Knowledge (XXG)

Fluctuation-enhanced sensing

Source đź“ť

29:, of the sensor signal is analyzed. The stages following the sensor in a FES system typically contain filters and preamplifier(s) to extract and amplify the stochastic signal components, which are usually microscopic temporal fluctuations that are orders of magnitude weaker than the sensor signal. Then selected statistical properties of the amplified 48:
During the 1990s, several authors (for example, Bruno Neri and coworkers, Peter Gottwald and Bela Szentpali) had proposed using the spectrum of measured noise to obtain information about ambient chemical conditions. However, the first systematic proposal for a generic
35:
are analyzed, and a corresponding pattern is generated as the stochastic fingerprint of the sensed agent. Often the power density spectrum of the stochastic signal is used as output pattern however FES has been proven effective with more advanced methods, too, such as
76:
During the years, FES has been developed and demonstrated in many studies with various types of sensors and agents in chemical and biological systems. Bacteria have also been detected and identified by FES, either by their odor in air, or by the
414: 353:
L.B. Kish; G. Schmera; C. Kwan; J. Smulko; P. Heszler; C.G. Granqvist (2007). MacUcci, Massimo; Vandamme, Lode K.; Ciofi, Carmine; Weissman, Michael B. (eds.). "Fluctuation-enhanced sensing".
133:
Robert Mingesz; Zoltan Gingl; Akos Kukovecz; Zoltan Konya; Krisztian Kordas; Hannu Moilanen (2011). "Compact USB measurement and analysis system for real-time fluctuation enhanced sensing".
73:
of the National Academy of Sciences of Ukraine has proven mathematically that adsorption–desorption fluctuations during odor primary reception can be used for improving selectivity.
429: 78: 53:
utilizing chemical sensors in FES mode, and the related mathematical analysis with experimental demonstration, were carried out only in 1999 by
160: 434: 58: 185: 101: 89: 37: 186:"Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues" 263:
Hung-Chih Chang; L.B. Kish; M.D. King; C. Kwan (2009). "Fluctuation-enhanced sensing of bacterial odors".
372: 307: 93: 30: 24: 439: 388: 362: 297: 264: 245: 227: 166: 138: 113: 109: 66: 62: 335: 156: 218:
Vidybida, A. K. (2003). "Adsorption–desorption noise can be used for improving selectivity".
409: 380: 325: 315: 237: 200: 148: 50: 376: 311: 69:), in 2001, after learning about the published scheme. In 2003, Alexander Vidybida from 330: 285: 54: 23:) is a specific type of chemical or biological sensing where the stochastic component, 241: 204: 423: 392: 105: 97: 170: 249: 152: 284:
Chang, Hung-Chih; Kish, Laszlo; King, Maria; Kwan, Chiman (5 January 2010).
70: 339: 232: 320: 384: 65:. The name "fluctuation-enhanced sensing" was created by John Audia ( 88:(Chiman Kwan) developed a portable FES device in collaboration with 367: 302: 269: 143: 357:. Noise and Fluctuations in Circuits, Devices, and Materials. 415:
Summary of three FES-related patents on the US Navy website.
135:
2011 21st International Conference on Noise and Fluctuations
85: 112:) related FES projects were led by Gabor Schmera (see the 286:"Binary fingerprints at fluctuation-enhanced sensing" 184:Kish L, Vajtai R, Granqvist C (November 2000). 8: 71:Bogolyubov Institute for Theoretical Physics 366: 329: 319: 301: 268: 231: 142: 410:FES website at Texas A&M University. 125: 7: 137:. Vol. 21. pp. 385–388. 14: 193:Sensors and Actuators B: Chemical 220:Sensors and Actuators A:Physical 430:Biological techniques and tools 1: 242:10.1016/S0924-4247(03)00355-8 205:10.1016/S0925-4005(00)00586-4 104:for FES purposes were led by 17:Fluctuation-enhanced sensing 84:In the period of 2006–2009 456: 81:" method in liquid phase. 153:10.1109/ICNF.2011.5994350 90:Texas A&M University 102:higher-order statistics 38:higher-order statistics 100:). Efforts to explore 92:(Laszlo B. Kish) and 86:Signal Processing Inc 435:Laboratory equipment 116:patent site below). 94:University of Szeged 57:, Robert Vajtai and 377:2007SPIE.6600E..0VK 312:2010Senso..10..361C 321:10.3390/s100100361 110:United States Navy 96:(Zoltan Gingl and 67:United States Navy 63:Uppsala University 385:10.1117/12.726838 162:978-1-4577-0189-4 447: 397: 396: 370: 355:SPIE Proceedings 350: 344: 343: 333: 323: 305: 281: 275: 274: 272: 260: 254: 253: 235: 215: 209: 208: 190: 181: 175: 174: 146: 130: 455: 454: 450: 449: 448: 446: 445: 444: 420: 419: 406: 401: 400: 352: 351: 347: 283: 282: 278: 262: 261: 257: 233:physics/0212088 217: 216: 212: 188: 183: 182: 178: 163: 132: 131: 127: 122: 51:electronic nose 46: 12: 11: 5: 453: 451: 443: 442: 437: 432: 422: 421: 418: 417: 412: 405: 404:External links 402: 399: 398: 345: 296:(1): 361–373. 276: 255: 226:(3): 233–237. 210: 199:(1–2): 55–59. 176: 161: 124: 123: 121: 118: 59:C.G. Granqvist 55:Laszlo B. Kish 45: 42: 13: 10: 9: 6: 4: 3: 2: 452: 441: 438: 436: 433: 431: 428: 427: 425: 416: 413: 411: 408: 407: 403: 394: 390: 386: 382: 378: 374: 369: 364: 360: 356: 349: 346: 341: 337: 332: 327: 322: 317: 313: 309: 304: 299: 295: 291: 287: 280: 277: 271: 266: 259: 256: 251: 247: 243: 239: 234: 229: 225: 221: 214: 211: 206: 202: 198: 194: 187: 180: 177: 172: 168: 164: 158: 154: 150: 145: 140: 136: 129: 126: 119: 117: 115: 111: 107: 106:Janusz Smulko 103: 99: 98:Peter Heszler 95: 91: 87: 82: 80: 74: 72: 68: 64: 60: 56: 52: 43: 41: 39: 34: 33: 28: 27: 22: 18: 358: 354: 348: 293: 289: 279: 258: 223: 219: 213: 196: 192: 179: 134: 128: 83: 75: 47: 31: 25: 20: 16: 15: 424:Categories 361:: 66000V. 120:References 108:. SPAWAR ( 440:Olfaction 393:119601788 368:0705.0160 303:0912.5212 270:0901.3100 144:1102.2446 340:22315545 171:41705045 373:Bibcode 331:3270846 308:Bibcode 290:Sensors 250:9340741 114:US Navy 44:History 391:  338:  328:  248:  169:  159:  79:SEPTIC 389:S2CID 363:arXiv 298:arXiv 265:arXiv 246:S2CID 228:arXiv 189:(PDF) 167:S2CID 139:arXiv 32:noise 26:noise 359:6600 336:PMID 157:ISBN 381:doi 326:PMC 316:doi 238:doi 224:107 201:doi 149:doi 61:at 21:FES 426:: 387:. 379:. 371:. 334:. 324:. 314:. 306:. 294:10 292:. 288:. 244:. 236:. 222:. 197:71 195:. 191:. 165:. 155:. 147:. 40:. 395:. 383:: 375:: 365:: 342:. 318:: 310:: 300:: 273:. 267:: 252:. 240:: 230:: 207:. 203:: 173:. 151:: 141:: 77:" 19:(

Index

noise
noise
higher-order statistics
electronic nose
Laszlo B. Kish
C.G. Granqvist
Uppsala University
United States Navy
Bogolyubov Institute for Theoretical Physics
SEPTIC
Signal Processing Inc
Texas A&M University
University of Szeged
Peter Heszler
higher-order statistics
Janusz Smulko
United States Navy
US Navy
arXiv
1102.2446
doi
10.1109/ICNF.2011.5994350
ISBN
978-1-4577-0189-4
S2CID
41705045
"Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues"
doi
10.1016/S0925-4005(00)00586-4
arXiv

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑