Knowledge (XXG)

Fluctuation-enhanced sensing

Source đź“ť

40:, of the sensor signal is analyzed. The stages following the sensor in a FES system typically contain filters and preamplifier(s) to extract and amplify the stochastic signal components, which are usually microscopic temporal fluctuations that are orders of magnitude weaker than the sensor signal. Then selected statistical properties of the amplified 59:
During the 1990s, several authors (for example, Bruno Neri and coworkers, Peter Gottwald and Bela Szentpali) had proposed using the spectrum of measured noise to obtain information about ambient chemical conditions. However, the first systematic proposal for a generic
46:
are analyzed, and a corresponding pattern is generated as the stochastic fingerprint of the sensed agent. Often the power density spectrum of the stochastic signal is used as output pattern however FES has been proven effective with more advanced methods, too, such as
87:
During the years, FES has been developed and demonstrated in many studies with various types of sensors and agents in chemical and biological systems. Bacteria have also been detected and identified by FES, either by their odor in air, or by the
425: 364:
L.B. Kish; G. Schmera; C. Kwan; J. Smulko; P. Heszler; C.G. Granqvist (2007). MacUcci, Massimo; Vandamme, Lode K.; Ciofi, Carmine; Weissman, Michael B. (eds.). "Fluctuation-enhanced sensing".
144:
Robert Mingesz; Zoltan Gingl; Akos Kukovecz; Zoltan Konya; Krisztian Kordas; Hannu Moilanen (2011). "Compact USB measurement and analysis system for real-time fluctuation enhanced sensing".
84:
of the National Academy of Sciences of Ukraine has proven mathematically that adsorption–desorption fluctuations during odor primary reception can be used for improving selectivity.
440: 89: 64:
utilizing chemical sensors in FES mode, and the related mathematical analysis with experimental demonstration, were carried out only in 1999 by
171: 445: 69: 196: 112: 100: 48: 197:"Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues" 274:
Hung-Chih Chang; L.B. Kish; M.D. King; C. Kwan (2009). "Fluctuation-enhanced sensing of bacterial odors".
383: 318: 104: 41: 35: 450: 399: 373: 308: 275: 256: 238: 177: 149: 124: 120: 77: 73: 346: 167: 229:
Vidybida, A. K. (2003). "Adsorption–desorption noise can be used for improving selectivity".
420: 391: 336: 326: 248: 211: 159: 17: 61: 387: 322: 80:), in 2001, after learning about the published scheme. In 2003, Alexander Vidybida from 341: 296: 65: 34:) is a specific type of chemical or biological sensing where the stochastic component, 252: 215: 434: 403: 116: 108: 181: 260: 163: 295:
Chang, Hung-Chih; Kish, Laszlo; King, Maria; Kwan, Chiman (5 January 2010).
81: 350: 243: 331: 395: 76:. The name "fluctuation-enhanced sensing" was created by John Audia ( 99:(Chiman Kwan) developed a portable FES device in collaboration with 378: 313: 280: 154: 368:. Noise and Fluctuations in Circuits, Devices, and Materials. 426:
Summary of three FES-related patents on the US Navy website.
146:
2011 21st International Conference on Noise and Fluctuations
96: 123:) related FES projects were led by Gabor Schmera (see the 297:"Binary fingerprints at fluctuation-enhanced sensing" 195:Kish L, Vajtai R, Granqvist C (November 2000). 8: 82:Bogolyubov Institute for Theoretical Physics 377: 340: 330: 312: 279: 242: 153: 421:FES website at Texas A&M University. 136: 7: 148:. Vol. 21. pp. 385–388. 25: 204:Sensors and Actuators B: Chemical 231:Sensors and Actuators A:Physical 441:Biological techniques and tools 1: 253:10.1016/S0924-4247(03)00355-8 216:10.1016/S0925-4005(00)00586-4 115:for FES purposes were led by 28:Fluctuation-enhanced sensing 18:Fluctuation-Enhanced Sensing 95:In the period of 2006–2009 467: 92:" method in liquid phase. 164:10.1109/ICNF.2011.5994350 101:Texas A&M University 113:higher-order statistics 49:higher-order statistics 111:). Efforts to explore 103:(Laszlo B. Kish) and 97:Signal Processing Inc 446:Laboratory equipment 127:patent site below). 105:University of Szeged 68:, Robert Vajtai and 388:2007SPIE.6600E..0VK 323:2010Senso..10..361C 332:10.3390/s100100361 121:United States Navy 107:(Zoltan Gingl and 78:United States Navy 74:Uppsala University 396:10.1117/12.726838 173:978-1-4577-0189-4 16:(Redirected from 458: 408: 407: 381: 366:SPIE Proceedings 361: 355: 354: 344: 334: 316: 292: 286: 285: 283: 271: 265: 264: 246: 226: 220: 219: 201: 192: 186: 185: 157: 141: 21: 466: 465: 461: 460: 459: 457: 456: 455: 431: 430: 417: 412: 411: 363: 362: 358: 294: 293: 289: 273: 272: 268: 244:physics/0212088 228: 227: 223: 199: 194: 193: 189: 174: 143: 142: 138: 133: 62:electronic nose 57: 23: 22: 15: 12: 11: 5: 464: 462: 454: 453: 448: 443: 433: 432: 429: 428: 423: 416: 415:External links 413: 410: 409: 356: 307:(1): 361–373. 287: 266: 237:(3): 233–237. 221: 210:(1–2): 55–59. 187: 172: 135: 134: 132: 129: 70:C.G. Granqvist 66:Laszlo B. Kish 56: 53: 24: 14: 13: 10: 9: 6: 4: 3: 2: 463: 452: 449: 447: 444: 442: 439: 438: 436: 427: 424: 422: 419: 418: 414: 405: 401: 397: 393: 389: 385: 380: 375: 371: 367: 360: 357: 352: 348: 343: 338: 333: 328: 324: 320: 315: 310: 306: 302: 298: 291: 288: 282: 277: 270: 267: 262: 258: 254: 250: 245: 240: 236: 232: 225: 222: 217: 213: 209: 205: 198: 191: 188: 183: 179: 175: 169: 165: 161: 156: 151: 147: 140: 137: 130: 128: 126: 122: 118: 117:Janusz Smulko 114: 110: 109:Peter Heszler 106: 102: 98: 93: 91: 85: 83: 79: 75: 71: 67: 63: 54: 52: 50: 45: 44: 39: 38: 33: 29: 19: 369: 365: 359: 304: 300: 290: 269: 234: 230: 224: 207: 203: 190: 145: 139: 94: 86: 58: 42: 36: 31: 27: 26: 435:Categories 372:: 66000V. 131:References 119:. SPAWAR ( 451:Olfaction 404:119601788 379:0705.0160 314:0912.5212 281:0901.3100 155:1102.2446 351:22315545 182:41705045 384:Bibcode 342:3270846 319:Bibcode 301:Sensors 261:9340741 125:US Navy 55:History 402:  349:  339:  259:  180:  170:  90:SEPTIC 400:S2CID 374:arXiv 309:arXiv 276:arXiv 257:S2CID 239:arXiv 200:(PDF) 178:S2CID 150:arXiv 43:noise 37:noise 370:6600 347:PMID 168:ISBN 392:doi 337:PMC 327:doi 249:doi 235:107 212:doi 160:doi 72:at 32:FES 437:: 398:. 390:. 382:. 345:. 335:. 325:. 317:. 305:10 303:. 299:. 255:. 247:. 233:. 208:71 206:. 202:. 176:. 166:. 158:. 51:. 406:. 394:: 386:: 376:: 353:. 329:: 321:: 311:: 284:. 278:: 263:. 251:: 241:: 218:. 214:: 184:. 162:: 152:: 88:" 30:( 20:)

Index

Fluctuation-Enhanced Sensing
noise
noise
higher-order statistics
electronic nose
Laszlo B. Kish
C.G. Granqvist
Uppsala University
United States Navy
Bogolyubov Institute for Theoretical Physics
SEPTIC
Signal Processing Inc
Texas A&M University
University of Szeged
Peter Heszler
higher-order statistics
Janusz Smulko
United States Navy
US Navy
arXiv
1102.2446
doi
10.1109/ICNF.2011.5994350
ISBN
978-1-4577-0189-4
S2CID
41705045
"Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues"
doi
10.1016/S0925-4005(00)00586-4

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑