Knowledge (XXG)

Functional electrical stimulation

Source 📝

459:
muscles in a sequence similar to the one that brain uses to enable locomotion. The hybrid assistive systems (HAS) and the RGO walking neuroprostheses are devices that also apply active and passive braces, respectively. The braces were introduced to provide additional stability during standing and walking. A major limitation of neuroprostheses for walking that are based on surface stimulation is that the hip flexors cannot be stimulated directly. Therefore, hip flexion during walking must come from voluntary effort, which is often absent in paraplegia, or from the flexor withdrawal reflex. Implanted systems have the advantage of being able to stimulate the hip flexors, and therefore, to provide better muscle selectivity and potentially better gait patterns. Hybrid systems with exoskeleton have been also proposed to solve this problem. These technologies have been found to be successful and promising, but at the present time these FES systems are mostly used for exercise purposes and seldom as an alternative to wheelchair mobility.
496:
post stroke patients who used FES versus patients that did not, the patients that used FES had more functional benefits. The scores suggested that FES decreases spasticity of wrist flexors as compared to non-FES and motor outcomes showed improved recovery in upper extremities, specifically when using the BCI-FES system. In the end the study showed that it is difficult to say which specific FES system is best. Many research studies showed that closed-loop FES, or BCI/EMG, are more beneficial than open-loop FES, or manual, for motor recovery. Among closed-loop FES, which system is more effective (either BCI-FES or EMG-FES) remains unspecified, because as of right now no randomized controlled clinical trial has been conducted to directly compare the two and their benefits when in the context of neurorehabilitation. An open-loop FES has been widely used clinically for many years when treating post stroke patients, whereas closed-loop FES is typically applied in the laboratory setting as a research protocol (especially BCI-FES).
531: 373:
parameters that are regulated by the FES devices. The FES devices can be current or voltage regulated. Current regulated FES systems always deliver the same charge to the tissue regardless of the skin/tissue resistance. Because of that, the current regulated FES systems do not require frequent adjustments of the stimulation intensity. The voltage regulated devices may require more frequent adjustments of the stimulation intensity as the charge that they deliver changes as the skin/tissue resistance changes. The properties of the stimulation pulse trains and how many channels are used during stimulation define how complex and sophisticated FES-induced function is. The system can be as simple such as FES systems for muscle strengthening or they can be complex such as FES systems used to deliver simultaneous reaching and grasping, or bipedal locomotion.
317:. Typically, one "wave" of action potentials will propagate along the axon towards the muscle (orthodromic propagation) and concurrently, as the other "wave" of action potentials will propagate towards the cell body in the central nervous system (antidromic propagation). While the direction of propagation in case of the antidromic stimulation and the sensory nerve stimulation is the same, i.e., towards the central nervous system, their end effects are very different. The antidromic stimulus has been considered an irrelevant side effect of FES. However, in recent years a hypothesis has been presented suggesting the potential role of the antidromic stimulation in neurorehabilitation. Typically, FES is concerned with orthodromic stimulation and uses it to generate coordinated muscle contractions. 527:
effect" is used to describe a long term improvement or restoration of function following a period of using the device which is still present even when the device is switched off. A further complication to measuring an orthotic effect and any long term training or therapeutic effects is the presence of a so-called "temporary carry over effect". Liberson et al., 1961 was the first to observe that some stroke patients appeared to benefit from a temporary improvement in function and were able to dorsiflex their foot for up to an hour after the electrical stimulation had been turned off. It has been hypothesised that this temporary improvement in function may be linked to a long term training or therapeutic effect.
585:
the potential to improve a number of different areas including muscle mass and strength, spasticity, passive range of motion, upper extremity function, walking speed, positioning of the foot and ankle kinematics. The review further concludes that adverse events were rare and the technology is safe and well tolerated by this population. The applications of FES for children with cerebral palsy are similar to those for adults. Some common applications of FES devices include stimulation of muscles whilst mobilizing to strengthen muscle activity, to reduce muscle spasticity, to facilitate initiation of muscle activity, or to provide a memory of movement.
511:, characterized by a lack of dorsiflexion during the swing phase of gait, resulting in short, shuffling strides. It has been shown that FES can be used to effectively compensate for the drop foot during the swing phase of the gait. At the moment just before the heel off phase of gait occurs, the stimulator delivers a stimulus to the common peroneal nerve, which results in contraction of the muscles responsible for dorsiflexion. There are currently a number of drop foot stimulators that use surface and implanted FES technologies. Drop foot stimulators have been used successfully with various patient populations, such as 280:, which represent a brief change in cell electric potential of approximately 80–90 mV. Nerve signals are frequency modulated; i.e. the number of action potentials that occur in a unit of time is proportional to the intensity of the transmitted signal. Typical action potential frequency is between 4 and 12 Hz. An electrical stimulation can artificially elicit this action potential by changing the electric potential across a nerve cell membrane (this also includes the nerve axon) by inducing electrical charge in the immediate vicinity of the outer membrane of the cell. 86: 90:
because motor neurons no longer receive sufficient input from the central nervous system. (b) A functional electrical stimulation system injects electrical current into the cell. (c) The intact but dormant axon receives the stimulus and propagates an action potential to (d) the neuromuscular junction. (e) The corresponding muscle fibers contract and generate (f) muscle force. (g) A train of negative pulses is produced. (h) Depolarization occurs where negative current enters the axon at the "active" electrode indicated.
27: 430:, or restore bowel and bladder function. High intensity FES of the quadriceps muscles allows patients with complete lower motor neuron lesion to increase their muscle mass, muscle fiber diameter, improve ultrastructural organization of contractile material, increase of force output during electrical stimulation and perform FES assisted stand-up exercises. Regeneration associated genes (RAG) expression, responsible for axonal outgrowth and survival, is promoted with administration of FES. 369:
stimulation selectivity, which is a desired characteristics of FES systems. To achieve higher selectivity while applying lower stimulation amplitudes, it is recommended that both cathode and anode are in the vicinity of the nerve that is stimulated. The drawbacks of the implanted electrodes are they require an invasive surgical procedure to install, and, as is the case with every surgical intervention, there exists a possibility of infection following implantation.
324:. The flexor withdrawal reflex occurs naturally when a sudden, painful sensation is applied to the sole of the foot. It results in flexion of the hip, knee and ankle of the affected leg, and extension of the contralateral leg in order to get the foot away from the painful stimulus as quickly as possible. The sensory nerve stimulation can be used to generate desired motor tasks, such as evoking flexor withdrawal reflex to facilitate walking in individuals following 492:; both of which will interfere with the rehabilitation process. Functional electrical stimulation has been found to be effective for the management of pain and reduction of shoulder subluxation, as well as accelerating the degree and rate of motor recovery. Furthermore, the benefits of FES are maintained over time; research has demonstrated that the benefits are maintained for at least 24 months. 168: 544:
were the first to pioneer FES in stroke patients. More recently, there have been a number of studies that have been conducted in this area. A systematic review conducted in 2012 on the use of FES in chronic stroke included seven randomized controlled trials with a total of 231 participants. The review found a small treatment effect for using FES for the 6-minute walking test.
447:
adequately trained thoracic-level complete paraplegics patients who complete training that includes daily treadmill sessions, with some patients exceeding one mile per walk. Also, Parestep-based walking was reported to result in several medical and psychological benefits, including restoration of near-normal blood flow to lower extremities and holding of bone density decline.
150:). In other words, the FEST is used as a short-term intervention to help an individual's central nervous system re-learn how to execute impaired functions, instead of making them dependent on neuroprostheses for the rest of their life. Initial Phase II clinical trials conducted with FEST for reaching and grasping, and walking were carried out at KITE, the research arm of the 260: 349:), which has implemented a new stimulation pulse that allows the stimulator to generate muscle contractions without causing discomfort during stimulation, which is a common problem with commercially available transcutaneous electrical stimulation systems, based on US Patents 8,880,178 (2014), 9,440,077 (2016), and 9,592,380 (2016) and related foreign patents.) 556:. The first use was reported in 1977 by Carnstam et al., who found that it was possible to generate strength increases through using peroneal stimulation. A more recent study examined the use of FES compared to an exercise group and found that although there was an orthotic effect for the FES group, no training effect in walking speed was found. Further 526:
The term "orthotic effect" can be used to describe the immediate improvement in function observed when the individual switches on their FES device compared to unassisted walking. This improvement disappears as soon as the person switches off their FES device. In contrast, a "training" or "therapeutic
442:
Kralj's approach was extended by Graupe et al. into a digital FES system that employs the power of digital signal processing to result in the Parastep FES system, based on US Patents 5,014,705 (1991), 5,016,636 (1991), 5,070,873 (1991), 5,081,989 (1992), 5,092,329 (1992) and related foreign patents.
89:
Functional electrical stimulation – schematic representation: Illustration of motor neuron stimulation. (a) The cell nucleus is responsible for synthesizing input from dendrites and deciding whether or not to generate signals. Following a stroke or spinal cord injury in mahnoor's muscles are impaired
133:
FES technology has been used to deliver therapies to retrain voluntary motor functions such as grasping, reaching and walking. In this embodiment, FES is used as a short-term therapy, the objective of which is restoration of voluntary function and not lifelong dependence on the FES device, hence the
596:
have issued full guidelines on the treatment of drop foot of central neurological origin (IPG278). NICE have stated that "current evidence on the safety and efficacy (in terms of improving gait) of functional electrical stimulation (FES) for drop foot of central neurological origin appears adequate
495:
A systematic review was done to assess three types of functional electronic stimulation (FES) used in post stroke upper limb rehab and compare them to patients that did not use any FES. The types focused on were manual FES, BCI-FES, and EMG-FES. Studies showed that when comparing clinical scores in
438:
Kralj and his colleagues described a technique for paraplegic gait using surface stimulation, which remains the most popular method in use today. Electrodes are placed over the quadriceps muscles and peroneal nerves bilaterally. The user controls the neuroprosthesis with two pushbuttons attached to
386:
Electrical stimulation had been utilized as far back as ancient Egypt, when it was believed that placing torpedo fish in a pool of water with a human was therapeutic. FES – which involves stimulating the target organ during a functional movement (e.g., walking, reaching for an item) – was initially
584:
spasticity, community mobility and balance skills. A recent comprehensive literature review of the area of using electrical stimulation and FES to treat children with disabilities mostly included studies on children with cerebral palsy. The reviewers summarised the evidence as the treatment having
543:
Hemiparetic stroke patients, who are impacted by the denervation, muscular atrophy, and spasticity, typically experience an abnormal gait pattern due to muscular weakness and the incapacity to voluntary contract certain ankle and hip muscles at the appropriate walking phase. Liberson et al. (1961)
446:
The Parastep's digital design allows a considerable reduction in rate of patient-fatigue by drastically reducing of stimulation pulse-width (100–140 microseconds) and pulse-rate (12–24 per sec.), to result, in walking times of 20–60 minutes and average walking distances of 450 meters per walk, for
360:
and implanted electrodes. The percutaneous electrodes consist of thin wires inserted through the skin and into muscular tissue close to the targeted nerve. These electrodes typically remain in place for a short period of time and are only considered for short-term FES interventions. However, it is
304:
The electrical charge can stimulate both motor and sensory nerves. In some applications, the nerves are stimulated to generate localized muscle activity, i.e., the stimulation is aimed at generating direct muscle contraction. In other applications, stimulation is used to activate simple or complex
458:
The Compex Motion neuroprosthesis for walking is an eight to sixteen channel surface FES system used to restore voluntary walking in stroke and spinal cord injury individuals. This system does not apply peroneal nerve stimulation to enable locomotion. Instead, it activates all relevant lower limb
417:
Injuries to the spinal cord interfere with electrical signals between the brain and the muscles, resulting in paralysis below the level of injury. Restoration of limb function as well as regulation of organ function are the main application of FES, although FES is also used for treatment of pain,
296:
have been severed or damaged (i.e., denervated muscles). However, the majority of the FES systems used today stimulate the nerves or the points where the junction occurs between the nerve and the muscle. The stimulated nerve bundle includes motor nerves (efferent nerves—descending nerves from the
352:
A major limitation of the transcutaneous electrical stimulation is that some nerves, for example those innervating the hip flexors, are too profound to be stimulated using surface electrodes. This limitation can be partly addressed by using arrays of electrodes, which can use several electrical
1548:
Kern H, Carraro U, Adami N, Biral D, Hofer C, Forstner C, Mödlin M, Vogelauer M, Pond A, Boncompagni S, Paolini C, Mayr W, Protasi F, Zampieri S (2010). "Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron
368:
The other class of subcutaneous electrodes is implanted electrodes. These are permanently implanted in the consumer's body and remain in the body for the remainder of the consumer's life. Compared to surface stimulation electrodes, implanted and percutaneous electrodes potentially have higher
341:
surface above the nerve or muscle that needs to be "activated". They are noninvasive, easy to apply, and generally inexpensive. Until recently the common belief in the FES field has been that due to the electrode-skin contact impedance, skin and tissue impedance, and current dispersion during
372:
Typical stimulation protocols used in clinical FES involves trains of electric pulses. Biphasic, charged balanced pulses are employed as they improve the safety of electrical stimulation and minimize some of the adverse effects. Pulse duration, pulse amplitude and pulse frequency are the key
659:
M.R. Popovic, K. Masani and S. Micera, "Chapter 9 – Functional Electrical Stimulation Therapy: Recovery of function following spinal cord injury and stroke," In press, Neurorehabilitation Technology – Second Edition, Z. Rymer, T. Nef and V. Dietz, Ed. Springer Science Publishers in November
678:
M.K. Nagai, C. Marquez-Chin, and M.R. Popovic, "Why is functional electrical stimulation therapy capable of restoring motor function following severe injury to the central nervous system?" Translational Neuroscience, Mark Tuszynski, Ed. Springer Science and Business Media LLC, pp: 479-498,
283:
FES devices take advantage of this property to electrically activate nerve cells, which then may go on to activate muscles or other nerves. However, special care must be taken in designing safe FES devices, as electric current through tissue can lead to adverse effects such as decrease in
284:
excitability or cell death. This may be due to thermal damage, electroporation of the cell membrane, toxic products from electrochemical reactions at the electrode surface, or over-excitation of the targeted neurons or muscles. Typically FES is concerned with stimulation of neurons and
564:
and a reduced number of falls for those using FES compared with exercise. A further small scale (n=32) longitudinal observational study has found evidence for a significant training effect through using FES. With NMES treatment there were measurable gains in ambulatory function.
3268:
Lichy A., Libin A., Ljunberg I., Groach L., (2007) " Preserving bone health after acute spinal cord injury: Differential responses to a neuromuscular electrical stimulation intervention", Proc. 12th Annual Conf. of the International FES Soc., Philadelphia, PA, Session 2, Paper
472:
recovery, the use of cyclic electrical stimulation has been seen to increase the isometric strength of wrist extensors. In order to increase strength of wrist extensors, there must be a degree of motor function at the wrist spared following the stroke and have significant
109:
contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with
2751:
Esnouf JE, Taylor PN, Mann GE, Barrett CL (1 September 2010). "Impact on activities of daily living using a functional electrical stimulation device to improve dropped foot in people with multiple sclerosis, measured by the Canadian Occupational Performance Measure".
365:, have been able to safely use percutaneous electrodes with individual patients for months and years at a time. One of the drawbacks of using the percutaneous electrodes is that they are prone to infection and special care has to be taken to prevent such events. 395:
was coined by Moe and Post, and used in a patent entitled, "Electrical stimulation of muscle deprived of nervous control with a view of providing muscular contraction and producing a functionally useful moment". Offner's patent described a system used to treat
2860:
Wahls TL, Reese D, Kaplan D, Darling WG (2010). "Rehabilitation with neuromuscular electrical stimulation leads to functional gains in ambulation in patients with secondary progressive and primary progressive multiple sclerosis: a case series report".
3273:
Liu Yi-Liang, Ling Qi-Dan, Kang En-Tang, Neoh Koon-Gee, Liaw Der-Jang, Wang Kun-Li, Liou Wun-Tai, Zhu Chun-Xiang, Siu-Hung Chan Daniel (2009). "Volatile Electrical Switching in a Functional Polyimide Containing Electron-donor and -acceptor Moieties".
450:
Walking performance with the Parastep system greatly depends on rigorous upper body conditioning-training and on a completing 3–5 months of a daily one–two-hour training program which includes 30 of more minutes of treadmill training.
1045: 1027: 467:
Peripheral nerves have a regeneration rate of ~1mm per day. With nerve injury often requiring a large distance of restoration, down-regulation of regenerative mechanisms over time limits nerve proliferation. In the acute stage of
804:"Functional electrical stimulation therapy for severe hemiplegia: Randomized control trial revisited: La simulation électrique fonctionnelle pour le traitement d'une hémiplégie sévère : un essai clinique aléatoire revisité" 2699:
Barrett CL, Mann GE, Taylor PN, Strike P (1 April 2009). "A randomized trial to investigate the effects of functional electrical stimulation and therapeutic exercise on walking performance for people with multiple sclerosis".
403:
The first commercially available FES devices treated foot drop by stimulating the peroneal nerve during gait. In this case, a switch, located in the heel end of a user's shoe, would activate a stimulator worn by the user.
312:
When a nerve is stimulated, i.e., when sufficient electrical charge is provided to a nerve cell, a localized depolarization of the cell wall occurs resulting in an action potential that propagates toward both ends of the
1389:
Bailey SN, Hardin EC, Kobetic R, Boggs LM, Pinault G, Triolo RJ (2010). "Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury".
1988:
Solomonow M, Baratta R, Hirokawa S, Rightor N, Walker W, Beaudette P, Shoji H, D'Ambrosia R (1989). "The RGO Generation II: muscle stimulation powered orthosis as a practical walking system for thoracic paraplegics".
1751:"Evaluation of a training program for persons with SCI paraplegia using the Parastep®1 ambulation system: Part 5. Lower extremity blood flow and hyperemic responses to occlusion are augmented by ambulation training" 2896:
Street T, Taylor P, Swain I (1 April 2015). "Effectiveness of functional electrical stimulation on walking speed, functional walking category, and clinically meaningful changes for people with multiple sclerosis".
530: 1063: 2060:
Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, Pinault G, Tashman S, Triolo RJ (2009). "Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury".
2024:
Triolo RJ, Bieri C, Uhlir J, Kobetic R, Scheiner A, Marsolais EB (1996). "Implanted Functional Neuromuscular Stimulation systems for individuals with cervical spinal cord injuries: clinical case reports".
2664:
Carnstam B, Larsson LE, Prevec TS (1 January 1977). "Improvement of gait following functional electrical stimulation. I. Investigations on changes in voluntary strength and proprioceptive reflexes".
309:. In other words, the afferent nerves are stimulated to evoke a reflex, which is typically expressed as a coordinated contraction of one or more muscles in response to the sensory nerve stimulation. 3180:"FEScenter.org » Cleveland FES Center." FEScenter.org » Home. Cleveland VA Medical Center, Case Western Reserve University, MetroHealth Medical Center, 3 June 2011. Web. 8 June 2011. < 3225:
Graupe D, Cerrel-Bazo H, Kern H, Carraro U (2008). "Walking Performance, Medical Outcomes and Patient Training in FES of Innervated Muscles for Ambulation by Thoracic-Level Complete Paraplegics".
320:
In the case where sensory nerves are stimulated, the reflex arcs are triggered by the stimulation on sensory nerve axons at specific peripheral sites. One example of such a reflex is the flexor
2271:
Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C, Swain ID (1999). "Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking".
2942:"The orthotic and therapeutic effects following daily community applied functional electrical stimulation in children with unilateral spastic cerebral palsy: a randomised controlled trial" 485:
of the upper extremities following a stroke, use grip strength as a common item. Therefore, increasing strength of wrist extensors will decrease the level of upper extremity disability.
851:"Functional Electrical Stimulation Therapy of Voluntary Grasping Versus Only Conventional Rehabilitation for Patients With Subacute Incomplete Tetraplegia: A Randomized Clinical Trial" 377:
Note: This paragraph was developed in part using material from the following reference. For more information on FES please consult that and other references provided in the paragraph.
1444:
Liberson WT, Holmquest HJ, Scot D, Dow M (1961). "Functional electrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients".
2999:
Bosques G, Martin R, McGee L, Sadowsky C (31 May 2016). "Does therapeutic electrical stimulation improve function in children with disabilities? A comprehensive literature review".
439:
the left and right handles of a walking frame, or on canes or crutches. When the neuroprosthesis is turned on, both quadriceps muscles are stimulated to provide a standing posture.
3142:
Cooper E.B., Scherder E.J.A., Cooper J.B (2005) "Electrical treatment of reduced consciousness: experience with coma and Alzheimer's disease," Neuropsyh Rehab (UK).Vol. 15,389-405.
929:
Control of Movement for the Physically Disabled: Control for Rehabilitation Technology, Dejan Popovic and Thomas Sinkjaer, Springer Science & Business Media, 6 December 2012.
580:. A recent randomised controlled trial (n=32) found significant orthotic and training effects for children with unilateral spastic cerebral palsy. Improvements were found in 178: 2177:
Chantraine A, Baribeault, Alain, Uebelhart, Daniel, Gremion, Gerald (1999). "Shoulder Pain and Dysfunction in Hemiplegia: Effects of Functional Electrical Stimulation".
2104: 1708: 593: 3413: 3364: 3309: 2509: 2453: 2355: 1845: 1790: 1425: 1375: 1312: 1259: 1112: 974: 741: 328:, or they can be used to alter reflexes or the function of the central nervous system. In the later case, the electrical stimulation is commonly described by the term 534:
This image describes functional electrical stimulation therapy for walking. The therapy was used to help retrain incomplete spinal cord injured individuals to walk .
443:
The Parastep system became the first FES system for standing and walking to receive the US FDA approval (FDA, PMA P900038, 1994) and become commercially available.
568:
However, a further large observational study (n=187) was supportive of previous findings and found a significant improvement in orthotic effect for walking speed.
2369:
Hausdorff JM, Ring H (2008). "Effects of a new radio frequency-controlled neuroprosthesis on gait symmetry and rhythmicity in patients with chronic hemiparesis".
1216:
Popovic MR, Thrasher TA, Zivanovic P, Takaki M, Hajek P (2005). "Neuroprosthesis for Retraining Reaching and Grasping Functions in Severe Hemiplegic Patients".
337:
Nerves can be stimulated using either surface (transcutaneous) or subcutaneous (percutaneous or implanted) electrodes. The surface electrodes are placed on the
2578:
Pereira S, Mehta S, McIntyre A, Lobo L, Teasell RW (1 December 2012). "Functional electrical stimulation for improving gait in persons with chronic stroke".
613:(2015) features a female protagonist with a spinal cord injury who regains mobility via advanced FES technology developed by a fictional biomedical startup. 342:
stimulation, much higher-intensity pulses are required to stimulate nerves using surface stimulation electrodes as compared to the subcutaneous electrodes.
101:) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the 939:
Reichel M, Breyer T, Mayr W, Rattay F (2002). "Simulation of the three-dimensional electrical field in the course of functional electrical stimulation".
2805:"Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders" 2308:"Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders" 3135:
Chudler, Eric H. "Neuroscience For Kids - Cells of the Nervous System." UW Faculty Web Server. Eric H. Chudler, 1 June 2011. Web. 7 June 2011.<
3374:"A Functional Magnetic Resonance Imaging Study of Human Brain in Pain-related Areas Induced by Electrical Stimulation with Different Intensities" 239: 126:. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as 3261:
Johnston, Laurance. "FES." Human Spinal Cord Injury: New & Emerging Therapies. Institute of Spinal Cord Injury, Iceland. Web. 7 June 2011.
211: 3163: 477:. Patients who will elicit benefits of cyclic electrical stimulation of the wrist extensors must be highly motivated to follow through with 127: 48: 1673:
Graupe D, Davis R, Kordylewski H, Kohn K (1998). "Ambulation by traumatic T4-12 paraplegics using functional neuromuscular stimulation".
218: 669:
M. Claudia et al., (2000), Artificial Grasping System for the Paralyzed Hand, International Society for Artificial Organs, Vol. 24 No. 3
3042:
Singleton C, Jones H, Maycock L (2019). "Functional electrical stimulation (FES) for children and young people with cerebral palsy".
694:"A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency" 3188:
Graupe D (2002). "An overview of the state of the art of noninvasive FES for independent ambulation by thoracic level paraplegics".
454:
An alternative approach to the above techniques is the FES system for walking developed using the Compex Motion neuroprosthesis, by
70: 225: 597:
to support the use of this procedure provided that normal arrangements are in place for clinical governance, consent and audit".
481:. After 8 weeks of electrical stimulation, an increase in grip strength can be apparent. Many scales, which assess the level of 151: 757:"Rehabilitation of Reaching and Grasping Function in Severe Hemiplegic Patients Using Functional Electrical Stimulation Therapy" 2467:
Kenney L, Bultstra G, Buschman R, Taylor P, Mann G, Hermens H, Holsheimer J, Nene A, Tenniglo M, van der Aa H, Hobby J (2002).
1650:
Kralj A, Bajd T, and Turk R. "Enhancement of gait restoration in spinal injured patients by functional electrical stimulation.
207: 3325:"Feasibility of Functional Electrical Stimulation for Control of Seated Posture after Spinal Cord Injury: A Simulation Study" 1173:
Popović DB, Popović MB (2009). "Automatic determination of the optimal shape of a surface electrode: selective stimulation".
3319:
Rosenzweig, Mark R., Arnold L. Leiman, and S. Marc. Breedlove. Biological Psychology. Sunderland: Sinauer Associates, 2003.
3316:
Nolte, John, and John Sundsten. The Human Brain: an Introduction to Its Functional Anatomy. 5th ed. St. Louis: Mosby, 2002.
2214:"A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery" 623: 3427: 3111: 1277:(1999). "Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients". 186: 2212:
Khan MA, Fares H, Ghayvat H, Brunner IC, Puthusserypady S, Razavi B, Lansberg M, Poon A, Meador KJ (8 December 2023).
301:
to muscles) and sensory nerves (afferent nerves—ascending nerves from sensory organs to the central nervous system).
41: 35: 561: 197: 182: 3457: 3086:"Functional electrical stimulation for drop foot of central neurological origin | Guidance and guidelines | NICE" 293: 52: 345:(This statement is correct for all commercially available stimulators except MyndMove stimulator (developed my 232: 2412:
Burridge JH, Haugland M, Larsen B, Svaneborg N, Iversen HK, Christensen PB, Pickering RM, Sinkjaer T (2008).
3452: 1128:"Wearable neural prostheses. Restoration of sensory-motor function by transcutaneous electrical stimulation" 3146:
Cooper E.B, Cooper J.B. (2003). "Electrical treatment of coma via the median nerve". In Y. Katayama (ed.).
1944: 633: 362: 298: 102: 2414:"Patients' perceptions of the benefits and problems of using the ActiGait implanted drop-foot stimulator" 3437: 3407: 3358: 3303: 2503: 2447: 2349: 2098: 1839: 1784: 1702: 1419: 1369: 1306: 1253: 1106: 968: 735: 123: 85: 692:
Kapadia N., Masani K., Craven B.C., Giangregorio L.M., Hitzig S.L., Richards K., Popovic M.R. (2014).
3283: 2803:
Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J, Kuether G (1 February 2010).
557: 1949: 1043:, "Functional electrical stimulation device and system, and use thereof", issued 2014-09-29 1025:, "Functional electrical stimulation device and system, and use thereof", issued 2011-06-02 2468: 1935:
Popovic D, Tomović R, Schwirtlich L (1989). "Hybrid assistive system--the motor neuroprosthesis".
3250: 3213: 3067: 2842: 2785: 2733: 2611: 2560: 2394: 2337: 2086: 1970: 1896:"Gait training regimen for incomplete spinal cord injury using functional electrical stimulation" 1727: 1574: 1241: 1198: 1155: 886: 831: 784: 553: 520: 516: 111: 1859:
Popovic MR, Keller T (2005). "Modular transcutaneous functional electrical stimulation system".
1471:
Moe J. H., Post H. W. (1962). "Functional electrical stimulation for ambulation in hemiplegia".
3395: 3346: 3242: 3205: 3169: 3159: 3059: 3024: 3016: 2981: 2963: 2922: 2914: 2878: 2834: 2826: 2777: 2769: 2725: 2717: 2681: 2673: 2646: 2603: 2595: 2552: 2544: 2491: 2435: 2386: 2329: 2288: 2253: 2235: 2194: 2159: 2141: 2120:"The Effect of Electrical Stimulation on Nerve Regeneration Following Peripheral Nerve Injury" 2078: 2042: 2006: 1962: 1917: 1876: 1827: 1772: 1690: 1633: 1615: 1594:"The Effect of Electrical Stimulation on Nerve Regeneration Following Peripheral Nerve Injury" 1566: 1530: 1480: 1453: 1407: 1357: 1294: 1233: 1190: 1147: 1094: 1005: 956: 878: 870: 823: 776: 723: 321: 276:. In neurons, information is coded and transmitted as a series of electrical impulses called 3432: 3385: 3336: 3291: 3234: 3197: 3151: 3051: 3008: 2971: 2953: 2906: 2870: 2816: 2761: 2709: 2638: 2587: 2536: 2483: 2425: 2378: 2319: 2280: 2243: 2225: 2186: 2149: 2131: 2070: 2034: 1998: 1954: 1907: 1868: 1817: 1762: 1682: 1623: 1605: 1558: 1520: 1399: 1347: 1339: 1286: 1225: 1182: 1139: 1086: 997: 948: 862: 815: 803: 768: 756: 713: 705: 638: 455: 346: 277: 850: 2306:
Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J, Kuether G (2010).
419: 330: 3287: 2248: 2213: 1668: 1666: 1664: 1662: 1660: 1326:
Kapadia N, Masani K, Craven BC, Giangregorio LM, Hitzig SL, Richards K, Popovic (2014).
988:
Rushton D (2003). "Functional electrical stimulation and rehabilitation—an hypothesis".
2976: 2941: 2154: 2119: 1628: 1593: 1352: 1327: 1274: 718: 693: 628: 577: 273: 2284: 2190: 2038: 1767: 1750: 1001: 3446: 3071: 2564: 2487: 1290: 1229: 952: 849:
Popovic MR, Kapadia N, Zivanovic V, Furlan JC, Craven BC, McGillivray C (June 2011).
581: 418:
pressure, sore prevention, etc. Some examples of FES applications involve the use of
3254: 3217: 3181: 2789: 2398: 2090: 1974: 1872: 1749:
Nash N S, Jacobs P L, Montalvo B M, Klose K J, Guest B, Needham-Shroshire M (1997).
1159: 1090: 920:, G.E. Wnek and G.L. Bowlin, Eds.: Marcel Dekker, Inc., vol. 2, pp. 1056–1065, 2004. 890: 835: 3136: 2846: 2737: 2642: 2615: 2524: 2341: 1578: 1343: 1245: 1186: 1059: 1041: 1023: 788: 709: 606: 427: 357: 2940:
Pool D, Valentine J, Bear N, Donnelly CJ, Elliott C, Stannage K (1 January 2015).
2540: 2002: 1202: 488:
Patients with hemiplegia following a stroke commonly experience shoulder pain and
2382: 3155: 508: 489: 115: 3372:
Yuan Wang, Ming Zhang, Rana Netra, Hai Liu, Chen-wang Jin, Shao-hui Ma (2010).
3201: 3112:"The Rap Sheet, "The Story Behind the Story: No Hard Feelings by Mark Coggins"" 3055: 2910: 2230: 1061:, "Electrical stimulation system with pulse control", issued 2014-03-13 3341: 3324: 2958: 2074: 1723: 1507:
Powell J, David Pandyan, Malcolm Granat, Margart Cameron, David Stott (1999).
1403: 482: 474: 423: 3238: 3063: 3020: 2967: 2918: 2830: 2821: 2804: 2773: 2765: 2721: 2713: 2677: 2599: 2548: 2525:"Trends and Technologies in Rehabilitation of Foot Drop: A Systematic Review" 2324: 2307: 2239: 2145: 1619: 1562: 1525: 1508: 1143: 1127: 874: 866: 819: 772: 3390: 3373: 504: 397: 3399: 3350: 3246: 3209: 3173: 3028: 2985: 2926: 2882: 2838: 2781: 2729: 2607: 2556: 2495: 2469:"An implantable two channel drop foot stimulator: initial clinical results" 2439: 2390: 2333: 2292: 2257: 2198: 2163: 2082: 1921: 1880: 1831: 1637: 1570: 1534: 1484: 1457: 1411: 1361: 1298: 1237: 1194: 1151: 1098: 1009: 960: 882: 827: 780: 727: 552:
FES has also been found to be useful for treating foot drop in people with
3085: 2874: 2650: 2430: 2413: 2118:
Juckett L, Saffari TM, Ormseth B, Senger JL, Moore AM (12 December 2022).
2046: 2010: 1966: 1912: 1895: 1822: 1805: 1776: 1694: 1686: 1592:
Juckett L, Saffari TM, Ormseth B, Senger JL, Moore AM (12 December 2022).
2685: 2136: 1610: 3262: 2591: 589:
National Institute for Health and Care Excellence Guidelines (NICE) (UK)
3012: 478: 196:
if you can. Unsourced or poorly sourced material may be challenged and
3295: 1806:"Functional electrical stimulation therapies after spinal cord injury" 1724:"PARASTEP 30 min walk by compete paraplegic UNBRACED PARAPLEG-70.divx" 1958: 802:
Marquez-Chin C, Bagher S, Zivanovic V, Popovic MR (17 January 2017).
560:
including all participants from the same study found improvements in
512: 469: 325: 306: 289: 269: 119: 106: 1509:"Electrical Stimulation of Wrist Extensors in Poststroke Hemiplegia" 755:
Thrasher TA, Zivanovic V, McIlroy W, Popovic MR (29 October 2008).
529: 285: 84: 3150:. Acta Neurochirurgica Supplements. Vol. 87. pp. 7–10. 3148:
Neurosurgical Re-Engineering of the Damaged Brain and Spinal Cord
1077:
Kuhn A, Keller T, Micera S, Morari (2009). "a simulation study".
2629:
Cook AW (1976). "Electrical stimulation in multiple sclerosis".
907:, John Hall, 13th edition, Elsevier Health Sciences, 31 May 2015 338: 314: 288:. In some applications, FES can be used to directly stimulate 161: 20: 1126:
Micera S, Keller T, Lawrence M, Morari M, Popović DB (2010).
576:
FES has been found to be useful for treating the symptoms of
2523:
Alnajjar F, Zaier R, Khalid S, Gochoo M (28 December 2020).
426:
to walk, stand, restore hand grasp function in people with
3323:
Wilkenfeld Ari J., Audu Musa L., Triolo Ronald J. (2006).
2371:
American Journal of Physical Medicine & Rehabilitation
918:
Encyclopedia of Biomaterials and Biomedical Engineering
193: 3329:
The Journal of Rehabilitation Research and Development
916:
M.R. Popovic and T.A. Thrasher, "Neuroprostheses", in
2754:
Multiple Sclerosis (Houndmills, Basingstoke, England)
2702:
Multiple Sclerosis (Houndmills, Basingstoke, England)
3428:History of Functional Electrical Stimulation, 1998 2063:Journal of Rehabilitation Research and Development 1392:Journal of Rehabilitation Research and Development 3438:Functional electrical stimulation (FES) factsheet 3182:http://fescenter.org/index.php?option=com_content 1132:IEEE Engineering in Medicine and Biology Magazine 391:by Liberson. It was not until 1967 that the term 105:. More specifically, FES can be used to generate 3137:http://faculty.washington.edu/chudler/cells.html 2899:Archives of Physical Medicine and Rehabilitation 2273:Archives of Physical Medicine and Rehabilitation 2179:Archives of Physical Medicine and Rehabilitation 2027:Archives of Physical Medicine and Rehabilitation 1804:Gater D R, Dolbow D, Tsui B, Gorgey A S (2011). 1755:Archives of Physical Medicine and Rehabilitation 1446:Archives of Physical Medicine and Rehabilitation 16:Technique that uses low-energy electrical pulses 2666:Scandinavian Journal of Rehabilitation Medicine 1439: 1437: 1435: 192:Please review the contents of the section and 2103:: CS1 maint: DOI inactive as of April 2024 ( 1707:: CS1 maint: DOI inactive as of March 2024 ( 8: 3412:: CS1 maint: multiple names: authors list ( 3363:: CS1 maint: multiple names: authors list ( 3308:: CS1 maint: multiple names: authors list ( 3001:Journal of Pediatric Rehabilitation Medicine 2508:: CS1 maint: multiple names: authors list ( 2452:: CS1 maint: multiple names: authors list ( 2354:: CS1 maint: multiple names: authors list ( 1937:IEEE Transactions on Bio-Medical Engineering 1844:: CS1 maint: multiple names: authors list ( 1789:: CS1 maint: multiple names: authors list ( 1424:: CS1 maint: multiple names: authors list ( 1374:: CS1 maint: multiple names: authors list ( 1311:: CS1 maint: multiple names: authors list ( 1258:: CS1 maint: multiple names: authors list ( 1111:: CS1 maint: multiple names: authors list ( 973:: CS1 maint: multiple names: authors list ( 740:: CS1 maint: multiple names: authors list ( 356:Subcutaneous electrodes can be divided into 361:worth mentioning that some groups, such as 1894:Thrasher TA, Flett HM, Popovic MR (2006). 3389: 3340: 2975: 2957: 2820: 2429: 2323: 2247: 2229: 2153: 2135: 1948: 1911: 1821: 1766: 1627: 1609: 1524: 1351: 717: 136:functional electrical stimulation therapy 71:Learn how and when to remove this message 808:Canadian Journal of Occupational Therapy 34:This article includes a list of general 649: 3405: 3356: 3301: 2501: 2445: 2347: 2096: 1837: 1782: 1700: 1497:Offner et al. (1965), Patent 3,344,792 1417: 1367: 1304: 1251: 1104: 966: 733: 2809:Neurorehabilitation and Neural Repair 2312:Neurorehabilitation and Neural Repair 1730:from the original on 21 December 2021 855:Neurorehabilitation and Neural Repair 761:Neurorehabilitation and Neural Repair 7: 687: 685: 655: 653: 128:neuromuscular electrical stimulation 1332:The Journal of Spinal Cord Medicine 698:The Journal of Spinal Cord Medicine 208:"Functional electrical stimulation" 3433:Back From the Dead, Wired Magazine 353:contacts to increase selectivity. 40:it lacks sufficient corresponding 14: 1861:Medical Engineering & Physics 1722:Daniel Graupe (27 January 2012). 1079:Medical Engineering & Physics 393:functional electrical stimulation 95:Functional electrical stimulation 2529:Expert Review of Medical Devices 2488:10.1046/j.1525-1594.2002.06949.x 1291:10.1046/j.1525-1594.1999.06360.x 1230:10.1111/j.1094-7159.2005.05221.x 953:10.1046/j.1525-1594.2002.06945.x 258: 166: 152:Toronto Rehabilitation Institute 25: 2580:Topics in Stroke Rehabilitation 1873:10.1016/j.medengphy.2004.08.016 1328:"Effects on walking competency" 1175:Journal of Neuroscience Methods 1091:10.1016/j.medengphy.2009.05.006 2643:10.1080/21548331.1976.11706516 1344:10.1179/2045772314y.0000000263 1273:Bajd T, Kralj A, Stefancic M, 1187:10.1016/j.jneumeth.2008.12.003 905:Textbook of Medical Physiology 710:10.1179/2045772314y.0000000263 463:Stroke and upper limb recovery 194:add the appropriate references 1: 2541:10.1080/17434440.2021.1857729 2285:10.1016/s0003-9993(99)90333-7 2191:10.1016/s0003-9993(99)90146-6 2039:10.1016/s0003-9993(96)90133-1 2003:10.3928/0147-7447-19891001-06 1768:10.1016/S0003-9993(97)90192-1 1002:10.1016/s1350-4533(02)00040-1 624:Electrical muscle stimulation 434:Walking in spinal cord injury 3044:Paediatrics and Child Health 2383:10.1097/phm.0b013e31815e6680 3156:10.1007/978-3-7091-6081-7_2 422:that allow the people with 179:reliable medical references 3474: 3276:Journal of Applied Physics 3202:10.1179/016164102101200302 3056:10.1016/j.paed.2019.07.015 2911:10.1016/j.apmr.2014.11.017 2231:10.3389/fneur.2023.1272992 2077:(inactive 11 April 2024). 1689:(inactive 26 March 2024). 1551:Neurorehabil Neural Repair 562:activities of daily living 3342:10.1682/jrrd.2005.06.0101 2959:10.1186/s12887-015-0472-y 2075:10.1682/JRRD.2008.07.0087 1404:10.1682/JRRD.2009.03.0034 389:functional electrotherapy 185:or relies too heavily on 3239:10.1179/174313208X281136 2822:10.1177/1545968309347681 2766:10.1177/1352458510366013 2714:10.1177/1352458508101320 2325:10.1177/1545968309347681 1563:10.1177/1545968310366129 1526:10.1161/01.STR.30.7.1384 1144:10.1109/memb.2010.936547 867:10.1177/1545968310392924 820:10.1177/0008417416668370 773:10.1177/1545968308317436 272:are electrically active 3391:10.4103/0028-3886.73748 2863:J Altern Complement Med 507:is a common symptom in 55:more precise citations. 2218:Frontiers in Neurology 535: 299:central nervous system 124:neurological disorders 103:central nervous system 91: 3190:Neurological Research 2875:10.1089/acm.2010.0080 2431:10.2340/16501977-0268 1913:10.1038/sj.sc.3101864 1823:10.3233/nre-2011-0652 1687:10.1007/s003290050081 1652:Clin Orthop Relat Res 533: 88: 2137:10.3390/biom12121856 1738:– via YouTube. 1611:10.3390/biom12121856 634:Cleveland FES Center 558:qualitative analysis 363:Cleveland FES Center 3288:2009JAP...105d4501L 2592:10.1310/tsr1906-491 1810:NeuroRehabilitation 408:Common applications 3013:10.3233/PRM-160375 1675:Crit Rev Neurosurg 1473:The Journal-Lancet 601:In popular culture 554:multiple sclerosis 548:Multiple sclerosis 536: 521:multiple sclerosis 517:spinal cord injury 413:Spinal cord injury 112:spinal cord injury 92: 3296:10.1063/1.3077286 3165:978-3-7091-7223-0 3092:. 28 January 2009 2476:Artificial Organs 2279:(12): 1577–1583. 2033:(11): 1119–1128. 1997:(10): 1309–1315. 1279:Artificial Organs 941:Artificial Organs 322:withdrawal reflex 294:peripheral nerves 278:action potentials 267: 266: 243: 81: 80: 73: 3465: 3458:Neuroprosthetics 3417: 3411: 3403: 3393: 3368: 3362: 3354: 3344: 3313: 3307: 3299: 3258: 3221: 3177: 3124: 3123: 3121: 3119: 3114:. 28 August 2015 3108: 3102: 3101: 3099: 3097: 3082: 3076: 3075: 3039: 3033: 3032: 2996: 2990: 2989: 2979: 2961: 2937: 2931: 2930: 2893: 2887: 2886: 2857: 2851: 2850: 2824: 2800: 2794: 2793: 2760:(9): 1141–1147. 2748: 2742: 2741: 2696: 2690: 2689: 2661: 2655: 2654: 2626: 2620: 2619: 2575: 2569: 2568: 2520: 2514: 2513: 2507: 2499: 2473: 2464: 2458: 2457: 2451: 2443: 2433: 2409: 2403: 2402: 2366: 2360: 2359: 2353: 2345: 2327: 2303: 2297: 2296: 2268: 2262: 2261: 2251: 2233: 2209: 2203: 2202: 2174: 2168: 2167: 2157: 2139: 2115: 2109: 2108: 2102: 2094: 2057: 2051: 2050: 2021: 2015: 2014: 1985: 1979: 1978: 1959:10.1109/10.32105 1952: 1932: 1926: 1925: 1915: 1891: 1885: 1884: 1856: 1850: 1849: 1843: 1835: 1825: 1801: 1795: 1794: 1788: 1780: 1770: 1746: 1740: 1739: 1737: 1735: 1719: 1713: 1712: 1706: 1698: 1670: 1655: 1648: 1642: 1641: 1631: 1613: 1589: 1583: 1582: 1545: 1539: 1538: 1528: 1519:(7): 1384–1389. 1504: 1498: 1495: 1489: 1488: 1468: 1462: 1461: 1441: 1430: 1429: 1423: 1415: 1386: 1380: 1379: 1373: 1365: 1355: 1323: 1317: 1316: 1310: 1302: 1270: 1264: 1263: 1257: 1249: 1213: 1207: 1206: 1170: 1164: 1163: 1123: 1117: 1116: 1110: 1102: 1074: 1068: 1067: 1066: 1062: 1056: 1050: 1049: 1048: 1044: 1038: 1032: 1031: 1030: 1026: 1020: 1014: 1013: 985: 979: 978: 972: 964: 936: 930: 927: 921: 914: 908: 903:Guyton and Hall 901: 895: 894: 846: 840: 839: 799: 793: 792: 752: 746: 745: 739: 731: 721: 689: 680: 676: 670: 667: 661: 657: 639:Shannon Criteria 611:No Hard Feelings 347:Milos R. Popovic 262: 261: 253: 250: 244: 242: 201: 170: 169: 162: 76: 69: 65: 62: 56: 51:this article by 42:inline citations 29: 28: 21: 3473: 3472: 3468: 3467: 3466: 3464: 3463: 3462: 3443: 3442: 3424: 3404: 3378:Neurology India 3371: 3355: 3322: 3300: 3272: 3224: 3187: 3166: 3145: 3132: 3130:Further reading 3127: 3117: 3115: 3110: 3109: 3105: 3095: 3093: 3090:www.nice.org.uk 3084: 3083: 3079: 3050:(11): 498–502. 3041: 3040: 3036: 2998: 2997: 2993: 2939: 2938: 2934: 2895: 2894: 2890: 2859: 2858: 2854: 2802: 2801: 2797: 2750: 2749: 2745: 2698: 2697: 2693: 2663: 2662: 2658: 2628: 2627: 2623: 2577: 2576: 2572: 2522: 2521: 2517: 2500: 2471: 2466: 2465: 2461: 2444: 2424:(10): 873–875. 2411: 2410: 2406: 2368: 2367: 2363: 2346: 2305: 2304: 2300: 2270: 2269: 2265: 2211: 2210: 2206: 2176: 2175: 2171: 2117: 2116: 2112: 2095: 2059: 2058: 2054: 2023: 2022: 2018: 1987: 1986: 1982: 1950:10.1.1.126.9159 1934: 1933: 1929: 1893: 1892: 1888: 1858: 1857: 1853: 1836: 1803: 1802: 1798: 1781: 1748: 1747: 1743: 1733: 1731: 1721: 1720: 1716: 1699: 1672: 1671: 1658: 1649: 1645: 1591: 1590: 1586: 1547: 1546: 1542: 1506: 1505: 1501: 1496: 1492: 1470: 1469: 1465: 1443: 1442: 1433: 1416: 1388: 1387: 1383: 1366: 1325: 1324: 1320: 1303: 1272: 1271: 1267: 1250: 1218:Neuromodulation 1215: 1214: 1210: 1172: 1171: 1167: 1125: 1124: 1120: 1103: 1076: 1075: 1071: 1064: 1058: 1057: 1053: 1046: 1040: 1039: 1035: 1028: 1022: 1021: 1017: 987: 986: 982: 965: 938: 937: 933: 928: 924: 915: 911: 902: 898: 848: 847: 843: 801: 800: 796: 754: 753: 749: 732: 691: 690: 683: 677: 673: 668: 664: 658: 651: 647: 620: 603: 591: 574: 550: 541: 502: 465: 436: 420:neuroprostheses 415: 410: 387:referred to as 384: 331:neuromodulation 263: 259: 254: 248: 245: 202: 191: 187:primary sources 171: 167: 160: 77: 66: 60: 57: 47:Please help to 46: 30: 26: 17: 12: 11: 5: 3471: 3469: 3461: 3460: 3455: 3453:Electrotherapy 3445: 3444: 3441: 3440: 3435: 3430: 3423: 3422:External links 3420: 3419: 3418: 3369: 3320: 3317: 3314: 3270: 3266: 3259: 3233:(2): 123–130. 3222: 3196:(5): 431–442. 3185: 3178: 3164: 3143: 3140: 3131: 3128: 3126: 3125: 3103: 3077: 3034: 2991: 2946:BMC Pediatrics 2932: 2905:(4): 667–672. 2888: 2869:(12): 1343–9. 2852: 2815:(2): 152–167. 2795: 2743: 2708:(4): 493–504. 2691: 2656: 2621: 2586:(6): 491–498. 2570: 2515: 2482:(3): 267–270. 2459: 2404: 2361: 2318:(2): 152–167. 2298: 2263: 2204: 2185:(3): 328–331. 2169: 2110: 2069:(3): 447–462. 2052: 2016: 1980: 1943:(7): 729–737. 1927: 1906:(6): 357–361. 1886: 1851: 1816:(3): 231–248. 1796: 1761:(8): 808–814. 1741: 1714: 1681:(4): 221–231. 1656: 1643: 1584: 1557:(8): 709–721. 1540: 1499: 1490: 1463: 1431: 1381: 1338:(5): 511–524. 1318: 1285:(5): 403–409. 1265: 1208: 1181:(1): 174–181. 1165: 1118: 1085:(8): 945–951. 1069: 1051: 1033: 1015: 980: 947:(3): 252–255. 931: 922: 909: 896: 861:(5): 433–442. 841: 794: 767:(6): 706–714. 747: 704:(5): 511–524. 681: 671: 662: 648: 646: 643: 642: 641: 636: 631: 629:Electrotherapy 626: 619: 616: 615: 614: 602: 599: 590: 587: 578:cerebral palsy 573: 572:Cerebral palsy 570: 549: 546: 540: 537: 501: 498: 464: 461: 456:Popovic et al. 435: 432: 414: 411: 409: 406: 383: 380: 265: 264: 257: 255: 174: 172: 165: 159: 156: 79: 78: 33: 31: 24: 15: 13: 10: 9: 6: 4: 3: 2: 3470: 3459: 3456: 3454: 3451: 3450: 3448: 3439: 3436: 3434: 3431: 3429: 3426: 3425: 3421: 3415: 3409: 3401: 3397: 3392: 3387: 3384:(6): 922–27. 3383: 3379: 3375: 3370: 3366: 3360: 3352: 3348: 3343: 3338: 3335:(2): 139–43. 3334: 3330: 3326: 3321: 3318: 3315: 3311: 3305: 3297: 3293: 3289: 3285: 3281: 3277: 3271: 3267: 3264: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3228: 3223: 3219: 3215: 3211: 3207: 3203: 3199: 3195: 3191: 3186: 3183: 3179: 3175: 3171: 3167: 3161: 3157: 3153: 3149: 3144: 3141: 3138: 3134: 3133: 3129: 3113: 3107: 3104: 3091: 3087: 3081: 3078: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3038: 3035: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2995: 2992: 2987: 2983: 2978: 2973: 2969: 2965: 2960: 2955: 2951: 2947: 2943: 2936: 2933: 2928: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2892: 2889: 2884: 2880: 2876: 2872: 2868: 2864: 2856: 2853: 2848: 2844: 2840: 2836: 2832: 2828: 2823: 2818: 2814: 2810: 2806: 2799: 2796: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2747: 2744: 2739: 2735: 2731: 2727: 2723: 2719: 2715: 2711: 2707: 2703: 2695: 2692: 2687: 2683: 2679: 2675: 2671: 2667: 2660: 2657: 2652: 2648: 2644: 2640: 2636: 2632: 2625: 2622: 2617: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2574: 2571: 2566: 2562: 2558: 2554: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2519: 2516: 2511: 2505: 2497: 2493: 2489: 2485: 2481: 2477: 2470: 2463: 2460: 2455: 2449: 2441: 2437: 2432: 2427: 2423: 2419: 2418:J Rehabil Med 2415: 2408: 2405: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2365: 2362: 2357: 2351: 2343: 2339: 2335: 2331: 2326: 2321: 2317: 2313: 2309: 2302: 2299: 2294: 2290: 2286: 2282: 2278: 2274: 2267: 2264: 2259: 2255: 2250: 2245: 2241: 2237: 2232: 2227: 2223: 2219: 2215: 2208: 2205: 2200: 2196: 2192: 2188: 2184: 2180: 2173: 2170: 2165: 2161: 2156: 2151: 2147: 2143: 2138: 2133: 2129: 2125: 2121: 2114: 2111: 2106: 2100: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2056: 2053: 2048: 2044: 2040: 2036: 2032: 2028: 2020: 2017: 2012: 2008: 2004: 2000: 1996: 1992: 1984: 1981: 1976: 1972: 1968: 1964: 1960: 1956: 1951: 1946: 1942: 1938: 1931: 1928: 1923: 1919: 1914: 1909: 1905: 1901: 1897: 1890: 1887: 1882: 1878: 1874: 1870: 1866: 1862: 1855: 1852: 1847: 1841: 1833: 1829: 1824: 1819: 1815: 1811: 1807: 1800: 1797: 1792: 1786: 1778: 1774: 1769: 1764: 1760: 1756: 1752: 1745: 1742: 1729: 1725: 1718: 1715: 1710: 1704: 1696: 1692: 1688: 1684: 1680: 1676: 1669: 1667: 1665: 1663: 1661: 1657: 1653: 1647: 1644: 1639: 1635: 1630: 1625: 1621: 1617: 1612: 1607: 1603: 1599: 1595: 1588: 1585: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1544: 1541: 1536: 1532: 1527: 1522: 1518: 1514: 1510: 1503: 1500: 1494: 1491: 1486: 1482: 1478: 1474: 1467: 1464: 1459: 1455: 1451: 1447: 1440: 1438: 1436: 1432: 1427: 1421: 1413: 1409: 1405: 1401: 1397: 1393: 1385: 1382: 1377: 1371: 1363: 1359: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1322: 1319: 1314: 1308: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1269: 1266: 1261: 1255: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1212: 1209: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1169: 1166: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1122: 1119: 1114: 1108: 1100: 1096: 1092: 1088: 1084: 1080: 1073: 1070: 1060: 1055: 1052: 1042: 1037: 1034: 1024: 1019: 1016: 1011: 1007: 1003: 999: 995: 991: 984: 981: 976: 970: 962: 958: 954: 950: 946: 942: 935: 932: 926: 923: 919: 913: 910: 906: 900: 897: 892: 888: 884: 880: 876: 872: 868: 864: 860: 856: 852: 845: 842: 837: 833: 829: 825: 821: 817: 813: 809: 805: 798: 795: 790: 786: 782: 778: 774: 770: 766: 762: 758: 751: 748: 743: 737: 729: 725: 720: 715: 711: 707: 703: 699: 695: 688: 686: 682: 675: 672: 666: 663: 656: 654: 650: 644: 640: 637: 635: 632: 630: 627: 625: 622: 621: 617: 612: 608: 605: 604: 600: 598: 595: 588: 586: 583: 582:gastrocnemius 579: 571: 569: 566: 563: 559: 555: 547: 545: 538: 532: 528: 524: 522: 518: 514: 510: 506: 499: 497: 493: 491: 486: 484: 480: 476: 471: 462: 460: 457: 452: 448: 444: 440: 433: 431: 429: 425: 421: 412: 407: 405: 401: 399: 394: 390: 381: 379: 378: 374: 370: 366: 364: 359: 354: 350: 348: 343: 340: 335: 333: 332: 327: 323: 318: 316: 310: 308: 302: 300: 295: 291: 287: 281: 279: 275: 271: 256: 252: 249:December 2014 241: 238: 234: 231: 227: 224: 220: 217: 213: 210: –  209: 205: 204:Find sources: 199: 195: 189: 188: 184: 180: 175:This section 173: 164: 163: 157: 155: 153: 149: 145: 141: 137: 131: 129: 125: 121: 117: 113: 108: 104: 100: 96: 87: 83: 75: 72: 64: 61:February 2009 54: 50: 44: 43: 37: 32: 23: 22: 19: 3408:cite journal 3381: 3377: 3359:cite journal 3332: 3328: 3304:cite journal 3279: 3275: 3230: 3226: 3193: 3189: 3147: 3116:. Retrieved 3106: 3094:. Retrieved 3089: 3080: 3047: 3043: 3037: 3007:(2): 83–99. 3004: 3000: 2994: 2949: 2945: 2935: 2902: 2898: 2891: 2866: 2862: 2855: 2812: 2808: 2798: 2757: 2753: 2746: 2705: 2701: 2694: 2669: 2665: 2659: 2634: 2630: 2624: 2583: 2579: 2573: 2535:(1): 31–46. 2532: 2528: 2518: 2504:cite journal 2479: 2475: 2462: 2448:cite journal 2421: 2417: 2407: 2374: 2370: 2364: 2350:cite journal 2315: 2311: 2301: 2276: 2272: 2266: 2221: 2217: 2207: 2182: 2178: 2172: 2130:(12): 1856. 2127: 2124:Biomolecules 2123: 2113: 2099:cite journal 2066: 2062: 2055: 2030: 2026: 2019: 1994: 1990: 1983: 1940: 1936: 1930: 1903: 1899: 1889: 1867:(1): 81–92. 1864: 1860: 1854: 1840:cite journal 1813: 1809: 1799: 1785:cite journal 1758: 1754: 1744: 1732:. Retrieved 1717: 1703:cite journal 1678: 1674: 1651: 1646: 1604:(12): 1856. 1601: 1598:Biomolecules 1597: 1587: 1554: 1550: 1543: 1516: 1512: 1502: 1493: 1476: 1472: 1466: 1449: 1445: 1420:cite journal 1395: 1391: 1384: 1370:cite journal 1335: 1331: 1321: 1307:cite journal 1282: 1278: 1268: 1254:cite journal 1224:(1): 58–72. 1221: 1217: 1211: 1178: 1174: 1168: 1138:(3): 64–69. 1135: 1131: 1121: 1107:cite journal 1082: 1078: 1072: 1054: 1036: 1018: 996:(1): 75–78. 993: 990:Med Eng Phys 989: 983: 969:cite journal 944: 940: 934: 925: 917: 912: 904: 899: 858: 854: 844: 814:(2): 87–97. 811: 807: 797: 764: 760: 750: 736:cite journal 701: 697: 674: 665: 610: 607:Mark Coggins 592: 575: 567: 551: 542: 525: 503: 494: 487: 466: 453: 449: 445: 441: 437: 428:quadriplegia 416: 402: 392: 388: 385: 376: 375: 371: 367: 358:percutaneous 355: 351: 344: 336: 329: 319: 311: 303: 282: 268: 246: 236: 229: 222: 215: 203: 183:verification 176: 147: 143: 139: 135: 132: 98: 94: 93: 82: 67: 58: 39: 18: 3227:Neurol. Res 3118:10 February 2672:(1): 7–13. 2637:(4): 51–8. 2377:(1): 4–13. 1991:Orthopedics 1900:Spinal Cord 1654:1988; 34–43 1479:: 285–288. 1452:: 101–105. 1398:(1): 7–16. 490:subluxation 292:, if their 177:needs more 140:FES therapy 116:head injury 53:introducing 3447:Categories 3282:(4): 1–9. 2631:Hosp Pract 645:References 509:hemiplegia 483:disability 475:hemiplegia 424:paraplegia 219:newspapers 158:Principles 122:and other 36:references 3072:203474150 3064:1751-7222 3021:1875-8894 2968:1471-2431 2919:1532-821X 2831:1552-6844 2774:1477-0970 2722:1352-4585 2678:0036-5505 2600:1074-9357 2565:227234568 2549:1743-4440 2240:1664-2295 2146:2218-273X 1945:CiteSeerX 1620:2218-273X 1549:lesion". 875:1545-9683 505:Drop foot 500:Drop foot 479:treatment 398:foot drop 3400:21150060 3351:16847781 3263:Web site 3255:34621751 3247:18397602 3218:29537770 3210:12117311 3174:14518514 3029:27285801 2986:26459358 2927:25499688 2883:21138391 2839:19846759 2790:19846734 2782:20601398 2730:19282417 2608:23192714 2557:33249938 2496:11940030 2440:19242627 2399:10860495 2391:18158427 2334:19846759 2293:10597809 2258:38145118 2249:10739305 2199:10084443 2164:36551285 2091:12626060 2083:19675995 1975:14663596 1922:16249784 1881:15604009 1832:21558629 1734:15 April 1728:Archived 1638:36551285 1571:20460493 1535:10390311 1485:14474974 1458:13761879 1412:20437323 1362:25229735 1299:10378929 1275:Lavrac N 1238:22151384 1195:19109996 1160:24863622 1152:20659859 1099:19540788 1010:12485788 961:11940026 891:27629343 883:21304020 836:24856751 828:28093928 781:18971385 728:25229735 618:See also 609:' novel 307:reflexes 130:(NMES). 3284:Bibcode 3096:14 June 2977:4603297 2952:: 154. 2847:5977665 2738:5080471 2651:1088368 2616:7908908 2342:5977665 2155:9775635 2047:8931521 2011:2798239 1967:2787281 1777:9344298 1695:9683682 1629:9775635 1579:5963094 1353:4166186 1246:2079523 789:7016540 719:4166186 382:History 290:muscles 270:Neurons 233:scholar 198:removed 114:(SCI), 49:improve 3398:  3349:  3253:  3245:  3216:  3208:  3172:  3162:  3070:  3062:  3027:  3019:  2984:  2974:  2966:  2925:  2917:  2881:  2845:  2837:  2829:  2788:  2780:  2772:  2736:  2728:  2720:  2686:302481 2684:  2676:  2649:  2614:  2606:  2598:  2563:  2555:  2547:  2494:  2438:  2397:  2389:  2340:  2332:  2291:  2256:  2246:  2238:  2197:  2162:  2152:  2144:  2089:  2081:  2045:  2009:  1973:  1965:  1947:  1920:  1879:  1830:  1775:  1693:  1636:  1626:  1618:  1577:  1569:  1533:  1513:Stroke 1483:  1456:  1410:  1360:  1350:  1297:  1244:  1236:  1203:447158 1201:  1193:  1158:  1150:  1097:  1065:  1047:  1029:  1008:  959:  889:  881:  873:  834:  826:  787:  779:  726:  716:  539:Stroke 513:stroke 470:stroke 326:stroke 286:nerves 235:  228:  221:  214:  206:  120:stroke 107:muscle 38:, but 3251:S2CID 3214:S2CID 3139:>. 3068:S2CID 2843:S2CID 2786:S2CID 2734:S2CID 2612:S2CID 2561:S2CID 2472:(PDF) 2395:S2CID 2338:S2CID 2087:S2CID 1971:S2CID 1575:S2CID 1242:S2CID 1199:S2CID 1156:S2CID 887:S2CID 832:S2CID 785:S2CID 679:2016. 660:2015. 274:cells 240:JSTOR 226:books 134:name 3414:link 3396:PMID 3365:link 3347:PMID 3310:link 3269:205. 3243:PMID 3206:PMID 3184:> 3170:PMID 3160:ISBN 3120:2016 3098:2016 3060:ISSN 3025:PMID 3017:ISSN 2982:PMID 2964:ISSN 2923:PMID 2915:ISSN 2879:PMID 2835:PMID 2827:ISSN 2778:PMID 2770:ISSN 2726:PMID 2718:ISSN 2682:PMID 2674:ISSN 2647:PMID 2604:PMID 2596:ISSN 2553:PMID 2545:ISSN 2510:link 2492:PMID 2454:link 2436:PMID 2387:PMID 2356:link 2330:PMID 2289:PMID 2254:PMID 2236:ISSN 2195:PMID 2160:PMID 2142:ISSN 2105:link 2079:PMID 2043:PMID 2007:PMID 1963:PMID 1918:PMID 1877:PMID 1846:link 1828:PMID 1791:link 1773:PMID 1736:2019 1709:link 1691:PMID 1634:PMID 1616:ISSN 1567:PMID 1531:PMID 1481:PMID 1454:PMID 1426:link 1408:PMID 1376:link 1358:PMID 1313:link 1295:PMID 1260:link 1234:PMID 1191:PMID 1148:PMID 1113:link 1095:PMID 1006:PMID 975:link 957:PMID 879:PMID 871:ISSN 824:PMID 777:PMID 742:link 724:PMID 594:NICE 519:and 339:skin 315:axon 212:news 181:for 148:FEST 3386:doi 3337:doi 3292:doi 3280:105 3235:doi 3198:doi 3152:doi 3052:doi 3009:doi 2972:PMC 2954:doi 2907:doi 2871:doi 2817:doi 2762:doi 2710:doi 2639:doi 2588:doi 2537:doi 2484:doi 2426:doi 2379:doi 2320:doi 2281:doi 2244:PMC 2226:doi 2187:doi 2150:PMC 2132:doi 2071:doi 2035:doi 1999:doi 1955:doi 1908:doi 1869:doi 1818:doi 1763:doi 1683:doi 1624:PMC 1606:doi 1559:doi 1521:doi 1400:doi 1348:PMC 1340:doi 1287:doi 1226:doi 1183:doi 1179:178 1140:doi 1087:doi 998:doi 949:doi 863:doi 816:doi 769:doi 714:PMC 706:doi 146:or 144:FET 99:FES 3449:: 3410:}} 3406:{{ 3394:. 3382:58 3380:. 3376:. 3361:}} 3357:{{ 3345:. 3333:43 3331:. 3327:. 3306:}} 3302:{{ 3290:. 3278:. 3249:. 3241:. 3231:31 3229:. 3212:. 3204:. 3194:24 3192:. 3168:. 3158:. 3088:. 3066:. 3058:. 3048:29 3046:. 3023:. 3015:. 3003:. 2980:. 2970:. 2962:. 2950:15 2948:. 2944:. 2921:. 2913:. 2903:96 2901:. 2877:. 2867:16 2865:. 2841:. 2833:. 2825:. 2813:24 2811:. 2807:. 2784:. 2776:. 2768:. 2758:16 2756:. 2732:. 2724:. 2716:. 2706:15 2704:. 2680:. 2668:. 2645:. 2635:11 2633:. 2610:. 2602:. 2594:. 2584:19 2582:. 2559:. 2551:. 2543:. 2533:18 2531:. 2527:. 2506:}} 2502:{{ 2490:. 2480:26 2478:. 2474:. 2450:}} 2446:{{ 2434:. 2422:40 2420:. 2416:. 2393:. 2385:. 2375:87 2373:. 2352:}} 2348:{{ 2336:. 2328:. 2316:24 2314:. 2310:. 2287:. 2277:80 2275:. 2252:. 2242:. 2234:. 2224:. 2222:14 2220:. 2216:. 2193:. 2183:80 2181:. 2158:. 2148:. 2140:. 2128:12 2126:. 2122:. 2101:}} 2097:{{ 2085:. 2067:46 2065:. 2041:. 2031:77 2029:. 2005:. 1995:12 1993:. 1969:. 1961:. 1953:. 1941:36 1939:. 1916:. 1904:44 1902:. 1898:. 1875:. 1865:27 1863:. 1842:}} 1838:{{ 1826:. 1814:28 1812:. 1808:. 1787:}} 1783:{{ 1771:. 1759:78 1757:. 1753:. 1726:. 1705:}} 1701:{{ 1677:. 1659:^ 1632:. 1622:. 1614:. 1602:12 1600:. 1596:. 1573:. 1565:. 1555:24 1553:. 1529:. 1517:30 1515:. 1511:. 1477:82 1475:. 1450:42 1448:. 1434:^ 1422:}} 1418:{{ 1406:. 1396:47 1394:. 1372:}} 1368:{{ 1356:. 1346:. 1336:37 1334:. 1330:. 1309:}} 1305:{{ 1293:. 1283:23 1281:. 1256:}} 1252:{{ 1240:. 1232:. 1220:. 1197:. 1189:. 1177:. 1154:. 1146:. 1136:29 1134:. 1130:. 1109:}} 1105:{{ 1093:. 1083:31 1081:. 1004:. 994:25 992:. 971:}} 967:{{ 955:. 945:26 943:. 885:. 877:. 869:. 859:25 857:. 853:. 830:. 822:. 812:84 810:. 806:. 783:. 775:. 765:22 763:. 759:. 738:}} 734:{{ 722:. 712:. 702:37 700:. 696:. 684:^ 652:^ 523:. 515:, 400:. 334:. 200:. 154:. 138:, 118:, 3416:) 3402:. 3388:: 3367:) 3353:. 3339:: 3312:) 3298:. 3294:: 3286:: 3265:. 3257:. 3237:: 3220:. 3200:: 3176:. 3154:: 3122:. 3100:. 3074:. 3054:: 3031:. 3011:: 3005:9 2988:. 2956:: 2929:. 2909:: 2885:. 2873:: 2849:. 2819:: 2792:. 2764:: 2740:. 2712:: 2688:. 2670:9 2653:. 2641:: 2618:. 2590:: 2567:. 2539:: 2512:) 2498:. 2486:: 2456:) 2442:. 2428:: 2401:. 2381:: 2358:) 2344:. 2322:: 2295:. 2283:: 2260:. 2228:: 2201:. 2189:: 2166:. 2134:: 2107:) 2093:. 2073:: 2049:. 2037:: 2013:. 2001:: 1977:. 1957:: 1924:. 1910:: 1883:. 1871:: 1848:) 1834:. 1820:: 1793:) 1779:. 1765:: 1711:) 1697:. 1685:: 1679:8 1640:. 1608:: 1581:. 1561:: 1537:. 1523:: 1487:. 1460:. 1428:) 1414:. 1402:: 1378:) 1364:. 1342:: 1315:) 1301:. 1289:: 1262:) 1248:. 1228:: 1222:8 1205:. 1185:: 1162:. 1142:: 1115:) 1101:. 1089:: 1012:. 1000:: 977:) 963:. 951:: 893:. 865:: 838:. 818:: 791:. 771:: 744:) 730:. 708:: 251:) 247:( 237:· 230:· 223:· 216:· 190:. 142:( 97:( 74:) 68:( 63:) 59:( 45:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message

central nervous system
muscle
spinal cord injury
head injury
stroke
neurological disorders
neuromuscular electrical stimulation
Toronto Rehabilitation Institute
reliable medical references
verification
primary sources
add the appropriate references
removed
"Functional electrical stimulation"
news
newspapers
books
scholar
JSTOR
Neurons
cells
action potentials
nerves
muscles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.