Knowledge (XXG)

Glow-discharge optical emission spectroscopy

Source đź“ť

28: 823: 206: 835: 17: 88:. From the surface, the sample is removed in layers by sputtering with argon ions. The removed atoms pass into the plasma by diffusion. Photons are emitted with excited waves and have characteristic wavelengths which are recorded by means of a downstream 114:
Glow discharge spectroscopy is an established method for the characterization of steels and varnishes. Recent developments relate to the analysis of porous electrodes from lithium-ion batteries.
255:
Ghanbari, N.; Waldmann, T.; Kasper, M.; Axmann, P.; Wohlfahrt-Mehrens, M. (2015). "Detection of Li Deposition by Glow Discharge Optical Emission Spectroscopy in Post-Mortem Analysis".
654: 95:
When using a high-frequency alternating voltage for plasma generation and the corresponding construction of the glow discharge source, non-metallic samples can also be examined.
21: 327: 220:
Takahara, Hikari; Shikano, Masahiro; Kobayashi, Hironori (2013). "Quantification of lithium in LIB electrodes with glow discharge optical emission spectroscopy (GD-OES)".
545: 423: 392: 387: 760: 578: 440: 709: 528: 204:, Grimm Werner, "Glow discharge tube for spectral analysis", published November 24, 1970, assigned to Rsv Prazisionsmessgerate Gmbh 372: 649: 451: 352: 595: 573: 320: 50:
method for the quantitative analysis of metals and other non-metallic solids. The idea was published and patented in 1968 by Werner Grimm from
661: 583: 413: 518: 463: 745: 497: 313: 132: 750: 568: 765: 735: 666: 600: 861: 694: 485: 382: 68:
GDOES spectroscopy can be used for the quantitative and qualitative determination of elements and is therefore a method of
492: 397: 626: 473: 362: 293: 782: 621: 590: 523: 772: 714: 563: 435: 798: 777: 540: 418: 61:
can be used to determine the surface of a material, but not its layered structure. In contrast, GDOES gradually
839: 671: 367: 458: 102:
can detect the slightest traces and also high concentrations of the sensor-specific element. By means of
827: 699: 430: 344: 103: 85: 167: 69: 755: 468: 377: 58: 803: 740: 719: 535: 513: 446: 357: 32: 704: 631: 605: 272: 237: 183: 158:
Grimm, W. (1968). "Eine neue glimmentladungslampe fĂĽr die optische emissionsspektralanalyse".
128: 264: 229: 175: 99: 171: 51: 27: 855: 179: 47: 106:, a complete element spectrum can be measured with the appropriate layer thickness. 336: 233: 89: 299: 276: 241: 187: 201: 268: 81: 16: 62: 26: 15: 139:
Glow Discharge Optical Emission Spectroscopy - A Practical Guide
309: 305: 65:
the layers of the sample, revealing the deeper structure.
22:
University of Applied Sciences Ravensburg-Weingarten
791: 728: 687: 680: 642: 614: 556: 506: 406: 343: 125:Glow Discharge Plasmas in Analytical Spectroscopy 160:Spectrochimica Acta Part B: Atomic Spectroscopy 321: 8: 393:Vibrational spectroscopy of linear molecules 40:Glow-discharge optical emission spectroscopy 684: 388:Nuclear resonance vibrational spectroscopy 328: 314: 306: 31:Upper left: Glow discharge source; Right: 761:Inelastic electron tunneling spectroscopy 441:Resonance-enhanced multiphoton ionization 98:Various instruments are used as sensors. 529:Extended X-ray absorption fine structure 150: 7: 834: 80:The metallic samples are used as a 202:United States Patent US3543077 123:R.Kenneth Marcus, JosĂ© Broekaert: 14: 746:Deep-level transient spectroscopy 498:Saturated absorption spectroscopy 833: 822: 821: 751:Dual-polarization interferometry 137:Thomas Nelis, Richard Payling,: 766:Scanning tunneling spectroscopy 741:Circular dichroism spectroscopy 736:Acoustic resonance spectroscopy 695:Fourier-transform spectroscopy 383:Vibrational circular dichroism 234:10.1016/j.jpowsour.2013.01.109 1: 493:Cavity ring-down spectroscopy 398:Thermal infrared spectroscopy 92:and subsequently quantified. 627:Inelastic neutron scattering 302:with excellent illustrations 257:ECS Electrochemistry Letters 180:10.1016/0584-8547(68)80023-0 688:Data collection, processing 564:Photoelectron/photoemission 296:, Glow Discharge Laboratory 878: 773:Photoacoustic spectroscopy 715:Time-resolved spectroscopy 817: 799:Astronomical spectroscopy 778:Photothermal spectroscopy 222:Journal of Power Sources 783:Pump–probe spectroscopy 672:Ferromagnetic resonance 464:Laser-induced breakdown 35:in a photo-spectrometer 479:Glow-discharge optical 459:Raman optical activity 373:Rotational–vibrational 36: 24: 862:Emission spectroscopy 700:Hyperspectral imaging 104:charge-coupled device 86:direct current plasma 30: 19: 452:Coherent anti-Stokes 407:UV–Vis–NIR "Optical" 269:10.1149/2.0041509eel 70:analytical chemistry 756:Hadron spectroscopy 546:Conversion electron 507:X-ray and Gamma ray 414:Ultraviolet–visible 172:1968AcSpe..23..443G 59:atomic spectroscopy 804:Force spectroscopy 729:Measured phenomena 720:Video spectroscopy 424:Cold vapour atomic 37: 25: 849: 848: 813: 812: 705:Spectrophotometry 632:Neutron spin echo 606:Beta spectroscopy 519:Energy-dispersive 869: 837: 836: 825: 824: 685: 596:phenomenological 345:Vibrational (IR) 330: 323: 316: 307: 281: 280: 263:(9): A100–A102. 252: 246: 245: 217: 211: 210: 209: 205: 198: 192: 191: 155: 100:Photomultipliers 877: 876: 872: 871: 870: 868: 867: 866: 852: 851: 850: 845: 809: 787: 724: 676: 638: 610: 552: 502: 402: 363:Resonance Raman 339: 334: 294:Glow Discharges 290: 285: 284: 254: 253: 249: 219: 218: 214: 207: 200: 199: 195: 157: 156: 152: 147: 120: 118:Further reading 112: 78: 12: 11: 5: 875: 873: 865: 864: 854: 853: 847: 846: 844: 843: 831: 818: 815: 814: 811: 810: 808: 807: 801: 795: 793: 789: 788: 786: 785: 780: 775: 770: 769: 768: 758: 753: 748: 743: 738: 732: 730: 726: 725: 723: 722: 717: 712: 707: 702: 697: 691: 689: 682: 678: 677: 675: 674: 669: 664: 659: 658: 657: 646: 644: 640: 639: 637: 636: 635: 634: 624: 618: 616: 612: 611: 609: 608: 603: 598: 593: 588: 587: 586: 581: 579:Angle-resolved 576: 571: 560: 558: 554: 553: 551: 550: 549: 548: 538: 533: 532: 531: 526: 521: 510: 508: 504: 503: 501: 500: 495: 490: 489: 488: 483: 482: 481: 466: 461: 456: 455: 454: 444: 438: 433: 428: 427: 426: 416: 410: 408: 404: 403: 401: 400: 395: 390: 385: 380: 375: 370: 365: 360: 355: 349: 347: 341: 340: 335: 333: 332: 325: 318: 310: 304: 303: 297: 289: 288:External links 286: 283: 282: 247: 212: 193: 166:(7): 443–454. 149: 148: 146: 143: 142: 141: 135: 119: 116: 111: 108: 77: 74: 52:Hanau, Germany 33:Rowland circle 13: 10: 9: 6: 4: 3: 2: 874: 863: 860: 859: 857: 842: 841: 832: 830: 829: 820: 819: 816: 805: 802: 800: 797: 796: 794: 790: 784: 781: 779: 776: 774: 771: 767: 764: 763: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 733: 731: 727: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 692: 690: 686: 683: 679: 673: 670: 668: 665: 663: 660: 656: 653: 652: 651: 648: 647: 645: 641: 633: 630: 629: 628: 625: 623: 620: 619: 617: 613: 607: 604: 602: 599: 597: 594: 592: 589: 585: 582: 580: 577: 575: 572: 570: 567: 566: 565: 562: 561: 559: 555: 547: 544: 543: 542: 539: 537: 534: 530: 527: 525: 522: 520: 517: 516: 515: 512: 511: 509: 505: 499: 496: 494: 491: 487: 484: 480: 477: 476: 475: 472: 471: 470: 467: 465: 462: 460: 457: 453: 450: 449: 448: 445: 442: 439: 437: 436:Near-infrared 434: 432: 429: 425: 422: 421: 420: 417: 415: 412: 411: 409: 405: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 354: 351: 350: 348: 346: 342: 338: 331: 326: 324: 319: 317: 312: 311: 308: 301: 298: 295: 292: 291: 287: 278: 274: 270: 266: 262: 258: 251: 248: 243: 239: 235: 231: 227: 223: 216: 213: 203: 197: 194: 189: 185: 181: 177: 173: 169: 165: 161: 154: 151: 144: 140: 136: 134: 133:0-471-60699-5 130: 126: 122: 121: 117: 115: 109: 107: 105: 101: 96: 93: 91: 87: 83: 75: 73: 71: 66: 64: 60: 55: 53: 49: 48:spectroscopic 45: 41: 34: 29: 23: 20:GDOES at the 18: 838: 826: 806:(a misnomer) 792:Applications 710:Time-stretch 601:paramagnetic 478: 419:Fluorescence 337:Spectroscopy 300:GDOES Theory 260: 256: 250: 225: 221: 215: 196: 163: 159: 153: 138: 124: 113: 110:Applications 97: 94: 90:spectrometer 79: 67: 56: 43: 39: 38: 378:Vibrational 228:: 252–258. 584:Two-photon 486:absorption 368:Rotational 145:References 662:Terahertz 643:Radiowave 541:Mössbauer 277:2162-8726 242:0378-7753 188:0584-8547 57:Ordinary 856:Category 828:Category 557:Electron 524:Emission 474:emission 431:Vibronic 840:Commons 667:ESR/EPR 615:Nucleon 443:(REMPI) 168:Bibcode 127:Wiley, 82:cathode 76:Process 63:ablates 46:) is a 681:Others 469:Atomic 275:  240:  208:  186:  131:  622:Alpha 591:Auger 569:X-ray 536:Gamma 514:X-ray 447:Raman 358:Raman 353:FT-IR 84:in a 44:GDOES 273:ISSN 238:ISSN 184:ISSN 129:ISBN 650:NMR 265:doi 230:doi 226:244 176:doi 858:: 655:2D 574:UV 271:. 259:. 236:. 224:. 182:. 174:. 164:23 162:. 72:. 54:. 329:e 322:t 315:v 279:. 267:: 261:4 244:. 232:: 190:. 178:: 170:: 42:(

Index


University of Applied Sciences Ravensburg-Weingarten

Rowland circle
spectroscopic
Hanau, Germany
atomic spectroscopy
ablates
analytical chemistry
cathode
direct current plasma
spectrometer
Photomultipliers
charge-coupled device
ISBN
0-471-60699-5
Bibcode
1968AcSpe..23..443G
doi
10.1016/0584-8547(68)80023-0
ISSN
0584-8547
United States Patent US3543077
doi
10.1016/j.jpowsour.2013.01.109
ISSN
0378-7753
doi
10.1149/2.0041509eel
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑