688: 684: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 606: 603: 602: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 557: 555: 551: 541: 538: 534: 531: 530: 529: 526: 524: 521: 519: 516: 512: 509: 508: 507: 504: 503: 501: 499: 495: 489: 488:Ultrafast SEM 486: 484: 481: 479: 476: 474: 471: 469: 466: 465: 463: 461: 457: 451: 448: 446: 445:Low-energy EM 443: 441: 438: 436: 433: 431: 428: 426: 423: 422: 420: 418: 414: 411: 407: 401: 398: 396: 395:Magnetic lens 393: 391: 388: 386: 383: 381: 378: 376: 373: 371: 368: 367: 365: 361: 355: 352: 350: 347: 345: 344:Kikuchi lines 342: 340: 337: 335: 332: 330: 327: 325: 322: 321: 319: 314: 310: 304: 301: 299: 296: 294: 291: 289: 286: 284: 281: 280: 278: 274: 270: 263: 258: 256: 251: 249: 244: 243: 240: 234: 231: 229: 226: 225: 221: 217: 213: 209: 205: 203:3-527-40565-8 199: 196:. Wiley-VHC. 195: 190: 186: 184:0-306-45324-X 180: 175: 174: 167: 166: 162: 157: 153: 150: 149: 145: 143: 139: 136: 130: 126: 124: 119: 117: 113: 109: 100: 98: 96: 92: 88: 78: 75: 67: 57: 53: 47: 46: 40: 36: 32: 27: 18: 17: 910: 898: 852:EM Data Bank 816:Nion Company 710:Dennis Gabor 700:Albert Crewe 517: 478:Confocal SEM 375:Electron gun 324:Auger effect 211: 193: 172: 140: 134: 131: 127: 120: 110:scattering, 104: 90: 86: 85: 70: 61: 50:Please help 42: 796:FEI Company 730:Harald Rose 720:Ernst Ruska 409:Microscopes 317:with matter 315:interaction 56:introducing 939:Microscopy 928:Categories 877:Multislice 693:Developers 553:Techniques 298:Microscope 293:Micrograph 158:References 135:jump ratio 745:Max Knoll 400:Stigmator 101:Principle 64:July 2024 900:Category 847:CrysTBox 835:Software 506:Cryo-TEM 313:Electron 146:See also 912:Commons 560:4D STEM 533:4D STEM 511:Cryo-ET 483:SEM-XRF 473:CryoSEM 430:Cryo-EM 288:History 112:plasmon 52:improve 857:EMsoft 842:CASINO 821:TESCAN 686:Others 585:cryoEM 276:Basics 200:  181:  108:phonon 811:Leica 657:PINEM 523:HRTEM 518:EFTEM 91:EFTEM 37:, or 872:IUCr 806:JEOL 677:WBDF 672:WDXS 622:EBIC 617:EELS 612:ECCI 600:EBSD 580:CBED 528:STEM 198:ISBN 179:ISBN 642:FEM 637:FIB 605:TKD 595:EDS 498:TEM 460:SEM 435:EMP 930:: 417:EM 214:, 41:, 33:, 261:e 254:t 247:v 206:. 187:. 106:( 89:( 77:) 71:( 66:) 62:( 48:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
transmission electron microscopy
phonon
plasmon
inner shell ionisation
electron energy loss spectroscopy
Transmission electron microscopy
Transmission Electron Microscopy: A Textbook for Materials Science
ISBN
0-306-45324-X
ISBN
3-527-40565-8
Ultramicroscopy, Volume 59, Issues 1-4, July 1995, Pages 15-31.
EFTEM imaging modes Carl Zeiss
A Database of EELS fine structure fingerprints at Cornell
v
t
e
Electron microscopy
Electron microscopy
History
Micrograph
Microscope
Timeline of microscope technology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑