Knowledge

Hecke character

Source 📝

409:
Strictly speaking, Hecke made the stipulation about behavior on principal ideals for those admitting a totally positive generator. So, in terms of the definition given above, he really only worked with moduli where all real places appeared. The role of the infinite part
729:
is a Dirichlet character of conductor 1. The number of Hilbert characters is the order of the class group of the field. Class field theory identifies the Hilbert characters with the characters of the Galois group of the Hilbert class
656:
The characters are 'big' in the sense that the infinity-type when present non-trivially means these characters are not of finite order. The finite-order Hecke characters are all, in a sense, accounted for by
549: 123:("unitary"). Any quasicharacter (of the idele class group) can be written uniquely as a unitary character times a real power of the norm, so there is no big difference between the two definitions. 425:
Both are essentially same notion which has 1 to 1 correspondence. The ideal definition is much more complicated than the idelic one, and Hecke's motivation for his definition was to construct
770: 583:= 1 when the character is trivial. For primitive Größencharakter (defined relative to a modulus in a similar manner to primitive Dirichlet characters), Hecke showed these 716:
is a Hecke character of finite order. It is determined by values on the set of totally positive principal ideals which are 1 with respect to some modulus
598:
Consider a character ψ of the idele class group, taken to be a map into the unit circle which is 1 on principal ideles and on an exceptional finite set
112:
This definition depends on the definition of a character, which varies slightly between authors: It may be defined as a homomorphism to the non-zero
178:(often written Grössencharakter, Grossencharacter, etc.), origin of a Hecke character, going back to Hecke, is defined in terms of a character on 1270: 364:
of a continuous homomorphism to the nonzero complex numbers from the product of the multiplicative groups of all Archimedean completions of
1354: 881: 1230: 1187: 1144: 213: 1262: 1218: 630:
coordinate and 1 everywhere else. Let χ be the composite of Π and ψ. Then χ is well-defined as a character on the ideal group.
454: 158:(considered as a character on the idele group) is trivial on the group of finite ideles whose every v-adic component lies in 1 + 66: 579:-functions have a meromorphic continuation to the whole complex plane, being analytic except for a simple pole of order 1 at 1381: 1167: 987: 698: 877: 686: 1322: 979: 853: 681:
has Hecke characters that go beyond finite order in a serious way (see the example below). Later developments in
776:-adic integers. So a quasicharacter can be written as product of a power of the norm with a Dirichlet character. 864:
systematically, to remove the need for any special functions. A similar theory was independently developed by
86: 1376: 983: 920: 682: 641:
there corresponds a unique idele class character ψ. Here admissible refers to the existence of a modulus
62: 368:
where each local component of the homomorphism has the same real part (in the exponent). (Here we embed
98: 70: 575:
implies these Dirichlet series are absolutely convergent in some right half-plane. Hecke proved these
746: 1330: 1308: 1119: 1091: 54: 712: 694: 237: 39: 916: 861: 658: 1248: 1222: 1266: 1226: 1183: 1140: 725: 678: 674: 90: 566:. The common real part condition governing the behavior of Größencharakter on the subgroups 1338: 1326: 1312: 1304: 1284: 1236: 1193: 1175: 1150: 1115: 1099: 1087: 905: 869: 865: 835: 666: 446: 179: 1280: 966:
together with the infinite places. This character has the property that for a prime ideal
1342: 1316: 1288: 1276: 1240: 1214: 1197: 1171: 1154: 1136: 1103: 825:, so the factor of 4 in the exponent ensures that the character is well defined on ideals. 381: 740:
For the field of rational numbers, the idele class group is isomorphic to the product of
441:-function from the rationals to other number fields. For a Größencharakter χ, its 1207: 1111: 971: 931: 849: 741: 113: 1370: 1350: 959: 31: 1135:. Graduate Texts in Mathematics. Vol. 111. With an appendix by Ruth Lawrence. 602:
containing all infinite places. Then ψ generates a character χ of the ideal group
183: 117: 94: 685:
theory indicated that the proper place of the 'big' characters was to provide the
885: 102: 43: 17: 857: 563: 106: 47: 287:
in accordance with the multiplicities of its factors: for each finite place
892:
transforming under the action of the ideles by a given χ has dimension 1.
856:'s 1950 Princeton doctoral dissertation, written under the supervision of 779:
A Hecke character χ of the Gaussian integers of conductor 1 is of the form
994:
is a product of two Dirichlet series, for χ and its complex conjugate.
868:
which was the subject of his 1950 ICM talk. A later reformulation in a
587:-functions satisfy a functional equation relating the values of the 376:
using embeddings corresponding to the various Archimedean places on
1179: 554:
carried out over integral ideals relatively prime to the modulus
116:(also called a "quasicharacter"), or as a homomorphism to the 938:
with complex multiplication by the imaginary quadratic field
649:
such that the character χ is 1 on the ideals which are 1 mod
1297:
Fourier analysis in number fields and Hecke's zeta functions
908:
values: they were introduced by Weil in 1947 under the name
544:{\displaystyle \sum _{(I,m)=1}\chi (I)N(I)^{-s}=L(s,\chi )} 876:
showed that parts of Tate's proof could be expressed by
421:
Relationship between Größencharakter and Hecke character
236:, the "infinite part", being a (formal) product of real 840:
Hecke's original proof of the functional equation for
417:
is now subsumed under the notion of an infinity-type.
347:
into the nonzero complex numbers such that on ideals (
749: 457: 606:, the free abelian group on the prime ideals not in 275:
denote the subgroup of principal fractional ideals (
1209:
Elementary and analytic theory of algebraic numbers
1114:(1967). "VIII. Zeta-functions and L-functions". In 950:. Then there is an algebraic Hecke character χ for 1206: 764: 543: 1073:Husemoller (1987) pp. 302–303; (2002) pp. 321–322 380:.) Thus a Größencharakter may be defined on the 610:. Take a uniformising element π for each prime 225:, the "finite part", being an integral ideal of 101:. It corresponds uniquely to a character of the 372:into the product of Archimedean completions of 595:-function of its complex conjugate character. 310:− 1) is at least as large as the exponent for 1325:(1967). "VII. Global class field theory". In 1258:Grundlehren der mathematischen Wissenschaften 8: 1256: 626:to the class of the idele which is π in the 1064:Husemoller (1987) pp. 299–300; (2002) p.320 109:, via composition with the projection map. 1011: 756: 752: 751: 748: 677:shows. But even a field as simple as the 511: 462: 456: 327:is positive under each real embedding in 253:denote the group of fractional ideals of 437:) that extend the notion of a Dirichlet 1003: 1051: 1049: 1047: 558:of the Größencharakter. The notation 429:-functions (sometimes referred to as 7: 1337:. Academic Press. pp. 162–203. 873: 633:In the opposite direction, given an 1362:, vol. 312, Séminaire Bourbaki 1299:(Tate's 1950 thesis), reprinted in 1170:. Vol. 111 (second ed.). 1126:. Academic Press. pp. 204–230. 360:its value is equal to the value at 880:: the space of distributions (for 334:. A Größencharakter with modulus 27:Type of character in number theory 25: 622:to idele classes by mapping each 591:-function of a character and the 1356:Functions Zetas et Distributions 1219:Polish Scientific Publishers PWN 821:). The only units are powers of 772:with all the unit groups of the 765:{\displaystyle \mathbb {R} ^{+}} 61:, and a natural setting for the 445:-function is defined to be the 882:Schwartz–Bruhat test functions 538: 526: 508: 501: 495: 489: 475: 463: 65:and certain others which have 1: 1168:Graduate Texts in Mathematics 817:is a generator of the ideal ( 338:is a group homomorphism from 1131:Husemöller, Dale H. (1987). 934:defined over a number field 915:. Such characters occur in 904:is a Hecke character taking 283:is near 1 at each place of 1398: 1311:(1967) pp. 305–347. 1253:Algebraische Zahlentheorie 896:Algebraic Hecke characters 833: 693:for an important class of 1261:. Vol. 322. Berlin: 1162:Husemöller, Dale (2002). 986:. As a consequence, the 980:characteristic polynomial 902:algebraic Hecke character 150:is a Hecke character mod 142:is a Hecke character mod 69:analogous to that of the 38:is a generalisation of a 988:Hasse–Weil zeta function 618:and define a map Π from 388:, which is the quotient 46:to construct a class of 1335:Algebraic Number Theory 1301:Algebraic Number Theory 1124:Algebraic Number Theory 1096:Algebraic Number Theory 1032:Heilbronn (1967) p. 205 954:, with exceptional set 63:Dedekind zeta-functions 1257: 1205:W. Narkiewicz (1990). 1055:Heilbronn (1967) p.207 1023:Heilbronn (1967) p.204 984:Frobenius endomorphism 921:complex multiplication 829: 766: 683:complex multiplication 545: 958:the set of primes of 848:,χ) used an explicit 767: 546: 134:is the largest ideal 130:of a Hecke character 99:global function field 71:Riemann zeta-function 1382:Zeta and L-functions 747: 455: 257:relatively prime to 105:which is trivial on 67:functional equations 978:) is a root of the 942:, and suppose that 878:distribution theory 713:Dirichlet character 695:algebraic varieties 146:. Here we say that 40:Dirichlet character 1331:Fröhlich, Albrecht 1120:Fröhlich, Albrecht 1098:. Academic Press. 1092:Fröhlich, Albrecht 919:and the theory of 917:class field theory 862:Pontryagin duality 813:an integer, where 762: 659:class field theory 541: 485: 1272:978-3-540-65399-8 1041:Tate (1967) p.169 726:Hilbert character 675:Artin reciprocity 645:based on the set 458: 180:fractional ideals 91:idele class group 16:(Redirected from 1389: 1363: 1361: 1346: 1305:J. W. S. Cassels 1292: 1260: 1249:Neukirch, Jürgen 1244: 1213:(2nd ed.). 1212: 1201: 1158: 1127: 1107: 1074: 1071: 1065: 1062: 1056: 1053: 1042: 1039: 1033: 1030: 1024: 1021: 1015: 1008: 946:is contained in 870:Bourbaki seminar 866:Kenkichi Iwasawa 771: 769: 768: 763: 761: 760: 755: 550: 548: 547: 542: 519: 518: 484: 447:Dirichlet series 107:principal ideles 42:, introduced by 21: 18:Grössencharacter 1397: 1396: 1392: 1391: 1390: 1388: 1387: 1386: 1367: 1366: 1359: 1349: 1327:Cassels, J.W.S. 1321: 1273: 1263:Springer-Verlag 1247: 1233: 1215:Springer-Verlag 1204: 1190: 1172:Springer-Verlag 1164:Elliptic curves 1161: 1147: 1137:Springer-Verlag 1133:Elliptic curves 1130: 1116:Cassels, J.W.S. 1110: 1094:, eds. (1967). 1088:Cassels, J.W.S. 1086: 1083: 1078: 1077: 1072: 1068: 1063: 1059: 1054: 1045: 1040: 1036: 1031: 1027: 1022: 1018: 1012:Husemöller 2002 1009: 1005: 1000: 913: 898: 838: 832: 750: 745: 744: 737: 707: 665:-functions are 637:character χ of 574: 507: 453: 452: 423: 416: 405: 396: 382:ray class group 359: 346: 333: 322: 305: 299: 274: 265: 252: 235: 224: 207: 201: 176:Größencharakter 172: 170:Größencharakter 165: 118:unit circle in 114:complex numbers 83:Hecke character 79: 36:Hecke character 28: 23: 22: 15: 12: 11: 5: 1395: 1393: 1385: 1384: 1379: 1369: 1368: 1365: 1364: 1347: 1319: 1293: 1271: 1245: 1231: 1202: 1188: 1180:10.1007/b97292 1159: 1145: 1128: 1108: 1082: 1079: 1076: 1075: 1066: 1057: 1043: 1034: 1025: 1016: 1002: 1001: 999: 996: 974:, the value χ( 972:good reduction 932:elliptic curve 911: 897: 894: 850:theta-function 834:Main article: 831: 828: 827: 826: 809:imaginary and 802: 801: 781: 780: 777: 759: 754: 742:positive reals 736: 733: 732: 731: 721: 706: 703: 679:Gaussian field 570: 552: 551: 540: 537: 534: 531: 528: 525: 522: 517: 514: 510: 506: 503: 500: 497: 494: 491: 488: 483: 480: 477: 474: 471: 468: 465: 461: 422: 419: 414: 401: 392: 355: 342: 331: 318: 301: 295: 270: 261: 248: 233: 220: 205: 197: 171: 168: 163: 78: 75: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1394: 1383: 1380: 1378: 1377:Number theory 1375: 1374: 1372: 1358: 1357: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1268: 1264: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1232:3-540-51250-0 1228: 1224: 1220: 1216: 1211: 1210: 1203: 1199: 1195: 1191: 1189:0-387-95490-2 1185: 1181: 1177: 1173: 1169: 1165: 1160: 1156: 1152: 1148: 1146:0-387-96371-5 1142: 1138: 1134: 1129: 1125: 1121: 1117: 1113: 1112:Heilbronn, H. 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1084: 1080: 1070: 1067: 1061: 1058: 1052: 1050: 1048: 1044: 1038: 1035: 1029: 1026: 1020: 1017: 1013: 1007: 1004: 997: 995: 993: 989: 985: 981: 977: 973: 969: 965: 961: 960:bad reduction 957: 953: 949: 945: 941: 937: 933: 929: 924: 922: 918: 914: 907: 903: 895: 893: 891: 887: 883: 879: 875: 871: 867: 863: 859: 855: 851: 847: 843: 837: 836:Tate's thesis 830:Tate's thesis 824: 820: 816: 812: 808: 804: 803: 799: 795: 791: 787: 783: 782: 778: 775: 757: 743: 739: 738: 734: 728: 727: 722: 719: 715: 714: 709: 708: 705:Special cases 704: 702: 700: 696: 692: 690: 684: 680: 676: 672: 670: 664: 660: 654: 652: 648: 644: 640: 636: 631: 629: 625: 621: 617: 613: 609: 605: 601: 596: 594: 590: 586: 582: 578: 573: 569: 565: 561: 557: 535: 532: 529: 523: 520: 515: 512: 504: 498: 492: 486: 481: 478: 472: 469: 466: 459: 451: 450: 449: 448: 444: 440: 436: 434: 428: 420: 418: 413: 407: 404: 400: 395: 391: 387: 383: 379: 375: 371: 367: 363: 358: 354: 350: 345: 341: 337: 330: 326: 321: 317: 313: 309: 304: 298: 294: 290: 286: 282: 278: 273: 269: 264: 260: 256: 251: 247: 243: 239: 232: 228: 223: 219: 215: 211: 204: 200: 196: 192: 188: 185: 181: 177: 169: 167: 161: 157: 153: 149: 145: 141: 137: 133: 129: 124: 122: 121: 115: 110: 108: 104: 100: 96: 92: 88: 84: 76: 74: 72: 68: 64: 60: 58: 52: 50: 45: 41: 37: 33: 32:number theory 19: 1355: 1334: 1300: 1296: 1252: 1208: 1163: 1132: 1123: 1095: 1069: 1060: 1037: 1028: 1019: 1014:, chapter 16 1006: 991: 975: 967: 963: 955: 951: 947: 943: 939: 935: 927: 925: 909: 901: 899: 889: 845: 841: 839: 822: 818: 814: 810: 806: 797: 793: 789: 785: 773: 724: 717: 711: 688: 668: 662: 655: 650: 646: 642: 638: 634: 632: 627: 623: 619: 615: 611: 607: 603: 599: 597: 592: 588: 584: 580: 576: 571: 567: 559: 555: 553: 442: 438: 432: 430: 426: 424: 411: 408: 402: 398: 393: 389: 385: 377: 373: 369: 365: 361: 356: 352: 348: 343: 339: 335: 328: 324: 319: 315: 311: 307: 302: 296: 292: 288: 284: 280: 276: 271: 267: 262: 258: 254: 249: 245: 241: 230: 226: 221: 217: 209: 202: 198: 194: 190: 186: 184:number field 175: 173: 159: 155: 151: 147: 143: 139: 135: 131: 127: 125: 119: 111: 95:number field 82: 80: 56: 53:larger than 48: 35: 29: 1351:Weil, André 1309:A. Fröhlich 1221:. pp.  926:Indeed let 886:adele group 687:Hasse–Weil 103:idele group 44:Erich Hecke 1371:Categories 1343:1179.11041 1323:Tate, J.T. 1317:1179.11041 1289:0956.11021 1241:0717.11045 1198:1040.11043 1155:0605.14032 1104:0153.07403 1081:References 860:, applied 858:Emil Artin 691:-functions 671:-functions 635:admissible 564:ideal norm 562:means the 435:-functions 138:such that 77:Definition 59:-functions 55:Dirichlet 51:-functions 1295:J. Tate, 906:algebraic 884:) on the 874:Weil 1966 854:John Tate 697:(or even 536:χ 513:− 487:χ 460:∑ 182:. For a 128:conductor 87:character 1353:(1966), 1333:(eds.). 1251:(1999). 1122:(eds.). 735:Examples 661:: their 279:) where 266:and let 1281:1697859 1223:334–343 982:of the 699:motives 614:not in 384:modulo 244:. Let 216:, with 214:modulus 89:of the 1341:  1315:  1287:  1279:  1269:  1239:  1229:  1196:  1186:  1153:  1143:  1102:  1010:As in 930:be an 910:type A 788:)) = | 730:field. 667:Artin 431:Hecke 323:, and 238:places 189:, let 1360:(PDF) 998:Notes 673:, as 351:) in 300:, ord 208:be a 93:of a 85:is a 1303:edd 1267:ISBN 1227:ISBN 1184:ISBN 1141:ISBN 990:for 805:for 560:N(I) 229:and 126:The 34:, a 1339:Zbl 1313:Zbl 1285:Zbl 1237:Zbl 1194:Zbl 1176:doi 1151:Zbl 1100:Zbl 970:of 962:of 900:An 888:of 872:by 784:χ(( 701:). 314:in 291:in 240:of 154:if 97:or 30:In 1373:: 1329:; 1307:, 1283:. 1277:MR 1275:. 1265:. 1255:. 1235:. 1225:. 1192:. 1182:. 1174:. 1166:. 1149:. 1139:. 1118:; 1090:; 1046:^ 923:. 852:. 800:|) 796:/| 792:|( 723:A 710:A 653:. 406:. 193:= 174:A 166:. 81:A 73:. 1345:. 1291:. 1243:. 1217:/ 1200:. 1178:: 1157:. 1106:. 992:E 976:p 968:p 964:E 956:S 952:F 948:F 944:K 940:K 936:F 928:E 912:0 890:K 846:s 844:( 842:L 823:i 819:a 815:a 811:n 807:s 798:a 794:a 790:a 786:a 774:p 758:+ 753:R 720:. 718:m 689:L 669:L 663:L 651:m 647:S 643:m 639:I 628:p 624:p 620:I 616:S 612:p 608:S 604:I 600:S 593:L 589:L 585:L 581:s 577:L 572:m 568:P 556:m 539:) 533:, 530:s 527:( 524:L 521:= 516:s 509:) 505:I 502:( 499:N 496:) 493:I 490:( 482:1 479:= 476:) 473:m 470:, 467:I 464:( 443:L 439:L 433:L 427:L 415:∞ 412:m 403:m 399:P 397:/ 394:m 390:I 386:m 378:K 374:K 370:a 366:K 362:a 357:m 353:P 349:a 344:m 340:I 336:m 332:∞ 329:m 325:a 320:f 316:m 312:v 308:a 306:( 303:v 297:f 293:m 289:v 285:m 281:a 277:a 272:m 268:P 263:f 259:m 255:K 250:m 246:I 242:K 234:∞ 231:m 227:K 222:f 218:m 212:- 210:K 206:∞ 203:m 199:f 195:m 191:m 187:K 164:v 162:O 160:m 156:χ 152:m 148:χ 144:m 140:χ 136:m 132:χ 120:C 57:L 49:L 20:)

Index

Grössencharacter
number theory
Dirichlet character
Erich Hecke
L-functions
Dirichlet L-functions
Dedekind zeta-functions
functional equations
Riemann zeta-function
character
idele class group
number field
global function field
idele group
principal ideles
complex numbers
unit circle in C
fractional ideals
number field
modulus
places
ray class group
Dirichlet series
ideal norm
class field theory
Artin L-functions
Artin reciprocity
Gaussian field
complex multiplication
Hasse–Weil L-functions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.