Knowledge (XXG)

Fall cone test

Source 📝

63:
cone of a standardized weight and tip angle is positioned so that its tip just touches a soil sample. The cone is released for a determined period of time, usually 5s, so that it may penetrate the soil. Several standards around the globe exist. Main differences are related to the cone tip angle and
68:
of the soil which allows the cone to penetrate a determined depth during that period of time. The penetration depth at which the liquid limit is measured depends on the standard and method adopted. For example, one of the most recognized standards is the BS 1377. The British standard defines the
69:
liquid limit as the water content of a soil at which a 80g, 30º cone penetrates 20mm. Because it is difficult to obtain a test with exactly 20 mm penetration, the procedure is performed multiple times for a range of water contents and the results are
129: 211: 236: 720: 48:
and less variable with different operators. Other advantages of the fall cone test include the alternative to estimate the undrained
44:) and first mentioned in the Russian standard GOST 5184 from 1949. It is often preferred to the Casagrande method because it is more 639: 656:. Civil engineering > Earthworks. Excavations. Foundation construction. Underground works. British Standards Institution. 1990. 168:
The fall cone factor can vary between 0.5 and 1.33. It can be estimated as proposed by Llano-Serna and Contreras:
82: 569: 613:
Hansbo, S (1957). "A new approach to the determination of the shear strength of clay by the fall cone test".
173: 144: 74: 49: 696: 651: 668: 688: 653:
BS 1377-2:1990, Methods of test for soils for civil engineering purposes. Classification tests
635: 592: 221: 680: 584: 37: 29: 60: 240:
Equivalent rate of rotation when measuring the undrained shear strength using the mini
77:
for each one of those measured water content can be computed as proposed by Hansbo:
714: 700: 65: 45: 70: 33: 588: 241: 692: 669:"The effect of surface roughness and shear rate during fall-cone calibration" 596: 684: 248:
A summary of different existing standards is shown in the table below:
28:, is an alternative method to the Casagrande method for measuring the 36:
proposed in 1942 by the Russian researcher Piotr Vasiljev (
667:
Llano-Serna, Marcelo A.; Contreras, Luis F. (2019-03-15).
224: 176: 85: 230: 205: 123: 64:cone mass. The liquid limit is defined as the 8: 570:"Theoretical analysis of the fall cone test" 512:Cone penetration depth at liquid limit (mm) 223: 198: 175: 124:{\displaystyle c_{u}={\frac {KQ}{h^{2}}}} 113: 99: 90: 84: 420:Relationship used during interpretation 250: 560: 206:{\displaystyle K=0.37+0.1\ln {\omega }} 7: 608: 606: 14: 631:Powrie, W., Spon Press, 2004, 568:Houlsby, G. T. (1 June 1982). 1: 73:. Furthermore, the undrained 737: 589:10.1680/geot.1982.32.2.111 721:Soil shear strength tests 59:In the Fall cone test, a 41: 633:Soil Mechanics - 2nd ed 231:{\displaystyle \omega } 52:of a soil based on the 685:10.1680/jgeot.18.P.222 615:R. Swed. Geotech. Inst 330:CAN/BNQ 2501-092-M-86 232: 207: 125: 22:cone penetrometer test 233: 208: 165:= Penetration depth. 126: 222: 174: 153:= Fall cone factor; 83: 252: 251: 228: 203: 121: 54:fall cone factor K 26:Vasiljev cone test 20:, also called the 552: 551: 119: 728: 705: 704: 664: 658: 657: 648: 642: 629: 623: 622: 610: 601: 600: 574: 565: 321:ISO/TS 17892-12 253: 237: 235: 234: 229: 212: 210: 209: 204: 202: 130: 128: 127: 122: 120: 118: 117: 108: 100: 95: 94: 43: 736: 735: 731: 730: 729: 727: 726: 725: 711: 710: 709: 708: 666: 665: 661: 650: 649: 645: 630: 626: 612: 611: 604: 572: 567: 566: 562: 557: 338:Cone angle (°) 247: 220: 219: 172: 171: 159:= Cone weight; 140: 109: 101: 86: 81: 80: 61:stainless steel 42:Пё́тр Васи́льев 12: 11: 5: 734: 732: 724: 723: 713: 712: 707: 706: 679:(4): 332–342. 659: 643: 624: 602: 583:(2): 111–118. 559: 558: 556: 553: 550: 549: 546: 543: 540: 537: 534: 531: 528: 525: 522: 519: 516: 513: 509: 508: 503: 498: 488: 478: 461: 451: 446: 441: 436: 431: 426: 421: 417: 416: 413: 410: 407: 404: 401: 398: 395: 392: 389: 386: 383: 380: 379:Cone mass (g) 376: 375: 372: 369: 366: 363: 360: 357: 354: 351: 348: 345: 342: 339: 335: 334: 331: 328: 325: 322: 319: 316: 313: 310: 307: 306:NF P 94-052-1 304: 301: 298: 294: 293: 290: 287: 284: 281: 278: 275: 272: 269: 266: 263: 260: 257: 227: 201: 197: 194: 191: 188: 185: 182: 179: 145:shear strength 138: 116: 112: 107: 104: 98: 93: 89: 75:shear strength 50:shear strength 18:Fall cone test 13: 10: 9: 6: 4: 3: 2: 733: 722: 719: 718: 716: 702: 698: 694: 690: 686: 682: 678: 674: 670: 663: 660: 655: 654: 647: 644: 641: 640:0-415-31156-X 637: 634: 628: 625: 620: 616: 609: 607: 603: 598: 594: 590: 586: 582: 578: 571: 564: 561: 554: 547: 544: 541: 538: 535: 532: 529: 526: 523: 520: 517: 514: 511: 510: 507: 504: 502: 499: 497: 493: 489: 487: 483: 479: 477: 473: 469: 465: 462: 460: 456: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 419: 418: 414: 411: 408: 405: 402: 399: 396: 393: 390: 387: 384: 381: 378: 377: 373: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 336: 332: 329: 326: 323: 320: 318:SD128-007-84 317: 314: 311: 308: 305: 302: 300:GOST 5184-49 299: 296: 295: 291: 288: 285: 282: 279: 276: 273: 270: 267: 264: 261: 258: 255: 254: 249: 245: 243: 239: 225: 216: 213: 199: 195: 192: 189: 186: 183: 180: 177: 169: 166: 164: 160: 158: 154: 152: 148: 146: 142: 134: 131: 114: 110: 105: 102: 96: 91: 87: 78: 76: 72: 67: 66:water content 62: 57: 55: 51: 47: 39: 35: 31: 27: 23: 19: 676: 673:Géotechnique 672: 662: 652: 646: 632: 627: 618: 614: 580: 577:Géotechnique 576: 563: 505: 500: 495: 491: 485: 481: 475: 471: 467: 463: 458: 454: 448: 443: 438: 433: 428: 423: 274:New Zealand 246: 218: 217: 214: 170: 167: 162: 161: 156: 155: 150: 149: 136: 135: 132: 79: 71:interpolated 58: 53: 30:Liquid Limit 25: 21: 17: 15: 34:soil sample 555:References 324:SS 027120 271:Australia 242:shear vane 46:repeatable 701:134061032 693:0016-8505 597:0016-8505 333:JGS 0142 315:NZS 4402 297:Standard 226:ω 200:ω 196:⁡ 143:ndrained 715:Category 327:NS 8002 312:AS 1289 309:IS 2720 303:BS 1377 256:Country 621:: 7–47. 536:20, 10 403:80, 60 362:30, 60 289:Canada 286:Norway 283:Sweden 265:France 259:Russia 215:where, 133:where, 38:Russian 24:or the 699:  691:  638:  595:  470:, log 457:- log 292:Japan 277:China 268:India 244:test. 697:S2CID 573:(pdf) 548:11.5 501:h - w 350:30.5 32:of a 689:ISSN 636:ISBN 593:ISSN 506:h -w 490:log 480:log 453:log 280:ISO 184:0.37 16:The 681:doi 585:doi 545:10 542:10 539:10 533:17 530:20 527:20 524:20 521:17 518:20 515:10 449:h-w 444:h-w 439:h-w 434:h-w 429:h-w 424:h-w 415:60 412:60 409:60 406:60 400:76 397:80 394:80 391:80 388:80 385:80 382:76 374:60 371:60 368:60 365:60 359:30 356:30 353:30 347:30 344:30 341:30 262:UK 190:0.1 141:= U 56:. 717:: 695:. 687:. 677:70 675:. 671:. 619:14 617:. 605:^ 591:. 581:32 579:. 575:. 494:- 484:- 474:- 466:- 193:ln 147:; 40:: 703:. 683:: 599:. 587:: 496:w 492:h 486:w 482:h 476:w 472:h 468:w 464:h 459:w 455:h 238:= 187:+ 181:= 178:K 163:h 157:Q 151:K 139:u 137:c 115:2 111:h 106:Q 103:K 97:= 92:u 88:c

Index

Liquid Limit
soil sample
Russian
repeatable
shear strength
stainless steel
water content
interpolated
shear strength
shear strength
shear vane
"Theoretical analysis of the fall cone test"
doi
10.1680/geot.1982.32.2.111
ISSN
0016-8505


ISBN
0-415-31156-X
BS 1377-2:1990, Methods of test for soils for civil engineering purposes. Classification tests
"The effect of surface roughness and shear rate during fall-cone calibration"
doi
10.1680/jgeot.18.P.222
ISSN
0016-8505
S2CID
134061032
Category
Soil shear strength tests

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.