Knowledge (XXG)

Ferroptosis

Source 📝

324: 269: 158:, thus causing decreased intracellular glutathione (GSH) levels. Given that GSH is necessary for GPX4 function, depletion of this cofactor can lead to ferroptotic cell death. Oxytosis/ferroptosis can also be induced through inhibition of GPX4, as is the molecular mechanism of action of RSL3, ML162, and ML210. In some cells, FSP1 compensates for loss of GPX4 activity, and both GPX4 and FSP1 must be inhibited simultaneously to induce oxytosis/ferroptosis. 389:. These cells also exhibited an autophagic cycle independent of ferroptotic activity, indicating that the two different forms of cell death could be controlled to activate at specific times following treatment. Furthermore, intratumor bacteria may scavenge iron by producing iron siderophores, which indirectly protect tumor cells from ferroptosis, emphasizing the need for ferroptosis inducers (thiostrepton) for cancer treatment. 293:. Two new studies show that oxytosis/ferroptosis contributes to neuronal death after intracerebral hemorrhage. Neurons that are degraded through oxytosis/ferroptosis release lipid metabolites from inside the cell body. The lipid metabolites are harmful to surrounding neurons, causing inflammation in the brain. Inflammation is a pathological feature of 312:, can influence how readily a neuron undergoes cell death. The presence of ATF4 promotes resistance in cells against oxytosis/ferroptosis. However, this resistance can cause other diseases, such as cancer, to progress and become malignant. While ATF4 provides resistance oxytosis/ferroptosis, an abundance of ATF4 causes neurodegeneration. 304:
promote Gpx4 activity, consequently inhibiting oxytosis/ferroptosis and preventing inflammation in brain regions. In the experimental group of mice that were manipulated to have decreased Gpx4 levels, mice were observed to have cognitive impairment and neurodegeneration of hippocampal neurons, again
280:
connections that are used more often are kept intact and promoted, while synaptic connections that are rarely used are subject to degradation. Elevated levels of synaptic connection loss and degradation of neurons are linked to neurodegenerative diseases. More recently, oxytosis/ferroptosis has been
259:
through the formation of the apoptosome. Once caspase-9 is activated, it can cleave and activate caspase-3 resulting in cell death. Notably, apoptosis does not release intracellular fluid as neurons that are degraded though oxytosis/ferroptosis do. During oxytosis/ferroptosis, neurons release lipid
46:
Researchers have identified roles in which oxytosis/ferroptosis can contribute to the medical field, such as the development of cancer therapies. Ferroptosis activation plays a regulatory role on growth of tumor cells in the human body. However, the positive effects of oxytosis/ferroptosis could be
42:
and Scott J. Dixon coined the term ferroptosis and described several of its key features. Pamela Maher and David Schubert discovered the process in 2001 and called it oxytosis. While they did not describe the involvement of iron at the time, oxytosis and ferroptosis are today thought to be the same
38:-dependent antioxidant defenses, resulting in unchecked lipid peroxidation and eventual cell death. Lipophilic antioxidants and iron chelators can prevent ferroptotic cell death. Although the connection between iron and lipid peroxidation has been appreciated for years, it was not until 2012 that 230:
During embryonic development, the absence of NGF activates apoptosis by decreasing the activity of the signaling pathways normally activated by NGF. Without NGF, the neurons of the sympathetic nervous system begin to atrophy, glucose uptake rates fall, and the rates of protein synthesis and gene
51:
in the human body. Since oxytosis/ferroptosis is a form of regulated cell death, some of the molecules that regulate oxytosis/ferroptosis are involved in metabolic pathways that regulate cysteine exploitation, glutathione state, nicotinamide adenine dinucleotide phosphate (NADP) function, lipid
952:
Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam;
175:
has been used to observe the morphological changes that cells undergo during oxytosis/ferroptosis. Initially the cell contracts and then begins to swell. Perinuclear lipid assembly is observed immediately before oxytosis/ferroptosis occurs. After the process is complete, lipid droplets are
380:
These forms of cancer have been hypothesized to be highly sensitive to oxytosis/ferroptosis induction. An upregulation of iron levels has also been seen to induce oxytosis/ferroptosis in certain types of cancer, such as breast cancer. Breast cancer cells have exhibited vulnerability to
169:(dPUFA), which have deuterium in place of the bis-allylic hydrogens, can prevent cell death induced by erastin or RSL3. These deuterated PUFAs effectively inhibit ferroptosis and various chronic degenerative diseases associated with ferroptosis. 80:), a glutathione-dependent hydroperoxidase that converts lipid peroxides into non-toxic lipid alcohols. Recently, a second parallel protective pathway was independently discovered by two labs that involves the oxidoreductase FSP1 (also known as 192:. This process occurs continuously within mammalian nervous system processes that begin at fetal development and continue through adult life. Apoptotic death is crucial for the correct population size of neuronal and 68:
via iron is crucial for the generation of reactive oxygen species and this feature can be exploited by sequestering iron in lysosomes. Oxidation of phospholipids can occur when free radicals abstract
72:
from a lipid molecule (typically affecting polyunsaturated fatty acids), thereby promoting their oxidation. The primary cellular mechanism of protection against oxytosis/ferroptosis is mediated by
335:
Preliminary reports suggest that oxytosis/ferroptosis may be a means through which tumor cells can be killed. Oxytosis/ferroptosis has been implicated in several types of cancer, including:
1687:"Ultrastructural Characteristics of Neuronal Death and White Matter Injury in Mouse Brain Tissues After Intracerebral Hemorrhage: Coexistence of Ferroptosis, Autophagy, and Necrosis" 392:
Notably, not all cancers are necessarily sensitive to oxytosis/ferroptosis induction. For instance, one study has demonstrated that oxytosis/ferroptosis in polymorphonuclear
138:)-RSL3, ML162, and ML210 are known inhibitors of tumor cell growth via induction of oxytosis/ferroptosis. These compounds do not trigger apoptosis and therefore do not cause 111: 323: 1738:"Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood-Brain Barrier Breakdown" 220: 1499:"Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration" 604:"On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death" 1906: 1290:"Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy" 453:
Shirlee Tan, Bentham Science Publisher; David Schubert, Bentham Science Publisher; Pamela Maher, Bentham Science Publisher (2001).
91:, thereby generating a potent lipophilic antioxidant that suppresses the propagation of lipid peroxides. A similar mechanism for a 1789:"Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells" 196:
cells. Similarly to oxytosis/ferroptosis, deficiencies in apoptotic processes can result in many health complications, including
393: 1901: 60:
The hallmark feature of oxytosis/ferroptosis is the iron-dependent accumulation of oxidatively damaged phospholipids (i.e.,
1074: 286: 212: 155: 1848:"Bacterial Iron Siderophore Drives Tumor Survival and Ferroptosis Resistance in a Biofilm‐Tumor Spheroid Coculture Model" 315:
Recent studies have suggested that oxytosis/ferroptosis contributes to neuronal cell death after traumatic brain injury.
247:(Bcl-2) proteins prevents NGF withdrawal-induced death. However, overexpression of a separate, pro-apoptotic Bcl-2 gene, 150:
is also necessary for small-molecule oxytosis/ferroptosis induction; therefore, these compounds can be inhibited by iron
143: 268: 1911: 300:
In a study performed using mice, it was found that the absence of Gpx4 promoted oxytosis/ferroptosis. Foods high in
1595:
Ryan, Sean K.; Ugalde, Cathryn L.; Rolland, Anne-Sophie; Skidmore, John; Devos, David; Hammond, Timothy R. (2023).
707:"Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide" 248: 224: 204: 162: 223:(Raf-MEK-ERK) signaling pathways. This occurs during normal development which promotes neuronal growth in the 110: 260:
metabolites from inside the cell body. This is a key difference between oxytosis/ferroptosis and apoptosis.
92: 756:"Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases" 397: 344: 294: 290: 282: 216: 23: 1141:
Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. (January 2020).
1800: 1089: 1026: 966: 364: 104: 208: 96: 1123: 934: 736: 30:, and is genetically and biochemically distinct from other forms of regulated cell death such as 27: 243:
from the mitochondria. In a surviving sympathetic neuron, the overexpression of anti-apoptotic
203:
Within the study of neuronal apoptosis, most research has been conducted on the neurons of the
1865: 1846:
Yeung, Yoyo Wing Suet; Ma, Yeping; Deng, Yanlin; Khoo, Bee Luan; Chua, Song Lin (2024-08-12).
1828: 1769: 1718: 1667: 1618: 1577: 1528: 1479: 1419: 1370: 1321: 1270: 1221: 1172: 1115: 1073:
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. (November 2019).
1052: 992: 926: 891: 839: 785: 728: 687: 656:
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. (May 2012).
633: 584: 532: 474: 401: 349: 197: 172: 166: 1847: 1855: 1818: 1808: 1787:
Ma S, Dielschneider RF, Henson ES, Xiao W, Choquette TR, Blankstein AR, et al. (2017).
1759: 1749: 1708: 1698: 1657: 1649: 1608: 1567: 1559: 1518: 1510: 1469: 1461: 1409: 1401: 1360: 1352: 1311: 1301: 1260: 1252: 1211: 1203: 1162: 1154: 1105: 1097: 1042: 1034: 982: 974: 918: 881: 873: 829: 819: 775: 767: 718: 677: 669: 623: 615: 574: 566: 522: 514: 466: 65: 1013:
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. (November 2019).
207:. In order for these neurons to survive and innervate their target tissues, they must have 1143:"GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling" 359: 146:(PARP) cleavage. Instead, oxytosis/ferroptosis causes changes in mitochondrial phenotype. 61: 39: 1239:
Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, et al. (May 2020).
602:
Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, Pratt DA (March 2017).
1804: 1093: 1030: 970: 1823: 1788: 1764: 1737: 1713: 1686: 1662: 1637: 1572: 1547: 1523: 1498: 1474: 1449: 1414: 1389: 1365: 1340: 1316: 1289: 1265: 1240: 1216: 1191: 1167: 1142: 1047: 1014: 987: 954: 886: 861: 834: 807: 780: 755: 682: 657: 628: 603: 579: 554: 527: 502: 354: 1405: 1895: 1192:"Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers" 1127: 938: 723: 706: 339: 123: 740: 1886: 771: 374: 252: 244: 240: 189: 85: 1190:
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. (December 2020).
47:
potentially neutralized by its disruption of metabolic pathways and disruption of
1813: 1450:"Programmed cell death during neuronal development: the sympathetic neuron model" 1514: 369: 48: 35: 1613: 1596: 1356: 1241:"Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles" 1158: 922: 673: 619: 188:, which results in cell breakage into small, apoptotic bodies taken up through 1653: 1563: 1306: 1256: 1207: 1101: 1038: 909:
Nirmala, J. Grace; Lopus, Manu (2020). "Cell death mechanisms in eukaryotes".
570: 518: 382: 1869: 1703: 824: 470: 95:
moonlighting as a diffusable antioxidant was discovered in the same year for
84:). Their findings indicate that FSP1 enzymatically reduces non-mitochondrial 454: 429: 386: 301: 256: 239:
activation occurs through an in-vitro pathway beginning with the release of
236: 193: 185: 151: 139: 127: 31: 1860: 1832: 1773: 1722: 1671: 1622: 1581: 1532: 1483: 1423: 1374: 1325: 1274: 1225: 1176: 1119: 1110: 1056: 996: 930: 895: 843: 789: 691: 637: 588: 536: 478: 1754: 1685:
Li Q, Weiland A, Chen X, Lan X, Han X, Durham F, et al. (July 2018).
1015:"The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis" 732: 877: 69: 1465: 978: 955:"Salinomycin kills cancer stem cells by sequestering iron in lysosomes" 424: 419: 277: 232: 119: 1636:
Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, et al. (April 2017).
1288:
Bartolacci, C.; Andreani, C.; El-Gammal, Y.; Scaglioni, P. P. (2021).
808:"The Role of Ferroptosis in Cancer Development and Treatment Response" 276:
Neural connections are constantly changing within the nervous system.
1597:"Therapeutic inhibition of ferroptosis in neurodegenerative disease" 231:
expression slow. Apoptotic death from NGF withdrawal also requires
322: 267: 109: 81: 1546:
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J (July 2019).
860:
Hao S, Liang B, Huang Q, Dong S, Wu Z, He W, Shi M (April 2018).
806:
Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B (12 January 2018).
658:"Ferroptosis: an iron-dependent form of nonapoptotic cell death" 414: 328: 309: 184:
Another form of cell death that occurs in the nervous system is
147: 77: 73: 1638:"Inhibition of neuronal ferroptosis protects hemorrhagic brain" 1497:
Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (August 2017).
305:
linking oxytosis/ferroptosis to neurodegenerative diseases.
1736:
Qin D, Wang J, Le A, Wang TJ, Chen X, Wang J (April 2021).
1339:
Jiang, Xuejun; Stockwell, Brent R.; Conrad, Marcus (2021).
308:
Similarly, presence of transcription factors, specifically
176:
redistributed throughout the cell (see GIF on right side).
26:
dependent on iron and characterized by the accumulation of
1075:"FSP1 is a glutathione-independent ferroptosis suppressor" 211:(NGF). Normally, NGF binds to a tyrosine kinase receptor, 34:. Oxytosis/ferroptosis is initiated by the failure of the 448: 446: 327:
Initiation of ferroptosis by inhibition of Xc- system of
1443: 1441: 1439: 1437: 1435: 1433: 1341:"Ferroptosis: mechanisms, biology and role in disease" 496: 494: 215:, which activates phosphatidylinositol 3-kinase-Akt ( 1548:"Ferroptosis and Its Role in Diverse Brain Diseases" 114:Human prostate cancer cells undergoing ferroptosis 855: 853: 548: 546: 455:"Oxytosis: A Novel Form of Programmed Cell Death" 281:linked to diverse brain diseases, in particular, 1008: 1006: 272:Induction of neurodegeneration by Ferroptosis 180:Comparison to apoptosis in the nervous system 8: 1068: 1066: 801: 799: 651: 649: 647: 400:releases oxidized lipids that contribute to 953:xRodriguez, Raphaël Rodriguez (Oct 2017). 503:"Ferroptosis: Death by Lipid Peroxidation" 381:oxytosis/ferroptosis via a combination of 255:. Cytochrome c promotes the activation of 1859: 1822: 1812: 1763: 1753: 1712: 1702: 1661: 1612: 1571: 1522: 1473: 1413: 1364: 1315: 1305: 1264: 1215: 1166: 1109: 1046: 986: 885: 833: 823: 779: 722: 681: 627: 578: 526: 154:. Erastin acts through inhibition of the 103:), a product of the rate-limiting enzyme 442: 1345:Nature Reviews. Molecular Cell Biology 459:Current Topics in Medicinal Chemistry 221:extracellular signal-regulated kinase 7: 559:Cellular and Molecular Life Sciences 501:Yang WS, Stockwell BR (March 2016). 52:peroxidation, and iron homeostasis. 862:"Metabolic networks in ferroptosis" 1601:Trends in Pharmacological Sciences 1448:Kristiansen M, Ham J (July 2014). 1294:Frontiers in Molecular Biosciences 754:Maher, Pamela (17 December 2020). 319:Potential role in cancer treatment 14: 1394:The American Journal of Pathology 394:myeloid-derived suppressor cells 350:Pancreatic ductal adenocarcinoma 235:activity. Upon NGF withdrawal, 1454:Cell Death and Differentiation 772:10.1016/j.chembiol.2020.10.010 553:Cao JY, Dixon SJ (June 2016). 297:and intracerebral hemorrhage. 1: 1406:10.1016/S0002-9440(10)64779-7 287:amyotrophic lateral sclerosis 156:cystine/glutamate transporter 16:Type of programmed cell death 1814:10.1371/journal.pone.0182921 724:10.1016/0014-5793(84)81134-5 251:, stimulates the release of 144:poly (ADP-ribose) polymerase 1515:10.1016/j.redox.2017.01.021 911:Cell Biology and Toxicology 705:Gutteridge JM (July 1984). 555:"Mechanisms of ferroptosis" 163:polyunsaturated fatty acids 1928: 1614:10.1016/j.tips.2023.07.007 1357:10.1038/s41580-020-00324-8 1159:10.1021/acscentsci.9b01063 923:10.1007/s10565-019-09496-2 674:10.1016/j.cell.2012.03.042 620:10.1021/acscentsci.7b00028 225:sympathetic nervous system 205:superior cervical ganglion 1654:10.1172/jci.insight.90777 1564:10.1007/s12035-018-1403-3 1390:"Mechanisms of apoptosis" 1388:Reed JC (November 2000). 1307:10.3389/fmolb.2021.706650 1257:10.1038/s41589-020-0501-5 1208:10.1038/s41589-020-0613-y 1102:10.1038/s41586-019-1707-0 1039:10.1038/s41586-019-1705-2 812:Frontiers in Pharmacology 571:10.1007/s00018-016-2194-1 519:10.1016/j.tcb.2015.10.014 1907:Medical aspects of death 1704:10.3389/fneur.2018.00581 825:10.3389/fphar.2017.00992 471:10.2174/1568026013394741 118:Small molecules such as 74:glutathione peroxidase 4 1245:Nature Chemical Biology 1196:Nature Chemical Biology 1861:10.1002/advs.202404467 1691:Frontiers in Neurology 1552:Molecular Neurobiology 507:Trends in Cell Biology 398:tumor microenvironment 345:Acute myeloid leukemia 332: 273: 115: 64:). The implication of 43:cell death mechanism. 1902:Programmed cell death 1755:10.3390/cells10051009 365:Renal cell carcinomas 326: 271: 245:B-cell CLL/lymphoma 2 113: 24:programmed cell death 878:10.3892/ol.2018.8066 20:Oxytosis/ferroptosis 1805:2017PLoSO..1282921M 1466:10.1038/cdd.2014.47 1147:ACS Central Science 1094:2019Natur.575..693D 1031:2019Natur.575..688B 971:2017NatCh...9.1025M 608:ACS Central Science 565:(11–12): 2195–209. 295:Alzheimer’s disease 291:Parkinson's disease 283:Alzheimer's disease 209:nerve growth factor 97:tetrahydrobiopterin 1912:Cellular processes 1887:KEGG pathway entry 979:10.1038/nchem.2778 402:immune suppression 333: 274: 161:Replacing natural 116: 1202:(12): 1351–1360. 1088:(7784): 693–698. 1025:(7784): 688–692. 965:(10): 1025–1033. 766:(12): 1456–1471. 198:neurodegeneration 173:Live-cell imaging 1919: 1874: 1873: 1863: 1852:Advanced Science 1843: 1837: 1836: 1826: 1816: 1784: 1778: 1777: 1767: 1757: 1733: 1727: 1726: 1716: 1706: 1682: 1676: 1675: 1665: 1633: 1627: 1626: 1616: 1592: 1586: 1585: 1575: 1558:(7): 4880–4893. 1543: 1537: 1536: 1526: 1494: 1488: 1487: 1477: 1445: 1428: 1427: 1417: 1385: 1379: 1378: 1368: 1336: 1330: 1329: 1319: 1309: 1285: 1279: 1278: 1268: 1236: 1230: 1229: 1219: 1187: 1181: 1180: 1170: 1138: 1132: 1131: 1113: 1079: 1070: 1061: 1060: 1050: 1010: 1001: 1000: 990: 959:Nature Chemistry 949: 943: 942: 906: 900: 899: 889: 872:(4): 5405–5411. 866:Oncology Letters 857: 848: 847: 837: 827: 803: 794: 793: 783: 751: 745: 744: 726: 702: 696: 695: 685: 653: 642: 641: 631: 599: 593: 592: 582: 550: 541: 540: 530: 498: 489: 488: 486: 485: 450: 66:Fenton chemistry 1927: 1926: 1922: 1921: 1920: 1918: 1917: 1916: 1892: 1891: 1883: 1878: 1877: 1845: 1844: 1840: 1799:(8): e0182921. 1786: 1785: 1781: 1735: 1734: 1730: 1684: 1683: 1679: 1635: 1634: 1630: 1607:(10): 674–688. 1594: 1593: 1589: 1545: 1544: 1540: 1496: 1495: 1491: 1447: 1446: 1431: 1387: 1386: 1382: 1338: 1337: 1333: 1287: 1286: 1282: 1238: 1237: 1233: 1189: 1188: 1184: 1140: 1139: 1135: 1077: 1072: 1071: 1064: 1012: 1011: 1004: 951: 950: 946: 908: 907: 903: 859: 858: 851: 805: 804: 797: 753: 752: 748: 704: 703: 699: 655: 654: 645: 601: 600: 596: 552: 551: 544: 500: 499: 492: 483: 481: 452: 451: 444: 439: 434: 410: 360:B-cell lymphoma 321: 266: 182: 167:deuterated PUFA 142:margination or 102: 89: 62:lipid peroxides 58: 40:Brent Stockwell 28:lipid peroxides 17: 12: 11: 5: 1925: 1923: 1915: 1914: 1909: 1904: 1894: 1893: 1890: 1889: 1882: 1881:External links 1879: 1876: 1875: 1838: 1779: 1728: 1677: 1628: 1587: 1538: 1489: 1460:(7): 1025–35. 1429: 1400:(5): 1415–30. 1380: 1351:(4): 266–282. 1331: 1280: 1251:(5): 497–506. 1231: 1182: 1133: 1062: 1002: 944: 917:(2): 145–164. 901: 849: 795: 760:Cell Chem Biol 746: 697: 668:(5): 1060–72. 643: 614:(3): 232–243. 594: 542: 513:(3): 165–176. 490: 465:(6): 497–506. 441: 440: 438: 435: 433: 432: 427: 422: 417: 411: 409: 406: 378: 377: 372: 367: 362: 357: 352: 347: 342: 320: 317: 265: 262: 181: 178: 100: 87: 57: 54: 15: 13: 10: 9: 6: 4: 3: 2: 1924: 1913: 1910: 1908: 1905: 1903: 1900: 1899: 1897: 1888: 1885: 1884: 1880: 1871: 1867: 1862: 1857: 1853: 1849: 1842: 1839: 1834: 1830: 1825: 1820: 1815: 1810: 1806: 1802: 1798: 1794: 1790: 1783: 1780: 1775: 1771: 1766: 1761: 1756: 1751: 1747: 1743: 1739: 1732: 1729: 1724: 1720: 1715: 1710: 1705: 1700: 1696: 1692: 1688: 1681: 1678: 1673: 1669: 1664: 1659: 1655: 1651: 1648:(7): e90777. 1647: 1643: 1639: 1632: 1629: 1624: 1620: 1615: 1610: 1606: 1602: 1598: 1591: 1588: 1583: 1579: 1574: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1539: 1534: 1530: 1525: 1520: 1516: 1512: 1508: 1504: 1503:Redox Biology 1500: 1493: 1490: 1485: 1481: 1476: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1442: 1440: 1438: 1436: 1434: 1430: 1425: 1421: 1416: 1411: 1407: 1403: 1399: 1395: 1391: 1384: 1381: 1376: 1372: 1367: 1362: 1358: 1354: 1350: 1346: 1342: 1335: 1332: 1327: 1323: 1318: 1313: 1308: 1303: 1299: 1295: 1291: 1284: 1281: 1276: 1272: 1267: 1262: 1258: 1254: 1250: 1246: 1242: 1235: 1232: 1227: 1223: 1218: 1213: 1209: 1205: 1201: 1197: 1193: 1186: 1183: 1178: 1174: 1169: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1134: 1129: 1125: 1121: 1117: 1112: 1111:10044/1/75345 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1069: 1067: 1063: 1058: 1054: 1049: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 1007: 1003: 998: 994: 989: 984: 980: 976: 972: 968: 964: 960: 956: 948: 945: 940: 936: 932: 928: 924: 920: 916: 912: 905: 902: 897: 893: 888: 883: 879: 875: 871: 867: 863: 856: 854: 850: 845: 841: 836: 831: 826: 821: 817: 813: 809: 802: 800: 796: 791: 787: 782: 777: 773: 769: 765: 761: 757: 750: 747: 742: 738: 734: 730: 725: 720: 716: 712: 708: 701: 698: 693: 689: 684: 679: 675: 671: 667: 663: 659: 652: 650: 648: 644: 639: 635: 630: 625: 621: 617: 613: 609: 605: 598: 595: 590: 586: 581: 576: 572: 568: 564: 560: 556: 549: 547: 543: 538: 534: 529: 524: 520: 516: 512: 508: 504: 497: 495: 491: 480: 476: 472: 468: 464: 460: 456: 449: 447: 443: 436: 431: 428: 426: 423: 421: 418: 416: 413: 412: 407: 405: 403: 399: 395: 390: 388: 384: 376: 373: 371: 368: 366: 363: 361: 358: 356: 353: 351: 348: 346: 343: 341: 338: 337: 336: 330: 325: 318: 316: 313: 311: 306: 303: 298: 296: 292: 288: 284: 279: 270: 263: 261: 258: 254: 253:cytochrome c2 250: 246: 242: 238: 234: 228: 226: 222: 218: 214: 210: 206: 201: 199: 195: 191: 187: 179: 177: 174: 170: 168: 164: 159: 157: 153: 149: 145: 141: 137: 133: 129: 125: 124:sulfasalazine 121: 112: 108: 106: 98: 94: 90: 83: 79: 75: 71: 67: 63: 55: 53: 50: 44: 41: 37: 33: 29: 25: 22:is a type of 21: 1851: 1841: 1796: 1792: 1782: 1745: 1741: 1731: 1694: 1690: 1680: 1645: 1641: 1631: 1604: 1600: 1590: 1555: 1551: 1541: 1506: 1502: 1492: 1457: 1453: 1397: 1393: 1383: 1348: 1344: 1334: 1297: 1293: 1283: 1248: 1244: 1234: 1199: 1195: 1185: 1153:(1): 41–53. 1150: 1146: 1136: 1085: 1081: 1022: 1018: 962: 958: 947: 914: 910: 904: 869: 865: 815: 811: 763: 759: 749: 717:(2): 245–9. 714: 711:FEBS Letters 710: 700: 665: 661: 611: 607: 597: 562: 558: 510: 506: 482:. Retrieved 462: 458: 391: 379: 375:Glioblastoma 334: 314: 307: 299: 275: 241:cytochrome c 229: 202: 190:phagocytosis 183: 171: 165:(PUFA) with 160: 135: 131: 117: 59: 45: 19: 18: 1748:(5): 1009. 1642:JCI Insight 49:homeostasis 36:glutathione 1896:Categories 484:2023-03-15 437:References 383:siramesine 264:In neurons 86:coenzyme Q 1870:2198-3844 1128:204833583 939:254369328 430:XJB-5-131 387:lapatinib 302:vitamin E 257:caspase-9 237:caspase-3 186:apoptosis 152:chelators 140:chromatin 128:sorafenib 70:electrons 56:Mechanism 32:apoptosis 1833:28827805 1793:PLOS ONE 1774:33923370 1723:30065697 1672:28405617 1623:37657967 1582:30406908 1533:28212525 1509:: 8–17. 1484:24769728 1424:11073801 1375:33495651 1326:34485382 1275:32231343 1226:32778843 1177:31989025 1120:31634899 1057:31634900 997:28937680 931:31820165 896:29556292 844:29375387 790:33176157 741:22040840 692:22632970 638:28386601 589:27048822 537:26653790 479:11895126 408:See also 331:activity 278:Synaptic 217:PI3K-Akt 93:cofactor 1824:5565111 1801:Bibcode 1765:8146242 1714:6056664 1697:: 581. 1663:5374066 1573:6506411 1524:5312549 1475:4207485 1415:1885741 1366:8142022 1317:8415548 1266:7251976 1217:8299533 1168:6978838 1090:Bibcode 1048:6883167 1027:Bibcode 988:5890907 967:Bibcode 887:5844144 835:5770584 818:: 992. 781:7749085 733:6086389 683:3367386 629:5364454 580:4887533 528:4764384 425:Erastin 420:SLC7A11 396:in the 355:Ovarian 233:caspase 120:erastin 1868:  1831:  1821:  1772:  1762:  1721:  1711:  1670:  1660:  1621:  1580:  1570:  1531:  1521:  1482:  1472:  1422:  1412:  1373:  1363:  1324:  1314:  1273:  1263:  1224:  1214:  1175:  1165:  1126:  1118:  1082:Nature 1055:  1045:  1019:Nature 995:  985:  937:  929:  894:  884:  842:  832:  788:  778:  739:  731:  690:  680:  636:  626:  587:  577:  535:  525:  477:  340:Breast 289:, and 219:) and 1742:Cells 1124:S2CID 1078:(PDF) 935:S2CID 737:S2CID 194:glial 82:AIFM2 1866:ISSN 1829:PMID 1770:PMID 1719:PMID 1668:PMID 1619:PMID 1578:PMID 1529:PMID 1480:PMID 1420:PMID 1371:PMID 1322:PMID 1271:PMID 1222:PMID 1173:PMID 1116:PMID 1053:PMID 993:PMID 927:PMID 892:PMID 840:PMID 786:PMID 729:PMID 688:PMID 662:Cell 634:PMID 585:PMID 533:PMID 475:PMID 415:GPX4 385:and 370:Lung 329:GPX4 310:ATF4 213:TrkA 148:Iron 130:, (1 105:GCH1 78:GPX4 1856:doi 1819:PMC 1809:doi 1760:PMC 1750:doi 1709:PMC 1699:doi 1658:PMC 1650:doi 1609:doi 1568:PMC 1560:doi 1519:PMC 1511:doi 1470:PMC 1462:doi 1410:PMC 1402:doi 1398:157 1361:PMC 1353:doi 1312:PMC 1302:doi 1261:PMC 1253:doi 1212:PMC 1204:doi 1163:PMC 1155:doi 1106:hdl 1098:doi 1086:575 1043:PMC 1035:doi 1023:575 983:PMC 975:doi 919:doi 882:PMC 874:doi 830:PMC 820:doi 776:PMC 768:doi 719:doi 715:172 678:PMC 670:doi 666:149 624:PMC 616:doi 575:PMC 567:doi 523:PMC 515:doi 467:doi 249:Bax 134:, 3 99:(BH 1898:: 1864:. 1854:. 1850:. 1827:. 1817:. 1807:. 1797:12 1795:. 1791:. 1768:. 1758:. 1746:10 1744:. 1740:. 1717:. 1707:. 1693:. 1689:. 1666:. 1656:. 1644:. 1640:. 1617:. 1605:44 1603:. 1599:. 1576:. 1566:. 1556:56 1554:. 1550:. 1527:. 1517:. 1507:12 1505:. 1501:. 1478:. 1468:. 1458:21 1456:. 1452:. 1432:^ 1418:. 1408:. 1396:. 1392:. 1369:. 1359:. 1349:22 1347:. 1343:. 1320:. 1310:. 1300:. 1296:. 1292:. 1269:. 1259:. 1249:16 1247:. 1243:. 1220:. 1210:. 1200:16 1198:. 1194:. 1171:. 1161:. 1149:. 1145:. 1122:. 1114:. 1104:. 1096:. 1084:. 1080:. 1065:^ 1051:. 1041:. 1033:. 1021:. 1017:. 1005:^ 991:. 981:. 973:. 961:. 957:. 933:. 925:. 915:36 913:. 890:. 880:. 870:15 868:. 864:. 852:^ 838:. 828:. 814:. 810:. 798:^ 784:. 774:. 764:27 762:. 758:. 735:. 727:. 713:. 709:. 686:. 676:. 664:. 660:. 646:^ 632:. 622:. 610:. 606:. 583:. 573:. 563:73 561:. 557:. 545:^ 531:. 521:. 511:26 509:. 505:. 493:^ 473:. 461:. 457:. 445:^ 404:. 285:, 227:. 200:. 126:, 122:, 107:. 88:10 1872:. 1858:: 1835:. 1811:: 1803:: 1776:. 1752:: 1725:. 1701:: 1695:9 1674:. 1652:: 1646:2 1625:. 1611:: 1584:. 1562:: 1535:. 1513:: 1486:. 1464:: 1426:. 1404:: 1377:. 1355:: 1328:. 1304:: 1298:8 1277:. 1255:: 1228:. 1206:: 1179:. 1157:: 1151:6 1130:. 1108:: 1100:: 1092:: 1059:. 1037:: 1029:: 999:. 977:: 969:: 963:9 941:. 921:: 898:. 876:: 846:. 822:: 816:8 792:. 770:: 743:. 721:: 694:. 672:: 640:. 618:: 612:3 591:. 569:: 539:. 517:: 487:. 469:: 463:1 136:R 132:S 101:4 76:(

Index

programmed cell death
lipid peroxides
apoptosis
glutathione
Brent Stockwell
homeostasis
lipid peroxides
Fenton chemistry
electrons
glutathione peroxidase 4
GPX4
AIFM2
coenzyme Q10
cofactor
tetrahydrobiopterin
GCH1

erastin
sulfasalazine
sorafenib
chromatin
poly (ADP-ribose) polymerase
Iron
chelators
cystine/glutamate transporter
polyunsaturated fatty acids
deuterated PUFA
Live-cell imaging
apoptosis
phagocytosis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.