Knowledge (XXG)

Ff phages

Source πŸ“

113:) about 6 nm in diameter and 900 nm long. Several thousand copies of a small (50 amino-acid residues) elongated alpha-helical major coat protein subunit (the product of gene 8, or p8) in an overlapping shingle-like array form a hollow cylinder enclosing the circular single-stranded DNA genome. Each p8 subunit has a collection of basic residues near the C-terminus of the elongated protein and acidic residues near the N-terminus; these two regions are separated by about 20 hydrophobic (non-polar) residues. The shingle-like arrangement places the acidic residues of p8 near the outside surface of the cylinder, where they cause the virus particle to be negatively-charged; non-polar regions near non-polar regions of neighbouring p8 subunits, where non-polar interactions contribute to a notable physical stability of the virus particle; and basic residues near the centre of the cylinder, where they interact with the negatively-charged DNA phosphates at the core of the virion. Longer (or shorter) DNA molecules can be packaged, since more (or fewer) p8 subunits can be added during assembly as required to protect the DNA, making the phage useful for genetic studies. (This effect should not be confused with 102: 366:
Such modified phage are correspondingly longer that wild-type filamentous fd, because the longer DNA is coated with correspondingly more gene 8 coat proteins, but the phage life-cycle is not otherwise disrupted. The traditional β€œtadpole” or isometric shaped-phage, on the other hand, which have a limited-sized capsid, cannot be so easily used to encapsidate a larger DNA molecule. The modified phage can be selected by infecting kanamycin-sensitive bacteria with modified phage to introduce resistance to kanamycin, and growing the infected bacteria in media containing an otherwise lethal concentration of kanamycin.
31: 180: 305:, and the pilus retracts into the cell. This retraction may involve depolymerization of the pilus subunit assembly into the cell membrane at the base of the pilus by a reversal of the pilus growth and polymerization process. As the tip of the pilus bearing p3 approaches the cell wall, the N1 domain of p3 interacts with the bacterial TolQRA protein to complete infection and release the genome into the cytoplasm of the host. 140: 85:(virus particle) is a flexible filament measuring about 6 by 900 nm, comprising a cylindrical protein tube protecting a single-stranded circular DNA molecule at its core. The phage codes for only 11 gene products, and is one of the simplest viruses known. It has been widely used to study fundamental aspects of molecular biology. George Smith and Greg Winter used f1 and fd for their work on 314:
The host DNA polymerase III then uses this primer to synthesize the full complementary strand of DNA, yielding a double-stranded circle, sometimes called the replicative form (RF) DNA. The complementary strand of the RF is the transcription template for phage coded proteins, especially p2 and p10, which are necessary for further DNA replication.
340:
extrusion process picks up the p7 and p9 proteins which form the outer tip of the progeny phage. As the p5 is stripped off the DNA, the progeny DNA is extruded across the membrane and wrapped in a helical casing of p8, to which p3 and p6 are added at the end of assembly. The p4 protein may form an extrusion pore in the outer membrane.
334:
Infection does not kill the host bacteria, in contrast to most other families of phage. Progeny phage are assembled as they extrude through the membrane of growing bacteria, probably at adhesion sites joining inner and outer membranes. The five phage proteins that form the coat of the completed phage
160:
Five gene products are part of the virion: the major coat protein (p8) and the minor proteins capping the two ends, p3 and p6 at one end, and p7 and p9 at the other end. Three gene products (p2, p5, and p10) are cytoplasmic proteins needed for DNA synthesis and the rest are membrane proteins involved
339:
that are not present in the phage, p1, p11, and p4, are also involved in assembly. Replication of RF DNA is converted to production of phage ssDNA by coating of the DNA with p5 to form an elongated p5/DNA replication/assembly complex, which then interacts with the membrane-bound phage proteins. The
369:
This result was extended by inserting foreign DNA expressing a foreign peptide into fd phage gene 3, rather than into the intergenic sequence, so that the foreign peptide appears on the surface of the phage as a part of the gene 3 adsorption protein. Phage carrying the foreign peptide can then be
317:
The p2 protein cleaves the viral strand of the RF DNA, and host DNA polymerase III synthesizes a new viral strand. The old viral strand is displaced as the new one is synthesized. When a circle is complete, the covalently linked p2 cuts the displaced viral strand at the junction between the old and
313:
After the single-stranded viral DNA enters the cytoplasm, it serves as a template for the synthesis of a complementary DNA strand. This synthesis is initiated in the intergenic region of the DNA sequence by host RNA polymerase, which synthesizes a short RNA primer on the infecting DNA as template.
373:
These techniques have been extended over the years in many ways, for instance by inserting foreign DNA into the genes coding for phage coat proteins other than gene 3, and/or duplicating the gene of interest to modify only some of the corresponding gene products. Phage display technology has been
365:
Ff phages have been engineered for applications in biological and medical sciences. Many applications build on experiments showing that the DNA sequence determining resistance to the antibiotic kanamycin can be inserted in a functional form into the non-coding intergenic sequence of fd phage DNA.
351:
Intermediate assemblies of p8 can be generated by treating the phage with chloroform. The helical content of p8 in these intermediate forms is similar to that in the phage, suggesting that the structural change during assembly may involve just a sliding of the shingled p8 subunits with respect to
347:
which are essential for phage assembly, suggesting that p1 is a molecular motor involved in phage assembly. The p1 protein has a membrane-spanning hydrophobic domain with the N-terminal portion in the cytoplasm and the C-terminal portion in the periplasm (the reverse of the orientation of p8).
156:
producing 11 proteins, since two genes, gene 2 and gene 1, have internal in-frame translation starts, generating two additional proteins, p10 and p11. The genome also contains a short non-coding intergenic sequence. M13 and f1 sequences are slightly different from fd. They both have only 6407
325:
When the concentration of phage proteins has increased, new viral strands are coated by the replication/assembly protein p5 rather than by the complementary DNA strands. The p5 also inhibits translation of p2, so that progeny viral ssDNA production and packaging are in synchrony.
300:
The p3 protein is anchored to one end of the virion by the C-terminal domain of p3. Infection of host bacteria involves interaction of two different N-terminal regions of p3 with two different sites of the host bacteria. First, the N2 domain of p3 attaches to the outer tip of the
157:
nucleotides; f1 differs from fd in 180 positions (only 10 of these changes are reflected in amino-acid changes in gene products) and M13 has only 59 nucleotide differences from f1. For many purposes the phages in the Ff group can be considered as interchangeable.
2035:
Dorval Courchesne NM, Klug MT, Huang KJ, Weidman MC, CantΓΊ VJ, Chen PY, et al. (2015). "Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation".
348:
Adjacent to the cytoplasmic side of the membrane-spanning domain is a 13- residue sequence of p1 having a pattern of basic residues closely matching the pattern of basic residues near the C terminus of p8, but inverted with respect to that sequence.
286:
The gene encoding p1 has been used as a conserved marker gene, along with three other features specific for inovirus genomes, in an automatic machine-learning approach to identify over 10000 inovirus-like sequences from microbial genomes.
335:
enter the inner membrane; for p8 and p3, N-terminal leader sequences (later removed) help the proteins to enter the bacterial membrane, with their N-termini directed away from the cytoplasm towards the periplasm. Three other phage
1724:
Webster, R.E., 2001. Filamentous phage biology. In: Barbas III, C.F., Burton, D.R., Scott, J.K., Silverman, G.J. (Eds.), Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp.
2212:
Li L, Belcher AM, Loke DK (December 2020). "Simulating selective binding of a biological template to a nanoscale architecture: a core concept of a clamp-based binding-pocket-favored N-terminal-domain assembly".
93:. Early experiments on Ff phages used M13 to identify gene functions, and M13 was also developed as a cloning vehicle, so the name M13 is sometimes used as an informal synonym for the whole group of Ff phages. 136:
data collection and computational analysis. Structures of the p3 capsid protein and the p5 replication/assembly protein have also been determined from X-ray crystallography and deposited in the PDB.
2256:
Brogan AP, Heldman N, Hallett JP, Belcher AM (September 2019). "Thermally robust solvent-free biofluids of M13 bacteriophage engineered for high compatibility with anhydrous ionic liquids".
739:
Pratt D, Tzagoloff H, Erdahl WS (November 1966). "Conditional lethal mutants of the small filamentous coliphage M13. I. Isolation, complementation, cell killing, time of cistron action".
847:
Herrmann R, Neugebauer K, Zentgraf H, Schaller H (February 1978). "Transposition of a DNA sequence determining kanamycin resistance into the single-stranded genome of bacteriophage fd".
343:
Interaction of the double-stranded packaging DNA signal with the p1-thioredoxin complex at the host inner membrane triggers the formation of a pore. The p1 protein contains
370:
detected using appropriate antibodies. The reverse of this approach is to insert DNA coding for antibodies into gene 3 and detect their presence by appropriate antigens.
2392: 101: 1506:
Stopar D, Spruijt RB, Wolfs CJ, Hemminga MA (July 1998). "Mimicking initial interactions of bacteriophage M13 coat protein disassembly in model membrane systems".
2124:
Casey JP, Barbero RJ, Heldman N, Belcher AM (November 2014). "Versatile de novo enzyme activity in capsid proteins from an engineered M13 bacteriophage library".
382:
Ff phages have been engineered for applications such as remediation, electrochemical, photovoltaic, catalytic, sensing and digital memory devices, especially by
2405: 1428:
Griffith J, Manning M, Dunn K (March 1981). "Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform-water interface".
1835:"Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold" 518: 1272:
Hoffmann-Thoms S, Jakob RP, Schmid FX (April 2014). "Energetic communication between functional sites of the gene-3-protein during infection by phage fd".
774:
Pratt D, Tzagoloff H, Beaudoin J (September 1969). "Conditional lethal mutants of the small filamentous coliphage M13. II. Two genes for coat proteins".
647:
Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011). "Filamentous bacteriophage: biology, phage display and nanotechnology applications".
1237:
Bennett NJ, Rakonjac J (February 2006). "Unlocking of the filamentous bacteriophage virion during infection is mediated by the C domain of pIII".
1393:
Rapoza MP, Webster RE (May 1995). "The products of gene I and the overlapping in-frame gene XI are required for filamentous phage assembly".
961: 691: 538: 117:, which can package several separate and distinct DNA molecules). About 5 copies each of four minor proteins cap the two ends of the virion. 2463: 132:. In particular, the series of fd and Pf1 virion structures deposited in the PDB over decades illustrate the improvements in methods for 1344:"The Transmembrane Morphogenesis Protein gp1 of Filamentous Phages Contains Walker A and Walker B Motifs Essential for Phage Assembly" 1541:
Roberts LM, Dunker AK (October 1993). "Structural changes accompanying chloroform-induced contraction of the filamentous phage fd".
1576:
Xue, Bin; Blocquel, David; Habchi, Johnny; Uversky, Alexey V.; Kurgan, Lukasz; Uversky, Vladimir N.; Longhi, Sonia (2014).
1307:
Hoffmann Berling H, Maze R (March 1964). "Release of male-specific bacteriophages from surviving host bacteria BACTERIA".
678:. Advances in Experimental Medicine and Biology. Vol. 1053. Cham: Springer International Publishing. pp. 1–20. 674:
Rakonjac J, Russel M, Khanum S, Brooke SJ, Rajič M (2017). "Filamentous Phage: Structure and Biology". In Lim TS (ed.).
2159:
Zhang G, Wei S, Belcher AM (2018). "Biotemplated Zinc Sulfide Nanofibers as Anode Materials for Sodium-Ion Batteries".
1034:
Beck E, Zink B (December 1981). "Nucleotide sequence and genome organisation of filamentous bacteriophages fl and fd".
2458: 78: 2448: 2410: 2453: 395: 179: 58: 1884:
Sioud M (April 2019). "Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics".
2370: 1069:
Russel M, Linderoth NA, Sali A (June 1997). "Filamentous phage assembly: variation on a protein export theme".
90: 2443: 2438: 1194:
Craig L, Forest KT, Maier B (July 2019). "Type IV pili: dynamics, biophysics and functional consequences".
2332: 74: 1980:"Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries" 468:"'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'" 1736: 1625:"Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface" 1471:
Manning M, Griffith J (January 1985). "Association of M13 I-forms and spheroids with lipid vesicles".
2090: 2081:
Lee SW, Belcher AM (2004). "Virus-Based Fabrication of Micro- and Nanofibers Using Electrospinning".
1991: 1636: 174: 2433: 892:"Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage" 556:"Similarities and differences within members of the Ff family of filamentous bacteriophage viruses" 2291: 2238: 2194: 1909: 1453: 1219: 872: 153: 2321: 2316: 152:
The DNA sequence of the fd genome has 6408 nucleotide comprising 9 genes, but the genome has 11
2397: 30: 2283: 2230: 2186: 2141: 2106: 2063: 2017: 1960: 1901: 1866: 1815: 1764: 1756: 1707: 1699: 1660: 1652: 1605: 1597: 1558: 1523: 1488: 1445: 1410: 1375: 1324: 1289: 1254: 1211: 1176: 1135: 1086: 1051: 1016: 967: 957: 923: 864: 826: 791: 756: 697: 687: 656: 624: 575: 534: 499: 448: 336: 133: 129: 125: 555: 2273: 2265: 2222: 2176: 2168: 2133: 2098: 2053: 2045: 2007: 1999: 1950: 1940: 1893: 1856: 1846: 1805: 1795: 1748: 1691: 1644: 1589: 1550: 1515: 1480: 1437: 1402: 1365: 1355: 1316: 1281: 1246: 1203: 1166: 1125: 1117: 1078: 1043: 1006: 998: 949: 913: 903: 856: 818: 783: 748: 715: 679: 614: 606: 567: 524: 489: 479: 438: 430: 2311: 1104:
Roux S, Krupovic M, Daly RA, Borges AL, Nayfach S, Schulz F, et al. (November 2019).
985:
Beck E, Sommer R, Auerswald EA, Kurz C, Zink B, Osterburg G, et al. (December 1978).
318:
newly synthesized DNA and re-ligates the two ends and liberates p2. RF replicates by this
110: 1680:"Antibody-selectable filamentous fd phage vectors: affinity purification of target genes" 2094: 1995: 1752: 1640: 1106:"Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes" 2012: 1979: 1955: 1928: 1861: 1834: 1810: 1783: 1370: 1343: 1130: 1105: 918: 891: 619: 594: 383: 319: 1735:
Winter, Greg; Griffiths, Andrew D.; Hawkins, Robert E.; Hoogenboom, Hennie R. (1994).
1171: 1154: 1082: 1011: 986: 890:
Sattar S, Bennett NJ, Wen WX, Guthrie JM, Blackwell LF, Conway JF, Rakonjac J (2015).
443: 418: 2427: 2295: 2242: 2198: 1695: 1484: 1441: 1320: 1223: 1047: 822: 787: 752: 344: 252: 240: 228: 216: 86: 1913: 1457: 876: 520:
Filamentous Bacteriophage in Bio/Nano/Technology, Bacterial Pathogenesis and Ecology
466:
Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA (July 2015).
204: 1679: 809:
Messing J (April 1991). "Cloning in M13 phage or how to use biology at its best".
953: 434: 2364: 683: 139: 2355: 1897: 1285: 1250: 1207: 1121: 529: 264: 2190: 2110: 2067: 2049: 1945: 1851: 1760: 1703: 1656: 1624: 1601: 1577: 908: 2379: 1648: 1002: 944:
Straus SK, Bo HE (2018). "Filamentous Bacteriophage Proteins and Assembly".
610: 484: 467: 114: 70: 2287: 2234: 2172: 2145: 2021: 1964: 1905: 1870: 1819: 1784:"Filamentous bacteriophage fd as an antigen delivery system in vaccination" 1609: 1406: 1379: 1328: 1293: 1258: 1215: 1180: 1139: 971: 927: 701: 660: 628: 579: 503: 1768: 1711: 1664: 1562: 1527: 1492: 1449: 1414: 1090: 1055: 830: 795: 760: 452: 2349: 2278: 2181: 2058: 1800: 1020: 868: 66: 1554: 17: 2269: 2226: 2003: 860: 494: 2137: 2102: 1593: 1519: 571: 1360: 121: 2326: 2384: 124:(the assembly of p8 subunit proteins) has been determined by X-ray 302: 191: 138: 100: 82: 29: 2330: 1929:"Filamentous Phages As a Model System in Soft Matter Physics" 1978:
Oh D, Qi J, Lu YC, Zhang Y, Shao-Horn Y, Belcher AM (2013).
948:. Subcellular Biochemistry. Vol. 88. pp. 261–279. 595:"Filamentous phages: masters of a microbial sharing economy" 1342:
Loh B, Haase M, Mueller L, Kuhn A, Leptihn S (April 2017).
1155:"F factor conjugation is a true type IV secretion system" 1153:
Lawley TD, Klimke WA, Gubbins MJ, Frost LS (July 2003).
419:"Ff coliphages: structural and functional relationships" 143:
Schematic views showing minor proteins at the two ends
2339: 128:, and structural models have been deposited in the 322:mechanism to generate dozens of copies of the RF. 554:Morag O, Abramov G, Goldbourt A (December 2011). 523:. Frontiers Research Topics. Frontiers Media SA. 89:for which they were awarded a share of the 2018 1833:Henry KA, Arbabi-Ghahroudi M, Scott JK (2015). 1737:"Making Antibodies by Phage Display Technology" 34:Shadowed electron micrograph of unaligned phage 1678:Parmley, Stephen F.; Smith, George P. (1988). 676:Recombinant Antibodies for Infectious Diseases 987:"Nucleotide sequence of bacteriophage fd DNA" 412: 410: 8: 1788:International Journal of Molecular Sciences 105:Assembled major coat protein, exploded view 2327: 163: 2277: 2180: 2057: 2011: 1954: 1944: 1860: 1850: 1809: 1799: 1369: 1359: 1170: 1129: 1010: 946:Virus Protein and Nucleoprotein Complexes 917: 907: 618: 528: 517:Rakonjac J, Bas B, Derda R, eds. (2017). 493: 483: 442: 2126:Journal of the American Chemical Society 1578:"Structural Disorder in Viral Proteins" 1473:Archives of Biochemistry and Biophysics 406: 120:The molecular structure of the virion 939: 937: 842: 840: 417:Rasched I, Oberer E (December 1986). 7: 642: 640: 638: 378:Material sciences and nanotechnology 2038:The Journal of Physical Chemistry C 1753:10.1146/annurev.iy.12.040194.002245 716:"The Nobel Prize in Chemistry 2018" 649:Current Issues in Molecular Biology 560:The Journal of Physical Chemistry B 109:The virion is a flexible filament ( 1782:Prisco A, De Berardinis P (2012). 352:their neighbours in the assembly. 25: 57:) is a group of almost identical 849:Molecular & General Genetics 374:widely used for many purposes. 178: 593:Hay ID, Lithgow T (June 2019). 1: 1172:10.1016/S0378-1097(03)00430-0 1083:10.1016/s0378-1119(96)00801-3 1696:10.1016/0378-1119(88)90495-7 1485:10.1016/0003-9861(85)90629-0 1442:10.1016/0092-8674(81)90438-4 1395:Journal of Molecular Biology 1321:10.1016/0042-6822(64)90021-2 1274:Journal of Molecular Biology 1239:Journal of Molecular Biology 1196:Nature Reviews. Microbiology 1048:10.1016/0378-1119(81)90059-7 954:10.1007/978-981-10-8456-0_12 823:10.1016/0378-1119(91)90344-b 788:10.1016/0042-6822(69)90346-8 753:10.1016/0042-6822(66)90118-8 435:10.1128/MR.50.4.401-427.1986 2464:Single-stranded DNA viruses 1741:Annual Review of Immunology 684:10.1007/978-3-319-72077-7_1 161:in assembly of the virion. 2480: 2161:ACS Applied Nano Materials 1898:10.1007/s12033-019-00156-8 361:Life sciences and medicine 1933:Frontiers in Microbiology 1839:Frontiers in Microbiology 1286:10.1016/j.jmb.2014.01.002 1251:10.1016/j.jmb.2005.11.069 1208:10.1038/s41579-019-0195-4 1159:FEMS Microbiology Letters 1122:10.1038/s41564-019-0510-x 896:Frontiers in Microbiology 530:10.3389/978-2-88945-095-4 472:FEMS Microbiology Reviews 396:Filamentous bacteriophage 173: 166: 2050:10.1021/acs.jpcc.5b00295 1946:10.3389/fmicb.2016.01013 1852:10.3389/fmicb.2015.00755 909:10.3389/fmicb.2015.00316 91:Nobel Prize in Chemistry 2341:Enterobacteria phage f1 2258:Chemical Communications 1886:Molecular Biotechnology 1649:10.1126/science.4001944 611:10.15252/embr.201847427 423:Microbiological Reviews 73:and ZJ/2, which infect 2173:10.1021/acsanm.8b01254 1407:10.1006/jmbi.1995.0247 991:Nucleic Acids Research 330:Assembly and extrusion 144: 106: 35: 1984:Nature Communications 1003:10.1093/nar/5.12.4495 485:10.1093/femsre/fuu007 142: 104: 33: 2371:Escherichia virus f1 1801:10.3390/ijms13045179 175:Virus classification 2264:(72): 10752–10755. 2221:(47): 24214–24227. 2095:2004NanoL...4..387L 2044:(25): 13987–14000. 1996:2013NatCo...4.2756O 1641:1985Sci...228.1315S 1635:(4705): 1315–1317. 1555:10.1021/bi00090a026 1110:Nature Microbiology 154:open reading frames 65:) including phages 2459:Structural biology 2270:10.1039/C9CC04909F 2227:10.1039/D0NR07320B 2004:10.1038/ncomms3756 1623:Smith, G. (1985). 861:10.1007/BF00270890 145: 107: 79:F fertility factor 36: 2449:Membrane proteins 2421: 2420: 2333:Taxon identifiers 2167:(10): 5631–5639. 2138:10.1021/ja506346f 2103:10.1021/nl034911t 1594:10.1021/cr4005692 1588:(13): 6880–6911. 1520:10.1021/bi9718144 1116:(11): 1895–1906. 963:978-981-10-8455-3 693:978-3-319-72076-0 572:10.1021/jp2079742 540:978-2-88945-095-4 337:membrane proteins 284: 283: 134:fiber diffraction 130:Protein Data Bank 126:fiber diffraction 59:filamentous phage 16:(Redirected from 2471: 2454:Membrane biology 2414: 2413: 2401: 2400: 2388: 2387: 2375: 2374: 2373: 2360: 2359: 2358: 2328: 2300: 2299: 2281: 2253: 2247: 2246: 2209: 2203: 2202: 2184: 2156: 2150: 2149: 2132:(47): 16508–14. 2121: 2115: 2114: 2078: 2072: 2071: 2061: 2032: 2026: 2025: 2015: 1975: 1969: 1968: 1958: 1948: 1927:Dogic Z (2016). 1924: 1918: 1917: 1881: 1875: 1874: 1864: 1854: 1830: 1824: 1823: 1813: 1803: 1779: 1773: 1772: 1732: 1726: 1722: 1716: 1715: 1675: 1669: 1668: 1620: 1614: 1613: 1582:Chemical Reviews 1573: 1567: 1566: 1549:(39): 10479–88. 1538: 1532: 1531: 1503: 1497: 1496: 1468: 1462: 1461: 1425: 1419: 1418: 1390: 1384: 1383: 1373: 1363: 1361:10.3390/v9040073 1339: 1333: 1332: 1304: 1298: 1297: 1269: 1263: 1262: 1234: 1228: 1227: 1191: 1185: 1184: 1174: 1150: 1144: 1143: 1133: 1101: 1095: 1094: 1066: 1060: 1059: 1031: 1025: 1024: 1014: 997:(12): 4495–503. 982: 976: 975: 941: 932: 931: 921: 911: 887: 881: 880: 844: 835: 834: 806: 800: 799: 771: 765: 764: 736: 730: 729: 727: 726: 712: 706: 705: 671: 665: 664: 644: 633: 632: 622: 590: 584: 583: 551: 545: 544: 532: 514: 508: 507: 497: 487: 463: 457: 456: 446: 414: 386:and colleagues. 183: 182: 164: 27:Group of viruses 21: 2479: 2478: 2474: 2473: 2472: 2470: 2469: 2468: 2424: 2423: 2422: 2417: 2409: 2404: 2396: 2391: 2383: 2378: 2369: 2368: 2363: 2354: 2353: 2348: 2335: 2308: 2303: 2255: 2254: 2250: 2211: 2210: 2206: 2158: 2157: 2153: 2123: 2122: 2118: 2080: 2079: 2075: 2034: 2033: 2029: 1977: 1976: 1972: 1926: 1925: 1921: 1883: 1882: 1878: 1832: 1831: 1827: 1781: 1780: 1776: 1734: 1733: 1729: 1723: 1719: 1677: 1676: 1672: 1622: 1621: 1617: 1575: 1574: 1570: 1540: 1539: 1535: 1514:(28): 10181–7. 1505: 1504: 1500: 1470: 1469: 1465: 1427: 1426: 1422: 1392: 1391: 1387: 1341: 1340: 1336: 1306: 1305: 1301: 1271: 1270: 1266: 1236: 1235: 1231: 1193: 1192: 1188: 1152: 1151: 1147: 1103: 1102: 1098: 1068: 1067: 1063: 1033: 1032: 1028: 984: 983: 979: 964: 943: 942: 935: 889: 888: 884: 846: 845: 838: 808: 807: 803: 773: 772: 768: 738: 737: 733: 724: 722: 714: 713: 709: 694: 673: 672: 668: 646: 645: 636: 592: 591: 587: 566:(51): 15370–9. 553: 552: 548: 541: 516: 515: 511: 465: 464: 460: 416: 415: 408: 404: 392: 380: 363: 358: 332: 311: 298: 293: 177: 150: 111:worm-like chain 99: 28: 23: 22: 15: 12: 11: 5: 2477: 2475: 2467: 2466: 2461: 2456: 2451: 2446: 2444:Phage proteins 2441: 2439:Bacteriophages 2436: 2426: 2425: 2419: 2418: 2416: 2415: 2402: 2389: 2376: 2361: 2345: 2343: 2337: 2336: 2331: 2325: 2324: 2319: 2314: 2307: 2306:External links 2304: 2302: 2301: 2248: 2204: 2151: 2116: 2089:(3): 387–390. 2073: 2027: 1970: 1919: 1892:(4): 286–303. 1876: 1825: 1794:(4): 5179–94. 1774: 1747:(1): 433–455. 1727: 1717: 1690:(2): 305–318. 1670: 1615: 1568: 1533: 1498: 1479:(1): 297–303. 1463: 1420: 1385: 1334: 1299: 1280:(8): 1711–22. 1264: 1229: 1202:(7): 429–440. 1186: 1145: 1096: 1061: 1042:(1–3): 35–58. 1026: 977: 962: 933: 882: 836: 801: 766: 747:(3): 397–410. 731: 720:NobelPrize.org 707: 692: 666: 634: 585: 546: 539: 509: 458: 405: 403: 400: 399: 398: 391: 388: 384:Angela Belcher 379: 376: 362: 359: 357: 354: 331: 328: 320:rolling circle 310: 307: 297: 294: 292: 289: 282: 281: 274: 270: 269: 262: 258: 257: 250: 246: 245: 242:Faserviricetes 238: 234: 233: 230:Hofneiviricota 226: 222: 221: 214: 210: 209: 202: 195: 194: 189: 185: 184: 171: 170: 149: 146: 98: 95: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2476: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2431: 2429: 2412: 2407: 2403: 2399: 2394: 2390: 2386: 2381: 2377: 2372: 2366: 2362: 2357: 2351: 2347: 2346: 2344: 2342: 2338: 2334: 2329: 2323: 2320: 2318: 2315: 2313: 2310: 2309: 2305: 2297: 2293: 2289: 2285: 2280: 2279:1721.1/125988 2275: 2271: 2267: 2263: 2259: 2252: 2249: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2208: 2205: 2200: 2196: 2192: 2188: 2183: 2182:1721.1/126086 2178: 2174: 2170: 2166: 2162: 2155: 2152: 2147: 2143: 2139: 2135: 2131: 2127: 2120: 2117: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2084: 2077: 2074: 2069: 2065: 2060: 2059:1721.1/102981 2055: 2051: 2047: 2043: 2039: 2031: 2028: 2023: 2019: 2014: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1974: 1971: 1966: 1962: 1957: 1952: 1947: 1942: 1938: 1934: 1930: 1923: 1920: 1915: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1880: 1877: 1872: 1868: 1863: 1858: 1853: 1848: 1844: 1840: 1836: 1829: 1826: 1821: 1817: 1812: 1807: 1802: 1797: 1793: 1789: 1785: 1778: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1731: 1728: 1721: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1674: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1638: 1634: 1630: 1626: 1619: 1616: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1569: 1564: 1560: 1556: 1552: 1548: 1544: 1537: 1534: 1529: 1525: 1521: 1517: 1513: 1509: 1502: 1499: 1494: 1490: 1486: 1482: 1478: 1474: 1467: 1464: 1459: 1455: 1451: 1447: 1443: 1439: 1436:(3): 747–53. 1435: 1431: 1424: 1421: 1416: 1412: 1408: 1404: 1401:(3): 627–38. 1400: 1396: 1389: 1386: 1381: 1377: 1372: 1367: 1362: 1357: 1353: 1349: 1345: 1338: 1335: 1330: 1326: 1322: 1318: 1315:(3): 305–13. 1314: 1310: 1303: 1300: 1295: 1291: 1287: 1283: 1279: 1275: 1268: 1265: 1260: 1256: 1252: 1248: 1245:(2): 266–73. 1244: 1240: 1233: 1230: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1190: 1187: 1182: 1178: 1173: 1168: 1164: 1160: 1156: 1149: 1146: 1141: 1137: 1132: 1127: 1123: 1119: 1115: 1111: 1107: 1100: 1097: 1092: 1088: 1084: 1080: 1076: 1072: 1065: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1030: 1027: 1022: 1018: 1013: 1008: 1004: 1000: 996: 992: 988: 981: 978: 973: 969: 965: 959: 955: 951: 947: 940: 938: 934: 929: 925: 920: 915: 910: 905: 901: 897: 893: 886: 883: 878: 874: 870: 866: 862: 858: 854: 850: 843: 841: 837: 832: 828: 824: 820: 816: 812: 805: 802: 797: 793: 789: 785: 781: 777: 770: 767: 762: 758: 754: 750: 746: 742: 735: 732: 721: 717: 711: 708: 703: 699: 695: 689: 685: 681: 677: 670: 667: 662: 658: 654: 650: 643: 641: 639: 635: 630: 626: 621: 616: 612: 608: 604: 600: 596: 589: 586: 581: 577: 573: 569: 565: 561: 557: 550: 547: 542: 536: 531: 526: 522: 521: 513: 510: 505: 501: 496: 491: 486: 481: 478:(4): 465–87. 477: 473: 469: 462: 459: 454: 450: 445: 440: 436: 432: 429:(4): 401–27. 428: 424: 420: 413: 411: 407: 401: 397: 394: 393: 389: 387: 385: 377: 375: 371: 367: 360: 355: 353: 349: 346: 345:Walker motifs 341: 338: 329: 327: 323: 321: 315: 308: 306: 304: 295: 290: 288: 280: 279: 275: 272: 271: 268: 267: 263: 260: 259: 256: 255: 254:Tubulavirales 251: 248: 247: 244: 243: 239: 236: 235: 232: 231: 227: 224: 223: 220: 219: 215: 212: 211: 208: 207: 203: 200: 197: 196: 193: 190: 187: 186: 181: 176: 172: 169: 165: 162: 158: 155: 147: 141: 137: 135: 131: 127: 123: 118: 116: 112: 103: 96: 94: 92: 88: 87:phage display 84: 80: 76: 72: 68: 64: 60: 56: 52: 51: 46: 45: 40: 32: 19: 2340: 2261: 2257: 2251: 2218: 2214: 2207: 2164: 2160: 2154: 2129: 2125: 2119: 2086: 2083:Nano Letters 2082: 2076: 2041: 2037: 2030: 1987: 1983: 1973: 1936: 1932: 1922: 1889: 1885: 1879: 1842: 1838: 1828: 1791: 1787: 1777: 1744: 1740: 1730: 1720: 1687: 1683: 1673: 1632: 1628: 1618: 1585: 1581: 1571: 1546: 1543:Biochemistry 1542: 1536: 1511: 1508:Biochemistry 1507: 1501: 1476: 1472: 1466: 1433: 1429: 1423: 1398: 1394: 1388: 1351: 1347: 1337: 1312: 1308: 1302: 1277: 1273: 1267: 1242: 1238: 1232: 1199: 1195: 1189: 1162: 1158: 1148: 1113: 1109: 1099: 1077:(1): 23–32. 1074: 1070: 1064: 1039: 1035: 1029: 994: 990: 980: 945: 899: 895: 885: 855:(2): 171–8. 852: 848: 814: 810: 804: 782:(1): 42–53. 779: 775: 769: 744: 740: 734: 723:. Retrieved 719: 710: 675: 669: 655:(2): 51–76. 652: 648: 602: 599:EMBO Reports 598: 588: 563: 559: 549: 519: 512: 475: 471: 461: 426: 422: 381: 372: 368: 364: 356:Applications 350: 342: 333: 324: 316: 312: 299: 285: 277: 276: 265: 253: 241: 229: 217: 206:Monodnaviria 205: 198: 188:(unranked): 167: 159: 151: 119: 108: 77:bearing the 62: 54: 49: 48: 43: 42: 38: 37: 2365:Wikispecies 1990:(1): 2756. 1165:(1): 1–15. 495:10453/65260 309:Replication 53:ilamentous 2434:Inoviridae 2428:Categories 725:2021-04-10 402:References 291:Life cycle 266:Inoviridae 2312:ViralZone 2296:201115233 2243:227950477 2215:Nanoscale 2199:104742577 2191:2574-0970 2111:1530-6984 2068:1932-7447 1761:0732-0582 1725:1.1-1.37. 1704:0378-1119 1657:0036-8075 1602:0009-2665 1354:(4): 73. 1224:115153017 296:Infection 218:Loebvirae 213:Kingdom: 115:polyphage 97:Structure 47:specific 39:Ff phages 2398:11459734 2356:Q5424175 2350:Wikidata 2322:ATCC M13 2288:31432818 2235:33289758 2146:25343220 2022:24220635 1965:27446051 1939:: 1013. 1914:73434013 1906:30729435 1871:26300850 1820:22606037 1610:24823319 1458:46531024 1380:28397779 1329:14127828 1309:Virology 1294:24440124 1259:16373072 1216:30988511 1181:12855161 1140:31332386 972:29900501 928:25941520 877:22923713 817:: 3–12. 776:Virology 741:Virology 702:29549632 661:21502666 629:30952693 580:22085310 504:25670735 390:See also 278:Inovirus 261:Family: 225:Phylum: 168:Inovirus 148:Genetics 75:bacteria 63:Inovirus 18:F1 phage 2317:ATCC fd 2091:Bibcode 2013:3930201 1992:Bibcode 1956:4927585 1862:4523942 1845:: 755. 1811:3344273 1769:8011287 1712:3149606 1665:4001944 1637:Bibcode 1629:Science 1563:8399194 1528:9665724 1493:3966795 1450:7226228 1415:7752229 1371:5408679 1348:Viruses 1131:6813254 1091:9224870 1056:6282703 919:4403547 902:: 316. 831:2055478 796:5807970 761:5921643 620:6549030 453:3540571 273:Genus: 249:Order: 237:Class: 81:. The 61:(genus 2385:BPHAF1 2294:  2286:  2241:  2233:  2197:  2189:  2144:  2109:  2066:  2020:  2010:  1963:  1953:  1912:  1904:  1869:  1859:  1818:  1808:  1767:  1759:  1710:  1702:  1663:  1655:  1608:  1600:  1561:  1526:  1491:  1456:  1448:  1413:  1378:  1368:  1327:  1292:  1257:  1222:  1214:  1179:  1138:  1128:  1089:  1054:  1021:745987 1019:  1012:342768 1009:  970:  960:  926:  916:  875:  869:345091 867:  829:  794:  759:  700:  690:  659:  627:  617:  578:  537:  502:  451:  444:373080 441:  122:capsid 83:virion 69:, fd, 55:phages 2411:10863 2393:IRMNG 2292:S2CID 2239:S2CID 2195:S2CID 1910:S2CID 1454:S2CID 1220:S2CID 873:S2CID 605:(6). 303:pilus 199:Realm 192:Virus 41:(for 2406:NCBI 2380:EPPO 2284:PMID 2231:PMID 2187:ISSN 2142:PMID 2107:ISSN 2064:ISSN 2018:PMID 1961:PMID 1902:PMID 1867:PMID 1816:PMID 1765:PMID 1757:ISSN 1708:PMID 1700:ISSN 1684:Gene 1661:PMID 1653:ISSN 1606:PMID 1598:ISSN 1559:PMID 1524:PMID 1489:PMID 1446:PMID 1430:Cell 1411:PMID 1376:PMID 1325:PMID 1290:PMID 1255:PMID 1212:PMID 1177:PMID 1136:PMID 1087:PMID 1071:Gene 1052:PMID 1036:Gene 1017:PMID 968:PMID 958:ISBN 924:PMID 865:PMID 827:PMID 811:Gene 792:PMID 757:PMID 698:PMID 688:ISBN 657:PMID 625:PMID 576:PMID 535:ISBN 500:PMID 449:PMID 2274:hdl 2266:doi 2223:doi 2177:hdl 2169:doi 2134:doi 2130:136 2099:doi 2054:hdl 2046:doi 2042:119 2008:PMC 2000:doi 1951:PMC 1941:doi 1894:doi 1857:PMC 1847:doi 1806:PMC 1796:doi 1749:doi 1692:doi 1645:doi 1633:228 1590:doi 1586:114 1551:doi 1516:doi 1481:doi 1477:236 1438:doi 1403:doi 1399:248 1366:PMC 1356:doi 1317:doi 1282:doi 1278:426 1247:doi 1243:356 1204:doi 1167:doi 1163:224 1126:PMC 1118:doi 1079:doi 1075:192 1044:doi 1007:PMC 999:doi 950:doi 914:PMC 904:doi 857:doi 853:159 819:doi 815:100 784:doi 749:doi 680:doi 615:PMC 607:doi 568:doi 564:115 525:doi 490:hdl 480:doi 439:PMC 431:doi 71:M13 2430:: 2408:: 2395:: 2382:: 2367:: 2352:: 2290:. 2282:. 2272:. 2262:55 2260:. 2237:. 2229:. 2219:12 2217:. 2193:. 2185:. 2175:. 2163:. 2140:. 2128:. 2105:. 2097:. 2085:. 2062:. 2052:. 2040:. 2016:. 2006:. 1998:. 1986:. 1982:. 1959:. 1949:. 1935:. 1931:. 1908:. 1900:. 1890:61 1888:. 1865:. 1855:. 1841:. 1837:. 1814:. 1804:. 1792:13 1790:. 1786:. 1763:. 1755:. 1745:12 1743:. 1739:. 1706:. 1698:. 1688:73 1686:. 1682:. 1659:. 1651:. 1643:. 1631:. 1627:. 1604:. 1596:. 1584:. 1580:. 1557:. 1547:32 1545:. 1522:. 1512:37 1510:. 1487:. 1475:. 1452:. 1444:. 1434:23 1432:. 1409:. 1397:. 1374:. 1364:. 1350:. 1346:. 1323:. 1313:22 1311:. 1288:. 1276:. 1253:. 1241:. 1218:. 1210:. 1200:17 1198:. 1175:. 1161:. 1157:. 1134:. 1124:. 1112:. 1108:. 1085:. 1073:. 1050:. 1040:16 1038:. 1015:. 1005:. 993:. 989:. 966:. 956:. 936:^ 922:. 912:. 898:. 894:. 871:. 863:. 851:. 839:^ 825:. 813:. 790:. 780:39 778:. 755:. 745:30 743:. 718:. 696:. 686:. 653:13 651:. 637:^ 623:. 613:. 603:20 601:. 597:. 574:. 562:. 558:. 533:. 498:. 488:. 476:39 474:. 470:. 447:. 437:. 427:50 425:. 421:. 409:^ 301:F- 201:: 67:f1 2298:. 2276:: 2268:: 2245:. 2225:: 2201:. 2179:: 2171:: 2165:1 2148:. 2136:: 2113:. 2101:: 2093:: 2087:4 2070:. 2056:: 2048:: 2024:. 2002:: 1994:: 1988:4 1967:. 1943:: 1937:7 1916:. 1896:: 1873:. 1849:: 1843:6 1822:. 1798:: 1771:. 1751:: 1714:. 1694:: 1667:. 1647:: 1639:: 1612:. 1592:: 1565:. 1553:: 1530:. 1518:: 1495:. 1483:: 1460:. 1440:: 1417:. 1405:: 1382:. 1358:: 1352:9 1331:. 1319:: 1296:. 1284:: 1261:. 1249:: 1226:. 1206:: 1183:. 1169:: 1142:. 1120:: 1114:4 1093:. 1081:: 1058:. 1046:: 1023:. 1001:: 995:5 974:. 952:: 930:. 906:: 900:6 879:. 859:: 833:. 821:: 798:. 786:: 763:. 751:: 728:. 704:. 682:: 663:. 631:. 609:: 582:. 570:: 543:. 527:: 506:. 492:: 482:: 455:. 433:: 50:f 44:F 20:)

Index

F1 phage

filamentous phage
f1
M13
bacteria
F fertility factor
virion
phage display
Nobel Prize in Chemistry

worm-like chain
polyphage
capsid
fiber diffraction
Protein Data Bank
fiber diffraction

open reading frames
Virus classification
Edit this classification
Virus
Monodnaviria
Loebvirae
Hofneiviricota
Faserviricetes
Tubulavirales
Inoviridae
pilus
rolling circle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑