Knowledge (XXG)

Hyperbolic equilibrium point

Source đź“ť

56: 372: 908: 229: 1061: â‰  0, the eigenvalues have non-zero real part. Thus, this equilibrium point is a hyperbolic equilibrium point. The linearized system will behave similar to the non-linear system near (0, 0). When 630: 559: 1055: 691: 148: 786: 483: 430: 781: 206: 997: 1073:
In the case of an infinite dimensional system—for example systems involving a time delay—the notion of the "hyperbolic part of the spectrum" refers to the above property.
367:{\displaystyle {\begin{bmatrix}x_{n+1}\\y_{n+1}\end{bmatrix}}={\begin{bmatrix}1&1\\1&2\end{bmatrix}}{\begin{bmatrix}x_{n}\\y_{n}\end{bmatrix}}} 1092: 565: 494: 1005: 1178: 1153: 1124: 646: 103: 903:{\displaystyle {\begin{aligned}{\frac {dx}{dt}}&=y,\\{\frac {dy}{dt}}&=-x-x^{3}-\alpha y,~\alpha \neq 0\end{aligned}}} 436: 383: 209: 752: 756: 1226: 159: 29: 176: 913:(0, 0) is the only equilibrium point. The Jacobian matrix of the linearization at the equilibrium point is 52:'—but it has become standard." Several properties hold about a neighborhood of a hyperbolic point, notably 760: 41: 88: 1221: 919: 220: 37: 1174: 1149: 1120: 216: 78: 17: 717: 171: 71: 65: 45: 33: 1142: 1087: 1215: 1113: 764: 55: 1203: 697: 59:
Orbits near a two-dimensional saddle point, an example of a hyperbolic equilibrium.
49: 1198: 1082: 1065: = 0, the system has a nonhyperbolic equilibrium at (0, 0). 949: 48:
notes that "hyperbolic is an unfortunate name—it sounds like it should mean '
54: 625:{\displaystyle \lambda _{2}={\frac {\ln(3-{\sqrt {5}})}{2}}<1} 554:{\displaystyle \lambda _{1}={\frac {\ln(3+{\sqrt {5}})}{2}}>1} 1050:{\displaystyle {\frac {-\alpha \pm {\sqrt {\alpha ^{2}-4}}}{2}}} 44:
system resemble hyperbolas. This fails to hold in general.
686:{\displaystyle F\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}} 143:{\displaystyle T\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}} 755:
states that the orbit structure of a dynamical system in a
77:
The dynamics on the invariant set can be represented via
478:{\displaystyle \lambda _{2}={\frac {3-{\sqrt {5}}}{2}}} 425:{\displaystyle \lambda _{1}={\frac {3+{\sqrt {5}}}{2}}} 329: 293: 238: 1008: 922: 784: 649: 568: 497: 439: 386: 232: 179: 106: 1141: 1112: 1049: 991: 902: 685: 624: 553: 477: 424: 366: 200: 142: 740:. Hyperbolic fixed points may also be called 732:has no eigenvalues with zero real parts then 8: 1169:Abraham, Ralph; Marsden, Jerrold E. (1978). 1027: 1021: 1009: 1007: 948: 921: 866: 826: 789: 785: 783: 677: 673: 672: 662: 658: 657: 648: 600: 582: 573: 567: 529: 511: 502: 496: 488:We know that the Lyapunov exponents are: 462: 453: 444: 438: 409: 400: 391: 385: 350: 336: 324: 288: 265: 245: 233: 231: 178: 134: 130: 129: 119: 115: 114: 105: 219:whose only fixed point is hyperbolic is 1103: 40:point the orbits of a two-dimensional, 1093:Normally hyperbolic invariant manifold 201:{\displaystyle \operatorname {D} T(p)} 759:of a hyperbolic equilibrium point is 7: 1173:. Reading Mass.: Benjamin/Cummings. 1002:The eigenvalues of this matrix are 377:Since the eigenvalues are given by 180: 14: 84:A natural measure can be defined, 635:Therefore it is a saddle point. 68:and an unstable manifold exist, 1148:. Cambridge University Press. 938: 926: 775:Consider the nonlinear system 763:to the orbit structure of the 668: 607: 591: 536: 520: 195: 189: 125: 1: 992:{\displaystyle J(0,0)=\left.} 1197:Eugene M. Izhikevich (ed.). 1115:Nonlinear Dynamics and Chaos 212:on the complex unit circle. 22:hyperbolic equilibrium point 1243: 1144:Chaos in Dynamical Systems 746:elementary critical points 742:hyperbolic critical points 1111:Strogatz, Steven (2001). 1171:Foundations of Mechanics 761:topologically equivalent 753:Hartman–Grobman theorem 32:that does not have any 1051: 993: 904: 700:with a critical point 687: 626: 555: 479: 426: 368: 202: 168:hyperbolic fixed point 144: 60: 26:hyperbolic fixed point 1052: 994: 905: 688: 627: 556: 480: 427: 369: 203: 145: 58: 1140:Ott, Edward (1994). 1057:. For all values of 1006: 920: 782: 647: 566: 495: 437: 384: 230: 177: 104: 89:structurally stable 1119:. Westview Press. 1047: 989: 980: 900: 898: 767:dynamical system. 683: 622: 551: 475: 422: 364: 358: 318: 279: 198: 140: 61: 1045: 1039: 886: 844: 807: 614: 605: 543: 534: 473: 467: 420: 414: 215:One example of a 79:symbolic dynamics 18:dynamical systems 1234: 1227:Stability theory 1208: 1185: 1184: 1166: 1160: 1159: 1147: 1137: 1131: 1130: 1118: 1108: 1056: 1054: 1053: 1048: 1046: 1041: 1040: 1032: 1031: 1022: 1010: 998: 996: 995: 990: 985: 981: 909: 907: 906: 901: 899: 884: 871: 870: 845: 843: 835: 827: 808: 806: 798: 790: 728:. If the matrix 692: 690: 689: 684: 682: 681: 676: 667: 666: 661: 631: 629: 628: 623: 615: 610: 606: 601: 583: 578: 577: 560: 558: 557: 552: 544: 539: 535: 530: 512: 507: 506: 484: 482: 481: 476: 474: 469: 468: 463: 454: 449: 448: 431: 429: 428: 423: 421: 416: 415: 410: 401: 396: 395: 373: 371: 370: 365: 363: 362: 355: 354: 341: 340: 323: 322: 284: 283: 276: 275: 256: 255: 221:Arnold's cat map 207: 205: 204: 199: 166:is said to be a 149: 147: 146: 141: 139: 138: 133: 124: 123: 118: 34:center manifolds 16:In the study of 1242: 1241: 1237: 1236: 1235: 1233: 1232: 1231: 1212: 1211: 1196: 1193: 1188: 1181: 1168: 1167: 1163: 1156: 1139: 1138: 1134: 1127: 1110: 1109: 1105: 1101: 1079: 1071: 1023: 1011: 1004: 1003: 979: 978: 970: 961: 960: 955: 944: 918: 917: 897: 896: 862: 846: 836: 828: 823: 822: 809: 799: 791: 780: 779: 773: 718:Jacobian matrix 712:) = 0, and let 671: 656: 645: 644: 641: 584: 569: 564: 563: 513: 498: 493: 492: 455: 440: 435: 434: 402: 387: 382: 381: 357: 356: 346: 343: 342: 332: 325: 317: 316: 311: 305: 304: 299: 289: 278: 277: 261: 258: 257: 241: 234: 228: 227: 175: 174: 172:Jacobian matrix 128: 113: 102: 101: 98: 66:stable manifold 42:non-dissipative 12: 11: 5: 1240: 1238: 1230: 1229: 1224: 1214: 1213: 1210: 1209: 1192: 1189: 1187: 1186: 1179: 1161: 1154: 1132: 1125: 1102: 1100: 1097: 1096: 1095: 1090: 1088:Hyperbolic set 1085: 1078: 1075: 1070: 1067: 1044: 1038: 1035: 1030: 1026: 1020: 1017: 1014: 1000: 999: 988: 984: 977: 974: 971: 969: 966: 963: 962: 959: 956: 954: 951: 950: 947: 943: 940: 937: 934: 931: 928: 925: 911: 910: 895: 892: 889: 883: 880: 877: 874: 869: 865: 861: 858: 855: 852: 849: 847: 842: 839: 834: 831: 825: 824: 821: 818: 815: 812: 810: 805: 802: 797: 794: 788: 787: 772: 769: 680: 675: 670: 665: 660: 655: 652: 640: 637: 633: 632: 621: 618: 613: 609: 604: 599: 596: 593: 590: 587: 581: 576: 572: 561: 550: 547: 542: 538: 533: 528: 525: 522: 519: 516: 510: 505: 501: 486: 485: 472: 466: 461: 458: 452: 447: 443: 432: 419: 413: 408: 405: 399: 394: 390: 375: 374: 361: 353: 349: 345: 344: 339: 335: 331: 330: 328: 321: 315: 312: 310: 307: 306: 303: 300: 298: 295: 294: 292: 287: 282: 274: 271: 268: 264: 260: 259: 254: 251: 248: 244: 240: 239: 237: 197: 194: 191: 188: 185: 182: 137: 132: 127: 122: 117: 112: 109: 97: 94: 93: 92: 87:The system is 85: 82: 75: 69: 13: 10: 9: 6: 4: 3: 2: 1239: 1228: 1225: 1223: 1220: 1219: 1217: 1206: 1205: 1200: 1199:"Equilibrium" 1195: 1194: 1190: 1182: 1180:0-8053-0102-X 1176: 1172: 1165: 1162: 1157: 1155:0-521-43799-7 1151: 1146: 1145: 1136: 1133: 1128: 1126:0-7382-0453-6 1122: 1117: 1116: 1107: 1104: 1098: 1094: 1091: 1089: 1086: 1084: 1081: 1080: 1076: 1074: 1068: 1066: 1064: 1060: 1042: 1036: 1033: 1028: 1024: 1018: 1015: 1012: 986: 982: 975: 972: 967: 964: 957: 952: 945: 941: 935: 932: 929: 923: 916: 915: 914: 893: 890: 887: 881: 878: 875: 872: 867: 863: 859: 856: 853: 850: 848: 840: 837: 832: 829: 819: 816: 813: 811: 803: 800: 795: 792: 778: 777: 776: 770: 768: 766: 762: 758: 757:neighbourhood 754: 749: 747: 743: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 696: 678: 663: 653: 650: 638: 636: 619: 616: 611: 602: 597: 594: 588: 585: 579: 574: 570: 562: 548: 545: 540: 531: 526: 523: 517: 514: 508: 503: 499: 491: 490: 489: 470: 464: 459: 456: 450: 445: 441: 433: 417: 411: 406: 403: 397: 392: 388: 380: 379: 378: 359: 351: 347: 337: 333: 326: 319: 313: 308: 301: 296: 290: 285: 280: 272: 269: 266: 262: 252: 249: 246: 242: 235: 226: 225: 224: 222: 218: 213: 211: 192: 186: 183: 173: 169: 165: 161: 157: 153: 135: 120: 110: 107: 95: 90: 86: 83: 80: 76: 73: 70: 67: 63: 62: 57: 53: 51: 47: 43: 39: 35: 31: 27: 23: 19: 1204:Scholarpedia 1202: 1170: 1164: 1143: 1135: 1114: 1106: 1072: 1062: 1058: 1001: 912: 774: 750: 745: 741: 737: 733: 729: 725: 721: 713: 709: 705: 701: 698:vector field 694: 642: 634: 487: 376: 214: 167: 163: 155: 151: 99: 50:saddle point 25: 21: 15: 1083:Anosov flow 716:denote the 210:eigenvalues 160:fixed point 30:fixed point 1222:Limit sets 1216:Categories 1191:References 765:linearized 738:hyperbolic 736:is called 38:hyperbolic 1034:− 1025:α 1019:± 1016:α 1013:− 976:α 973:− 965:− 891:≠ 888:α 876:α 873:− 860:− 854:− 669:→ 654:: 598:− 589:⁡ 571:λ 518:⁡ 500:λ 460:− 442:λ 389:λ 184:⁡ 170:when the 126:→ 111:: 72:Shadowing 36:. Near a 1077:See also 1069:Comments 704:, i.e., 154:map and 46:Strogatz 771:Example 208:has no 74:occurs, 1177:  1152:  1123:  885:  1099:Notes 693:be a 639:Flows 162:then 158:is a 150:is a 28:is a 1175:ISBN 1150:ISBN 1121:ISBN 751:The 643:Let 617:< 546:> 96:Maps 20:, a 744:or 724:at 720:of 217:map 100:If 24:or 1218:: 1201:. 748:. 586:ln 515:ln 223:: 64:A 1207:. 1183:. 1158:. 1129:. 1063:α 1059:α 1043:2 1037:4 1029:2 987:. 983:] 968:1 958:1 953:0 946:[ 942:= 939:) 936:0 933:, 930:0 927:( 924:J 894:0 882:, 879:y 868:3 864:x 857:x 851:= 841:t 838:d 833:y 830:d 820:, 817:y 814:= 804:t 801:d 796:x 793:d 734:p 730:J 726:p 722:F 714:J 710:p 708:( 706:F 702:p 695:C 679:n 674:R 664:n 659:R 651:F 620:1 612:2 608:) 603:5 595:3 592:( 580:= 575:2 549:1 541:2 537:) 532:5 527:+ 524:3 521:( 509:= 504:1 471:2 465:5 457:3 451:= 446:2 418:2 412:5 407:+ 404:3 398:= 393:1 360:] 352:n 348:y 338:n 334:x 327:[ 320:] 314:2 309:1 302:1 297:1 291:[ 286:= 281:] 273:1 270:+ 267:n 263:y 253:1 250:+ 247:n 243:x 236:[ 196:) 193:p 190:( 187:T 181:D 164:p 156:p 152:C 136:n 131:R 121:n 116:R 108:T 91:. 81:,

Index

dynamical systems
fixed point
center manifolds
hyperbolic
non-dissipative
Strogatz
saddle point

stable manifold
Shadowing
symbolic dynamics
structurally stable
fixed point
Jacobian matrix
eigenvalues
map
Arnold's cat map
vector field
Jacobian matrix
Hartman–Grobman theorem
neighbourhood
topologically equivalent
linearized
Anosov flow
Hyperbolic set
Normally hyperbolic invariant manifold
Nonlinear Dynamics and Chaos
ISBN
0-7382-0453-6
Chaos in Dynamical Systems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑