Knowledge (XXG)

Heterojunction

Source 📝

293: 58:, although the two terms are commonly used interchangeably. The requirement that each material be a semiconductor with unequal band gaps is somewhat loose, especially on small length scales, where electronic properties depend on spatial properties. A more modern definition of heterojunction is the interface between any two solid-state materials, including crystalline and amorphous structures of metallic, insulating, 2685: 2391: 285: 2956:. In CdSe the quantum size effect is much more pronounced in the conduction band due to the smaller effective mass than in the valence band, and this is the case with most semiconductors. Consequently, engineering the conduction band offset is typically much easier with nanoscale heterojunctions. For staggered (type II) offset nanoscale heterojunctions, 1125: 936: 1306: 2406: 2112: 2843: 2890:. This enables band offset engineering in nanoscale heterostructures. It is possible to use the same materials but change the type of junction, say from straddling (type I) to staggered (type II), by changing the size or thickness of the crystals involved. The most common nanoscale heterostructure system is 346:
was proposed which guesses that since the valence band is related to anionic states, materials with the same anions should have very small valence band offsets. This however did not explain the data but is related to the trend that two materials with different anions tend to have larger
1801: 942: 1439: 3544:
Ivanov, Sergei A.; Piryatinski, Andrei; Nanda, Jagjit; Tretiak, Sergei; Zavadil, Kevin R.; Wallace, William O.; Werder, Don; Klimov, Victor I. (2007). "Type-II Core/Shell CdS/ZnSe Nanocrystals: Synthesis, Electronic Structures, and Spectroscopic Properties".
2089: 1945: 760: 2680:{\displaystyle {\frac {df}{dE}}={\frac {1}{m_{w}^{*}}}{\frac {dk}{dE}}\cot({\frac {kl_{w}}{2}})-{\frac {k}{m_{w}^{*}}}\csc ^{2}({\frac {kl_{w}}{2}})\times {\frac {l_{w}}{2}}{\frac {dk}{dE}}+{\frac {1}{m_{b}^{*}}}{\frac {d\kappa }{dE}}\quad \quad (9-2)} 2386:{\displaystyle {\frac {df}{dE}}={\frac {1}{m_{w}^{*}}}{\frac {dk}{dE}}\tan({\frac {kl_{w}}{2}})+{\frac {k}{m_{w}^{*}}}\sec ^{2}({\frac {kl_{w}}{2}})\times {\frac {l_{w}}{2}}{\frac {dk}{dE}}-{\frac {1}{m_{b}^{*}}}{\frac {d\kappa }{dE}}\quad \quad (9-1)} 1131: 275:
production and photodegradation of pollutants in water than single metl oxides. The performance of the heterojuntion can be further improved by incorporation of oxygen vacacies, crystatal facet engineeringor incorporation of carbonaceous materials.
2695: 1595: 315:
at the interface. Semiconductor interfaces can be organized into three types of heterojunctions: straddling gap (type I), staggered gap (type II) or broken gap (type III) as seen in the figure. Away from the junction, the
78:(CVD) technologies in order to precisely control the deposition thickness and create a cleanly lattice-matched abrupt interface. A recent alternative under research is the mechanical stacking of layered materials into 705: 1644: 1120:{\displaystyle \quad \quad -{\frac {\hbar ^{2}}{2m_{w}^{*}}}{\frac {\mathrm {d} ^{2}\psi (z)}{\mathrm {d} z^{2}}}=E\psi (z)\quad \quad {\text{ for }}-{\frac {l_{w}}{2}}<z<+{\frac {l_{w}}{2}}\quad \quad (2)} 2964:
may be on one side of the junction whereas the lowest energy for electrons is on the opposite side. It has been suggested that anisotropic staggered gap (type II) nanoscale heterojunctions may be used for
3411:
Debbar, N.; Biswas, Dipankar; Bhattacharya, Pallab (1989). "Conduction-band offsets in pseudomorphic InxGa1-xAs/Al0.2Ga0.8As quantum wells (0.07≀x≀0.18) measured by deep-level transient spectroscopy".
535: 1340: 162:
of heterostructure fabrication to catch up with Kroemer's ideas but now it is the industry standard. It was later discovered that the band gap could be controlled by taking advantage of the
931:{\displaystyle -{\frac {\hbar ^{2}}{2m_{b}^{*}}}{\frac {\mathrm {d} ^{2}\psi (z)}{\mathrm {d} z^{2}}}+V\psi (z)=E\psi (z)\quad \quad {\text{ for }}z<-{\frac {l_{w}}{2}}\quad \quad (1)} 1961: 1817: 616:
in a quantum well, known as BenDaniel–Duke boundary condition. According to them, the envelope function in a fabricated quantum well must satisfy a boundary condition which states that
473: 1301:{\displaystyle -{\frac {\hbar ^{2}}{2m_{b}^{*}}}{\frac {\mathrm {d} ^{2}\psi (z)}{\mathrm {d} z^{2}}}+V\psi (z)=E\psi (z)\quad {\text{ for }}z>+{\frac {l_{w}}{2}}\quad \quad (3)} 1482: 1635: 2838:{\displaystyle {\frac {dk}{dE}}={\frac {\sqrt {2m_{w}^{*}}}{2{\sqrt {E}}\hbar }}\quad \quad \quad {\frac {d\kappa }{dE}}=-{\frac {\sqrt {2m_{b}^{*}}}{2{\sqrt {V-E}}\hbar }}} 643: 1331: 750: 606: 2878:. This staggered gap (type II) offset junction was synthesized by Hunter McDaniel and Dr. Moonsub Shim at the University of Illinois in Urbana-Champaign in 2007. 1492: 2930:
crystal phase and are closely lattice matched, core shell growth is preferred. In other systems or under different growth conditions it may be possible to grow
3127:
Okuda, Koji; Okamoto, Hiroaki; Hamakawa, Yoshihiro (1983). "Amorphous Si/Polycrystalline Si Stacked Solar Cell Having More Than 12% Conversion Efficiency".
581:
across the heterojunction becomes substantial. The quantum well defined in the heterojunction can be treated as a finite well potential with width of
3585:
Robel, IstvĂĄn; Kuno, Masaru; Kamat, Prashant V. (2007). "Size-Dependent Electron Injection from Excited CdSe Quantum Dots into TiO2Nanoparticles".
2863: 648: 85:
Despite their expense, heterojunctions have found use in a variety of specialized applications where their unique characteristics are critical:
1796:{\displaystyle -{\frac {kA}{m_{w}^{*}}}\sin({\frac {kl_{w}}{2}})=-{\frac {\kappa B}{m_{b}^{*}}}\exp(-{\frac {\kappa l_{w}}{2}})\quad \quad (6)} 3640: 3106: 50:. It is often advantageous to engineer the electronic energy bands in many solid-state device applications, including semiconductor lasers, 578: 100:
thin film (band gap 1.7 eV) in some solar cell architectures. The heterojunction is used to separate charge carriers in a similar way to a
116:. HIT solar cells now hold the record for the most efficient single-junction silicon solar cell, with a conversion efficiency of 26.7%. 3170:
Yamamoto, Kenji; Yoshikawa, Kunta; Uzu, Hisashi; Adachi, Daisuke (2018). "High-efficiency heterojunction crystalline Si solar cells".
3746: 3673: 3532: 3392: 3369: 3314: 227: 147: 3676:. A somewhat dated reference respect to applications, but always a good introduction to basic principles of heterojunction devices. 2992: 363: 2875: 222:
and low reverse gain result. This translates into very good high frequency operation (values in tens to hundreds of GHz) and low
2957: 2927: 79: 1434:{\displaystyle k={\frac {\sqrt {2m_{w}E}}{\hbar }}\quad \quad \kappa ={\frac {\sqrt {2m_{b}(V-E)}}{\hbar }}\quad \quad (4)} 478: 335:, which predicts the band alignment based on the properties of vacuum-semiconductor interfaces (in particular the vacuum 3266:"Interface engineered metal oxide heterojunction nanostructures in photocatalytic CO2 reduction: Progress and prospects" 2938: 215: 2084:{\displaystyle f(E)=-{\frac {k}{m_{w}^{*}}}\cot({\frac {kl_{w}}{2}})+{\frac {\kappa }{m_{b}^{*}}}=0\quad \quad (8)} 1940:{\displaystyle f(E)=-{\frac {k}{m_{w}^{*}}}\tan({\frac {kl_{w}}{2}})-{\frac {\kappa }{m_{b}^{*}}}=0\quad \quad (7)} 292: 105: 75: 430: 397:
is a heuristic for the specific case of junctions between the semiconductor GaAs and the alloy semiconductor Al
379: 3711:
Kurhekar, Anil Sudhakar (2018). "Thermal annealing improves electrical properties of hetero-junction diode".
2903: 722: 253: 241: 202: 198: 3454:
Conley, J.; Duke, C.; Mahan, G.; Tiemann, J. (1966). "Electron Tunneling in Metal–Semiconductor Barriers".
178:
which occurs at the interface, another major advantage to their use in semiconductor lasers. Semiconductor
613: 205: 71: 1450: 2945:
in these structures is the conduction band offset. By decreasing the size of CdSe nanocrystals grown on
1606: 321: 3213: 3716: 3691: 3498: 3463: 3420: 3339: 3179: 3136: 2887: 163: 131: 2952:, Robel et al. found that electrons transferred faster from the higher CdSe conduction band into TiO 267:: Using heterojuntions as photocatalyst have demostrated that they exibith better performance in CO 93: 35: 3632: 3195: 3152: 3067: 3033: 2911: 2098: 609: 375: 219: 175: 59: 3014:
Smith, C.G (1996). "Low-dimensional quantum devices". Rep. Prog. Phys. 59 (1996) 235282, pg 244.
2862: 382:). This model agrees well with systems where both materials are closely lattice matched such as 332: 3669: 3636: 3624: 3602: 3562: 3528: 3436: 3388: 3365: 3310: 3306: 3102: 3059: 3051: 2919: 619: 336: 245: 97: 54:
and transistors. The combination of multiple heterojunctions together in a device is called a
2986: 1316: 240:(HEMT) which can operate at significantly higher frequencies (over 500 GHz). The proper 101: 3724: 3699: 3594: 3554: 3506: 3471: 3428: 3347: 3298: 3277: 3246: 3187: 3144: 3094: 3043: 2946: 367: 159: 155: 3330:
J. Tersoff (1984). "Theory of semiconductor heterojunctions: The role of quantum dipoles".
1590:{\displaystyle A\cos({\frac {kl_{w}}{2}})=B\exp(-{\frac {\kappa l_{w}}{2}})\quad \quad (5)} 728: 584: 3682: 2970: 2942: 2926:
in the ZnS shell as suggested by its larger band gap. Since CdSe and ZnS both grow in the
352: 223: 135: 127: 3720: 3695: 3502: 3467: 3424: 3343: 3183: 3140: 3663: 3086: 2966: 570: 2898:(CdSe@ZnS) which has a straddling gap (type I) offset. In this system the much larger 3740: 3703: 3655: 3299: 3199: 3156: 3071: 2961: 2923: 2848:
The difference in effective mass between materials results in a larger difference in
562: 39: 545:
The typical method for measuring band offsets is by calculating them from measuring
311:
The behaviour of a semiconductor junction depends crucially on the alignment of the
284: 2982: 2915: 2849: 713: 574: 566: 550: 348: 317: 296: 167: 47: 3364:
Pallab, Bhattacharya (1997), Semiconductor Optoelectronic Devices, Prentice Hall,
3382: 1313:
Solution for above equations are well-known, only with different(modified) k and
378:
from the conduction band of one material into the gap of the other (analogous to
3098: 2931: 2907: 2883: 312: 194: 191: 179: 3713:
International Conference on Renewable Energy Research and Education (Rere-2018)
3680:
R. Tsu; F. Zypman (1990). "New insights in the physics of resonant tunneling".
752:
and center at 0, the equation for the achieved quantum well can be written as:
17: 3489:
Bendaniel, D.; Duke, C. (1966). "Space-Charge Effects on Electron Tunneling".
3282: 3265: 257: 51: 3432: 3351: 3055: 577:
within the achieved quantum well, understanding variation or mismatch of the
288:
The three types of semiconductor heterojunctions organized by band alignment.
108:(HIT) solar cell structure was first developed in 1983 and commercialised by 3510: 3475: 3237:
Kroemer, H. (1963). "A proposed class of hetero-junction injection lasers".
3093:, vol. 301, Cham: Springer International Publishing, pp. 163–195, 475:
tends to maintain the value 60/40. For comparison, Anderson's rule predicts
171: 113: 3606: 3566: 3250: 3191: 3063: 3440: 700:{\displaystyle {\frac {1}{m^{*}}}{\partial \over {\partial z}}\psi (z)\,} 134:
could be greatly enhanced by heterostructures. By incorporating a smaller
3148: 3024:
Geim, A. K.; Grigorieva, I. V. (2013). "Van der Waals heterostructures".
2899: 43: 3047: 608:. In addition, in 1966, Conley et al. and BenDaniel and Duke reported a 374:
layer at the interface between the two semiconductors which arises from
546: 3728: 3598: 3558: 3659: 387: 371: 151: 3301:
Semiconductor Nanostructures Quantum States and Electronic Transport
1809:
Dividing (6) by (5), even-parity solution function can be obtained,
27:
Interface between two layers or regions of dissimilar semiconductors
3038: 2874: â€” sphere) and cadmium sulfide (CdS â€” rod) taken with a 2861: 291: 283: 214:: When a heterojunction is used as the base-emitter junction of a 123: 109: 2895: 383: 249: 237: 143: 139: 366:
where the conduction band offset is given by the difference in
170:
heterostructures. Furthermore, heterostructures can be used as
3715:. AIP Conference Proceedings. Vol. 1992. p. 040027. 3305:. United States of America: Oxford University Press. pp.  2891: 187: 2934:
structures such as the one seen in the image on the right.
2886:
the band energies are dependent on crystal size due to the
183: 70:
Heterojunction manufacturing generally requires the use of
2989:—a junction involving two types of the same semiconductor. 2866:
Image of a nanoscale heterojunction between iron oxide (Fe
1603:
By taking derivative of (5) and multiplying both sides by
339:). The main limitation is its neglect of chemical bonding. 3085:
Leu, SylvĂšre; Sontag, Detlef (2020), Shah, Arvind (ed.),
3629:
Wave Mechanics Applied to Semiconductor Heterostructures
3264:
Ortiz-Quiñonez, Jose-Luis; Pal, Umapada (October 2024).
320:
can be computed based on the usual procedure of solving
244:
profile and band alignment gives rise to extremely high
158:
with low threshold currents. It took many years for the
92:: Heterojunctions are formed through the interface of a 3087:"Crystalline Silicon Solar Cells: Heterojunction Cells" 130:, a prominent scientist in this field, suggested that 2698: 2409: 2115: 1964: 1820: 1647: 1609: 1495: 1453: 1343: 1319: 1134: 945: 763: 731: 651: 622: 587: 481: 433: 197:
are manufactured using alternating layers of various
327:
Various models exist to predict the band alignment.
530:{\displaystyle \Delta E_{C}/\Delta E_{V}=0.73/0.27} 2960:can occur since there the lowest energy state for 2837: 2679: 2385: 2083: 1939: 1795: 1629: 1589: 1476: 1433: 1325: 1300: 1119: 930: 744: 699: 637: 600: 529: 467: 3652:Heterojunctions and metal–semiconductor junctions 561:When a heterojunction is formed by two different 3297:Ihn, Thomas (2010). "ch. 5.1 Band engineering". 42:. These semiconducting materials have unequal 8: 307:semiconductor heterojunction at equilibrium. 331:The simplest (and least accurate) model is 2995:—a junction of a metal to a semiconductor. 2101:, taking derivatives of (7) and (8) gives 707:are both continuous in interface regions. 3406: 3404: 3281: 3037: 2816: 2805: 2800: 2790: 2764: 2748: 2737: 2732: 2722: 2699: 2697: 2640: 2632: 2627: 2618: 2595: 2584: 2578: 2560: 2550: 2538: 2526: 2521: 2512: 2494: 2484: 2455: 2447: 2442: 2433: 2410: 2408: 2346: 2338: 2333: 2324: 2301: 2290: 2284: 2266: 2256: 2244: 2232: 2227: 2218: 2200: 2190: 2161: 2153: 2148: 2139: 2116: 2114: 2056: 2051: 2042: 2024: 2014: 1997: 1992: 1983: 1963: 1912: 1907: 1898: 1880: 1870: 1853: 1848: 1839: 1819: 1767: 1757: 1737: 1732: 1718: 1697: 1687: 1670: 1665: 1651: 1646: 1619: 1610: 1608: 1561: 1551: 1518: 1508: 1494: 1463: 1457: 1452: 1393: 1383: 1360: 1350: 1342: 1318: 1276: 1270: 1256: 1210: 1201: 1181: 1176: 1172: 1163: 1158: 1144: 1138: 1133: 1095: 1089: 1066: 1060: 1052: 1023: 1014: 994: 989: 985: 976: 971: 957: 951: 944: 906: 900: 886: 839: 830: 810: 805: 801: 792: 787: 773: 767: 762: 736: 730: 696: 674: 669: 661: 652: 650: 621: 592: 586: 519: 507: 495: 489: 480: 468:{\displaystyle \Delta E_{C}/\Delta E_{V}} 459: 447: 441: 432: 427:As side is varied from 0 to 1, the ratio 3587:Journal of the American Chemical Society 3580: 3578: 3576: 3547:Journal of the American Chemical Society 3384:Properties of Aluminium Gallium Arsenide 1484:even-parity solution can be gained from 142:between two larger band gap layers like 106:Heterojunction with Intrinsic Thin-Layer 3004: 2918:. There is an added bonus of increased 2829: 2755: 1415: 1370: 1141: 954: 770: 569:can be fabricated due to difference in 3650:Feucht, D. Lion; Milnes, A.G. (1970). 7: 3010: 3008: 1953:Similarly, for odd-parity solution, 712:Mathematical details worked out for 3172:Japanese Journal of Applied Physics 3129:Japanese Journal of Applied Physics 1477:{\displaystyle +{\frac {l_{w}}{2}}} 573:. In order to calculate the static 3214:"HJT - Heterojunction Solar Cells" 1630:{\displaystyle {\frac {1}{m^{*}}}} 1202: 1177: 1015: 990: 831: 806: 675: 671: 500: 482: 452: 434: 238:high electron mobility transistors 25: 3525:Introduction to Quantum Mechanics 2910:CdSe core thereby increasing the 228:heterojunction bipolar transistor 725:for a finite well with width of 208:to form lasing heterostructures. 126:was first proposed in 1963 when 96:substrate (band gap 1.1 eV) and 2763: 2762: 2761: 2661: 2660: 2367: 2366: 2071: 2070: 1927: 1926: 1783: 1782: 1577: 1576: 1421: 1420: 1376: 1375: 1288: 1287: 1255: 1107: 1106: 1051: 1050: 947: 946: 918: 917: 885: 884: 3270:Coordination Chemistry Reviews 2958:photoinduced charge separation 2674: 2662: 2572: 2547: 2506: 2481: 2380: 2368: 2278: 2253: 2212: 2187: 2078: 2072: 2036: 2011: 1974: 1968: 1934: 1928: 1892: 1867: 1830: 1824: 1790: 1784: 1779: 1751: 1709: 1684: 1584: 1578: 1573: 1545: 1530: 1505: 1428: 1422: 1411: 1399: 1295: 1289: 1252: 1246: 1234: 1228: 1196: 1190: 1114: 1108: 1047: 1041: 1009: 1003: 925: 919: 881: 875: 863: 857: 825: 819: 693: 687: 632: 626: 370:height. This model includes a 236:: Heterojunctions are used in 80:van der Waals heterostructures 62:and semiconducting materials. 1: 364:metal–semiconductor junctions 362:model based on more familiar 3704:10.1016/0039-6028(90)90341-5 3523:Griffiths, David J. (2004). 3381:Adachi, Sadao (1993-01-01). 2993:Metal–semiconductor junction 250:two dimensional electron gas 66:Manufacture and applications 34:is an interface between two 3099:10.1007/978-3-030-46487-5_7 216:bipolar junction transistor 122:: Using heterojunctions in 3763: 3527:(2nd ed.). Prentice Hall. 537:for a GaAs/AlAs junction ( 226:. This device is called a 3283:10.1016/j.ccr.2024.215967 2858:Nanoscale heterojunctions 218:, extremely high forward 76:chemical vapor deposition 38:or regions of dissimilar 3747:Semiconductor structures 3433:10.1103/PhysRevB.40.1058 3352:10.1103/PhysRevB.30.4874 638:{\displaystyle \psi (z)} 380:metal-induced gap states 234:Field effect transistors 150:can be confined so that 3511:10.1103/PhysRev.152.683 3476:10.1103/PhysRev.150.466 3239:Proceedings of the IEEE 3091:Solar Cells and Modules 1326:{\displaystyle \kappa } 557:Effective mass mismatch 206:compound semiconductors 3251:10.1109/PROC.1963.2706 3192:10.7567/JJAP.57.08RB20 2937:The driving force for 2879: 2839: 2681: 2387: 2085: 1941: 1797: 1631: 1591: 1478: 1435: 1327: 1302: 1121: 932: 746: 701: 639: 602: 531: 469: 308: 289: 72:molecular beam epitaxy 2865: 2840: 2682: 2388: 2086: 1942: 1798: 1632: 1592: 1479: 1436: 1328: 1303: 1122: 933: 747: 745:{\displaystyle l_{w}} 702: 640: 603: 601:{\displaystyle l_{w}} 532: 470: 295: 287: 280:Energy band alignment 3149:10.1143/JJAP.22.L605 2922:due to the stronger 2888:quantum size effects 2696: 2407: 2113: 1962: 1818: 1645: 1607: 1493: 1451: 1341: 1317: 1132: 943: 761: 729: 723:Schrödinger equation 649: 620: 585: 479: 431: 164:quantum size effects 132:population inversion 3721:2018AIPC.1992d0027K 3696:1990SurSc.228..418T 3503:1966PhRv..152..683B 3468:1966PhRv..150..466C 3425:1989PhRvB..40.1058D 3344:1984PhRvB..30.4874T 3184:2018JaJAP..57hRB20Y 3141:1983JaJAP..22L.605O 3048:10.1038/nature12385 2973:with solar energy. 2969:, specifically for 2906:the surface of the 2810: 2742: 2637: 2531: 2452: 2343: 2237: 2158: 2061: 2002: 1917: 1858: 1742: 1675: 1168: 981: 797: 358:Tersoff proposed a 299:for stradding gap, 246:electron mobilities 212:Bipolar transistors 94:crystalline silicon 3633:Wiley-Interscience 3218:Solar Power Panels 2912:quantum efficiency 2880: 2835: 2796: 2728: 2677: 2623: 2517: 2438: 2383: 2329: 2223: 2144: 2099:numerical solution 2081: 2047: 1988: 1937: 1903: 1844: 1793: 1728: 1661: 1627: 1587: 1474: 1431: 1323: 1298: 1154: 1117: 967: 928: 783: 742: 697: 635: 610:boundary condition 598: 527: 465: 376:electron tunneling 322:Poisson's equation 309: 290: 256:where very little 254:dopant free region 60:fast ion conductor 3729:10.1063/1.5047992 3642:978-0-470-21708-5 3599:10.1021/ja070099a 3559:10.1021/ja068351m 3413:Physical Review B 3332:Physical Review B 3245:(12): 1782–1783. 3108:978-3-030-46485-1 3032:(7459): 419–425. 2920:thermal stability 2833: 2827: 2811: 2782: 2759: 2753: 2743: 2717: 2658: 2638: 2613: 2593: 2570: 2532: 2504: 2473: 2453: 2428: 2364: 2344: 2319: 2299: 2276: 2238: 2210: 2179: 2159: 2134: 2062: 2034: 2003: 1918: 1890: 1859: 1777: 1743: 1707: 1676: 1625: 1571: 1528: 1472: 1418: 1414: 1373: 1369: 1285: 1259: 1217: 1170: 1104: 1075: 1055: 1030: 983: 915: 889: 846: 799: 682: 667: 614:envelope function 344:common anion rule 337:electron affinity 271:photoreduction, H 98:amorphous silicon 16:(Redirected from 3754: 3732: 3707: 3667: 3646: 3611: 3610: 3582: 3571: 3570: 3553:(38): 11708–19. 3541: 3535: 3521: 3515: 3514: 3486: 3480: 3479: 3451: 3445: 3444: 3419:(2): 1058–1063. 3408: 3399: 3398: 3378: 3372: 3362: 3356: 3355: 3338:(8): 4874–4877. 3327: 3321: 3320: 3304: 3294: 3288: 3287: 3285: 3261: 3255: 3254: 3234: 3228: 3227: 3225: 3224: 3210: 3204: 3203: 3167: 3161: 3160: 3135:(9): L605–L607. 3124: 3118: 3117: 3116: 3115: 3082: 3076: 3075: 3041: 3021: 3015: 3012: 2943:conduction bands 2844: 2842: 2841: 2836: 2834: 2832: 2828: 2817: 2809: 2804: 2792: 2791: 2783: 2781: 2773: 2765: 2760: 2758: 2754: 2749: 2741: 2736: 2724: 2723: 2718: 2716: 2708: 2700: 2686: 2684: 2683: 2678: 2659: 2657: 2649: 2641: 2639: 2636: 2631: 2619: 2614: 2612: 2604: 2596: 2594: 2589: 2588: 2579: 2571: 2566: 2565: 2564: 2551: 2543: 2542: 2533: 2530: 2525: 2513: 2505: 2500: 2499: 2498: 2485: 2474: 2472: 2464: 2456: 2454: 2451: 2446: 2434: 2429: 2427: 2419: 2411: 2392: 2390: 2389: 2384: 2365: 2363: 2355: 2347: 2345: 2342: 2337: 2325: 2320: 2318: 2310: 2302: 2300: 2295: 2294: 2285: 2277: 2272: 2271: 2270: 2257: 2249: 2248: 2239: 2236: 2231: 2219: 2211: 2206: 2205: 2204: 2191: 2180: 2178: 2170: 2162: 2160: 2157: 2152: 2140: 2135: 2133: 2125: 2117: 2090: 2088: 2087: 2082: 2063: 2060: 2055: 2043: 2035: 2030: 2029: 2028: 2015: 2004: 2001: 1996: 1984: 1946: 1944: 1943: 1938: 1919: 1916: 1911: 1899: 1891: 1886: 1885: 1884: 1871: 1860: 1857: 1852: 1840: 1802: 1800: 1799: 1794: 1778: 1773: 1772: 1771: 1758: 1744: 1741: 1736: 1727: 1719: 1708: 1703: 1702: 1701: 1688: 1677: 1674: 1669: 1660: 1652: 1636: 1634: 1633: 1628: 1626: 1624: 1623: 1611: 1596: 1594: 1593: 1588: 1572: 1567: 1566: 1565: 1552: 1529: 1524: 1523: 1522: 1509: 1483: 1481: 1480: 1475: 1473: 1468: 1467: 1458: 1440: 1438: 1437: 1432: 1419: 1398: 1397: 1385: 1384: 1374: 1365: 1364: 1352: 1351: 1332: 1330: 1329: 1324: 1307: 1305: 1304: 1299: 1286: 1281: 1280: 1271: 1260: 1257: 1218: 1216: 1215: 1214: 1205: 1199: 1186: 1185: 1180: 1173: 1171: 1169: 1167: 1162: 1149: 1148: 1139: 1126: 1124: 1123: 1118: 1105: 1100: 1099: 1090: 1076: 1071: 1070: 1061: 1056: 1053: 1031: 1029: 1028: 1027: 1018: 1012: 999: 998: 993: 986: 984: 982: 980: 975: 962: 961: 952: 937: 935: 934: 929: 916: 911: 910: 901: 890: 887: 847: 845: 844: 843: 834: 828: 815: 814: 809: 802: 800: 798: 796: 791: 778: 777: 768: 751: 749: 748: 743: 741: 740: 706: 704: 703: 698: 683: 681: 670: 668: 666: 665: 653: 644: 642: 641: 636: 607: 605: 604: 599: 597: 596: 549:energies in the 536: 534: 533: 528: 523: 512: 511: 499: 494: 493: 474: 472: 471: 466: 464: 463: 451: 446: 445: 368:Schottky barrier 224:leakage currents 160:material science 156:room temperature 46:as opposed to a 21: 3762: 3761: 3757: 3756: 3755: 3753: 3752: 3751: 3737: 3736: 3735: 3710: 3683:Surface Science 3679: 3649: 3643: 3625:Bastard, GĂ©rald 3623: 3619: 3617:Further reading 3614: 3584: 3583: 3574: 3543: 3542: 3538: 3522: 3518: 3491:Physical Review 3488: 3487: 3483: 3456:Physical Review 3453: 3452: 3448: 3410: 3409: 3402: 3395: 3380: 3379: 3375: 3363: 3359: 3329: 3328: 3324: 3317: 3296: 3295: 3291: 3263: 3262: 3258: 3236: 3235: 3231: 3222: 3220: 3212: 3211: 3207: 3178:(8S3): 08RB20. 3169: 3168: 3164: 3126: 3125: 3121: 3113: 3111: 3109: 3084: 3083: 3079: 3023: 3022: 3018: 3013: 3006: 3002: 2979: 2971:water splitting 2955: 2950: 2939:charge transfer 2873: 2869: 2860: 2855: 2854: 2812: 2774: 2766: 2744: 2709: 2701: 2694: 2693: 2650: 2642: 2605: 2597: 2580: 2556: 2552: 2534: 2490: 2486: 2465: 2457: 2420: 2412: 2405: 2404: 2356: 2348: 2311: 2303: 2286: 2262: 2258: 2240: 2196: 2192: 2171: 2163: 2126: 2118: 2111: 2110: 2020: 2016: 1960: 1959: 1876: 1872: 1816: 1815: 1763: 1759: 1720: 1693: 1689: 1653: 1643: 1642: 1615: 1605: 1604: 1557: 1553: 1514: 1510: 1491: 1490: 1459: 1449: 1448: 1389: 1356: 1339: 1338: 1315: 1314: 1272: 1258: for  1206: 1200: 1175: 1174: 1150: 1140: 1130: 1129: 1091: 1062: 1054: for  1019: 1013: 988: 987: 963: 953: 941: 940: 902: 888: for  835: 829: 804: 803: 779: 769: 759: 758: 732: 727: 726: 718: 717: 657: 647: 646: 618: 617: 588: 583: 582: 559: 503: 485: 477: 476: 455: 437: 429: 428: 426: 419: 409: 402: 353:conduction band 333:Anderson's rule 282: 274: 270: 136:direct band gap 128:Herbert Kroemer 68: 56:heterostructure 28: 23: 22: 18:Heterostructure 15: 12: 11: 5: 3760: 3758: 3750: 3749: 3739: 3738: 3734: 3733: 3708: 3677: 3664:Academic Press 3647: 3641: 3620: 3618: 3615: 3613: 3612: 3593:(14): 4136–7. 3572: 3536: 3516: 3481: 3446: 3400: 3393: 3373: 3357: 3322: 3315: 3289: 3256: 3229: 3205: 3162: 3119: 3107: 3077: 3016: 3003: 3001: 2998: 2997: 2996: 2990: 2978: 2975: 2967:photocatalysis 2953: 2948: 2871: 2867: 2859: 2856: 2831: 2826: 2823: 2820: 2815: 2808: 2803: 2799: 2795: 2789: 2786: 2780: 2777: 2772: 2769: 2757: 2752: 2747: 2740: 2735: 2731: 2727: 2721: 2715: 2712: 2707: 2704: 2690: 2689: 2688: 2687: 2676: 2673: 2670: 2667: 2664: 2656: 2653: 2648: 2645: 2635: 2630: 2626: 2622: 2617: 2611: 2608: 2603: 2600: 2592: 2587: 2583: 2577: 2574: 2569: 2563: 2559: 2555: 2549: 2546: 2541: 2537: 2529: 2524: 2520: 2516: 2511: 2508: 2503: 2497: 2493: 2489: 2483: 2480: 2477: 2471: 2468: 2463: 2460: 2450: 2445: 2441: 2437: 2432: 2426: 2423: 2418: 2415: 2396: 2395: 2394: 2393: 2382: 2379: 2376: 2373: 2370: 2362: 2359: 2354: 2351: 2341: 2336: 2332: 2328: 2323: 2317: 2314: 2309: 2306: 2298: 2293: 2289: 2283: 2280: 2275: 2269: 2265: 2261: 2255: 2252: 2247: 2243: 2235: 2230: 2226: 2222: 2217: 2214: 2209: 2203: 2199: 2195: 2189: 2186: 2183: 2177: 2174: 2169: 2166: 2156: 2151: 2147: 2143: 2138: 2132: 2129: 2124: 2121: 2095: 2094: 2093: 2092: 2080: 2077: 2074: 2069: 2066: 2059: 2054: 2050: 2046: 2041: 2038: 2033: 2027: 2023: 2019: 2013: 2010: 2007: 2000: 1995: 1991: 1987: 1982: 1979: 1976: 1973: 1970: 1967: 1951: 1950: 1949: 1948: 1936: 1933: 1930: 1925: 1922: 1915: 1910: 1906: 1902: 1897: 1894: 1889: 1883: 1879: 1875: 1869: 1866: 1863: 1856: 1851: 1847: 1843: 1838: 1835: 1832: 1829: 1826: 1823: 1807: 1806: 1805: 1804: 1792: 1789: 1786: 1781: 1776: 1770: 1766: 1762: 1756: 1753: 1750: 1747: 1740: 1735: 1731: 1726: 1723: 1717: 1714: 1711: 1706: 1700: 1696: 1692: 1686: 1683: 1680: 1673: 1668: 1664: 1659: 1656: 1650: 1622: 1618: 1614: 1601: 1600: 1599: 1598: 1586: 1583: 1580: 1575: 1570: 1564: 1560: 1556: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1527: 1521: 1517: 1513: 1507: 1504: 1501: 1498: 1471: 1466: 1462: 1456: 1445: 1444: 1443: 1442: 1430: 1427: 1424: 1417: 1413: 1410: 1407: 1404: 1401: 1396: 1392: 1388: 1382: 1379: 1372: 1368: 1363: 1359: 1355: 1349: 1346: 1322: 1311: 1310: 1309: 1308: 1297: 1294: 1291: 1284: 1279: 1275: 1269: 1266: 1263: 1254: 1251: 1248: 1245: 1242: 1239: 1236: 1233: 1230: 1227: 1224: 1221: 1213: 1209: 1204: 1198: 1195: 1192: 1189: 1184: 1179: 1166: 1161: 1157: 1153: 1147: 1143: 1137: 1127: 1116: 1113: 1110: 1103: 1098: 1094: 1088: 1085: 1082: 1079: 1074: 1069: 1065: 1059: 1049: 1046: 1043: 1040: 1037: 1034: 1026: 1022: 1017: 1011: 1008: 1005: 1002: 997: 992: 979: 974: 970: 966: 960: 956: 950: 938: 927: 924: 921: 914: 909: 905: 899: 896: 893: 883: 880: 877: 874: 871: 868: 865: 862: 859: 856: 853: 850: 842: 838: 833: 827: 824: 821: 818: 813: 808: 795: 790: 786: 782: 776: 772: 766: 739: 735: 719: 711: 710: 709: 695: 692: 689: 686: 680: 677: 673: 664: 660: 656: 634: 631: 628: 625: 595: 591: 579:effective mass 571:band structure 563:semiconductors 558: 555: 543: 542: 526: 522: 518: 515: 510: 506: 502: 498: 492: 488: 484: 462: 458: 454: 450: 444: 440: 436: 421: 415: 404: 398: 391: 356: 340: 281: 278: 272: 268: 262: 261: 248:by creating a 231: 209: 138:material like 117: 67: 64: 40:semiconductors 32:heterojunction 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3759: 3748: 3745: 3744: 3742: 3730: 3726: 3722: 3718: 3714: 3709: 3705: 3701: 3697: 3693: 3689: 3685: 3684: 3678: 3675: 3674:0-12-498050-3 3671: 3665: 3661: 3657: 3656:New York City 3653: 3648: 3644: 3638: 3634: 3630: 3626: 3622: 3621: 3616: 3608: 3604: 3600: 3596: 3592: 3588: 3581: 3579: 3577: 3573: 3568: 3564: 3560: 3556: 3552: 3548: 3540: 3537: 3534: 3533:0-13-111892-7 3530: 3526: 3520: 3517: 3512: 3508: 3504: 3500: 3496: 3492: 3485: 3482: 3477: 3473: 3469: 3465: 3461: 3457: 3450: 3447: 3442: 3438: 3434: 3430: 3426: 3422: 3418: 3414: 3407: 3405: 3401: 3396: 3394:9780852965580 3390: 3386: 3385: 3377: 3374: 3371: 3370:0-13-495656-7 3367: 3361: 3358: 3353: 3349: 3345: 3341: 3337: 3333: 3326: 3323: 3318: 3316:9780199534432 3312: 3308: 3303: 3302: 3293: 3290: 3284: 3279: 3275: 3271: 3267: 3260: 3257: 3252: 3248: 3244: 3240: 3233: 3230: 3219: 3215: 3209: 3206: 3201: 3197: 3193: 3189: 3185: 3181: 3177: 3173: 3166: 3163: 3158: 3154: 3150: 3146: 3142: 3138: 3134: 3130: 3123: 3120: 3110: 3104: 3100: 3096: 3092: 3088: 3081: 3078: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3040: 3035: 3031: 3027: 3020: 3017: 3011: 3009: 3005: 2999: 2994: 2991: 2988: 2984: 2981: 2980: 2976: 2974: 2972: 2968: 2963: 2959: 2951: 2944: 2940: 2935: 2933: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2901: 2897: 2893: 2889: 2885: 2877: 2864: 2857: 2853: 2851: 2846: 2824: 2821: 2818: 2813: 2806: 2801: 2797: 2793: 2787: 2784: 2778: 2775: 2770: 2767: 2750: 2745: 2738: 2733: 2729: 2725: 2719: 2713: 2710: 2705: 2702: 2671: 2668: 2665: 2654: 2651: 2646: 2643: 2633: 2628: 2624: 2620: 2615: 2609: 2606: 2601: 2598: 2590: 2585: 2581: 2575: 2567: 2561: 2557: 2553: 2544: 2539: 2535: 2527: 2522: 2518: 2514: 2509: 2501: 2495: 2491: 2487: 2478: 2475: 2469: 2466: 2461: 2458: 2448: 2443: 2439: 2435: 2430: 2424: 2421: 2416: 2413: 2403: 2402: 2401: 2400: 2399: 2377: 2374: 2371: 2360: 2357: 2352: 2349: 2339: 2334: 2330: 2326: 2321: 2315: 2312: 2307: 2304: 2296: 2291: 2287: 2281: 2273: 2267: 2263: 2259: 2250: 2245: 2241: 2233: 2228: 2224: 2220: 2215: 2207: 2201: 2197: 2193: 2184: 2181: 2175: 2172: 2167: 2164: 2154: 2149: 2145: 2141: 2136: 2130: 2127: 2122: 2119: 2109: 2108: 2107: 2106: 2105: 2104:even parity: 2102: 2100: 2075: 2067: 2064: 2057: 2052: 2048: 2044: 2039: 2031: 2025: 2021: 2017: 2008: 2005: 1998: 1993: 1989: 1985: 1980: 1977: 1971: 1965: 1958: 1957: 1956: 1955: 1954: 1931: 1923: 1920: 1913: 1908: 1904: 1900: 1895: 1887: 1881: 1877: 1873: 1864: 1861: 1854: 1849: 1845: 1841: 1836: 1833: 1827: 1821: 1814: 1813: 1812: 1811: 1810: 1787: 1774: 1768: 1764: 1760: 1754: 1748: 1745: 1738: 1733: 1729: 1724: 1721: 1715: 1712: 1704: 1698: 1694: 1690: 1681: 1678: 1671: 1666: 1662: 1657: 1654: 1648: 1641: 1640: 1639: 1638: 1637: 1620: 1616: 1612: 1581: 1568: 1562: 1558: 1554: 1548: 1542: 1539: 1536: 1533: 1525: 1519: 1515: 1511: 1502: 1499: 1496: 1489: 1488: 1487: 1486: 1485: 1469: 1464: 1460: 1454: 1425: 1408: 1405: 1402: 1394: 1390: 1386: 1380: 1377: 1366: 1361: 1357: 1353: 1347: 1344: 1337: 1336: 1335: 1334: 1333: 1320: 1292: 1282: 1277: 1273: 1267: 1264: 1261: 1249: 1243: 1240: 1237: 1231: 1225: 1222: 1219: 1211: 1207: 1193: 1187: 1182: 1164: 1159: 1155: 1151: 1145: 1135: 1128: 1111: 1101: 1096: 1092: 1086: 1083: 1080: 1077: 1072: 1067: 1063: 1057: 1044: 1038: 1035: 1032: 1024: 1020: 1006: 1000: 995: 977: 972: 968: 964: 958: 948: 939: 922: 912: 907: 903: 897: 894: 891: 878: 872: 869: 866: 860: 854: 851: 848: 840: 836: 822: 816: 811: 793: 788: 784: 780: 774: 764: 757: 756: 755: 754: 753: 737: 733: 724: 715: 708: 690: 684: 678: 662: 658: 654: 629: 623: 615: 611: 593: 589: 580: 576: 575:energy levels 572: 568: 564: 556: 554: 552: 548: 540: 524: 520: 516: 513: 508: 504: 496: 490: 486: 460: 456: 448: 442: 438: 425: 418: 413: 408: 401: 396: 392: 389: 385: 381: 377: 373: 369: 365: 361: 357: 354: 351:offsets than 350: 345: 341: 338: 334: 330: 329: 328: 325: 323: 319: 314: 306: 302: 298: 294: 286: 279: 277: 266: 259: 255: 251: 247: 243: 239: 235: 232: 229: 225: 221: 217: 213: 210: 207: 204: 200: 196: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 154:can occur at 153: 149: 145: 141: 137: 133: 129: 125: 121: 118: 115: 111: 107: 103: 99: 95: 91: 88: 87: 86: 83: 81: 77: 73: 65: 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 3712: 3690:(1–3): 418. 3687: 3681: 3651: 3628: 3590: 3586: 3550: 3546: 3539: 3524: 3519: 3494: 3490: 3484: 3459: 3455: 3449: 3416: 3412: 3383: 3376: 3360: 3335: 3331: 3325: 3300: 3292: 3273: 3269: 3259: 3242: 3238: 3232: 3221:. Retrieved 3217: 3208: 3175: 3171: 3165: 3132: 3128: 3122: 3112:, retrieved 3090: 3080: 3029: 3025: 3019: 2987:p–n junction 2983:Homojunction 2936: 2916:luminescence 2884:quantum dots 2881: 2850:ground state 2847: 2691: 2398:odd parity: 2397: 2103: 2096: 1952: 1808: 1602: 1446: 1312: 720: 714:quantum well 567:quantum well 560: 551:luminescence 544: 538: 423: 416: 411: 406: 399: 394: 359: 349:valence band 343: 326: 318:band bending 313:energy bands 310: 304: 300: 297:Band diagram 264: 263: 233: 211: 195:transceivers 190:players and 180:diode lasers 168:quantum well 119: 102:p–n junction 89: 84: 69: 55: 48:homojunction 31: 29: 2932:anisotropic 2908:fluorescent 1447:At the z = 410:As. As the 192:fiber optic 90:Solar cells 52:solar cells 3497:(2): 683. 3462:(2): 466. 3276:: 215967. 3223:2022-03-25 3114:2023-04-18 3000:References 2928:zincblende 2904:passivates 2852:energies. 721:Using the 395:60:40 rule 260:can occur. 258:scattering 176:index step 172:waveguides 3200:125265042 3157:121569675 3072:205234832 3056:0028-0836 3039:1307.6718 2830:ℏ 2822:− 2807:∗ 2788:− 2771:κ 2756:ℏ 2739:∗ 2669:− 2647:κ 2634:∗ 2576:× 2545:⁡ 2528:∗ 2510:− 2479:⁡ 2449:∗ 2375:− 2353:κ 2340:∗ 2322:− 2282:× 2251:⁡ 2234:∗ 2185:⁡ 2155:∗ 2058:∗ 2045:κ 2009:⁡ 1999:∗ 1981:− 1914:∗ 1901:κ 1896:− 1865:⁡ 1855:∗ 1837:− 1761:κ 1755:− 1749:⁡ 1739:∗ 1722:κ 1716:− 1682:⁡ 1672:∗ 1649:− 1621:∗ 1555:κ 1549:− 1543:⁡ 1503:⁡ 1416:ℏ 1406:− 1378:κ 1371:ℏ 1321:κ 1244:ψ 1226:ψ 1188:ψ 1165:∗ 1142:ℏ 1136:− 1058:− 1039:ψ 1001:ψ 978:∗ 955:ℏ 949:− 898:− 873:ψ 855:ψ 817:ψ 794:∗ 771:ℏ 765:− 685:ψ 676:∂ 672:∂ 663:∗ 624:ψ 553:spectra. 501:Δ 483:Δ 453:Δ 435:Δ 414:in the Al 360:gap state 265:Catalysis 252:within a 114:Panasonic 74:(MBE) or 44:band gaps 3741:Category 3627:(1991). 3607:17373799 3567:17727285 3064:23887427 2977:See also 2941:between 2900:band gap 716:example. 612:for the 355:offsets. 182:used in 148:carriers 3717:Bibcode 3692:Bibcode 3499:Bibcode 3464:Bibcode 3441:9991928 3421:Bibcode 3340:Bibcode 3180:Bibcode 3137:Bibcode 2914:of the 547:exciton 174:to the 3672:  3660:London 3639:  3605:  3565:  3531:  3439:  3391:  3368:  3313:  3198:  3155:  3105:  3070:  3062:  3054:  3026:Nature 2692:where 388:AlGaAs 372:dipole 242:doping 230:(HBT). 152:lasing 124:lasers 120:Lasers 104:. The 36:layers 3196:S2CID 3153:S2CID 3068:S2CID 3034:arXiv 2962:holes 2924:bonds 203:II-VI 199:III-V 110:Sanyo 3670:ISBN 3658:and 3637:ISBN 3603:PMID 3563:PMID 3529:ISBN 3437:PMID 3389:ISBN 3366:ISBN 3311:ISBN 3103:ISBN 3060:PMID 3052:ISSN 2902:ZnS 2896:CdSe 2097:For 1265:> 1084:< 1078:< 895:< 645:and 565:, a 541:=1). 525:0.27 517:0.73 393:The 384:GaAs 220:gain 201:and 186:and 144:AlAs 140:GaAs 3725:doi 3700:doi 3688:228 3595:doi 3591:129 3555:doi 3551:129 3507:doi 3495:152 3472:doi 3460:150 3429:doi 3348:doi 3278:doi 3274:516 3247:doi 3188:doi 3145:doi 3095:doi 3044:doi 3030:499 2947:TiO 2894:on 2892:ZnS 2882:In 2876:TEM 2536:csc 2476:cot 2242:sec 2182:tan 2006:cot 1862:tan 1746:exp 1679:sin 1540:exp 1500:cos 188:DVD 166:in 3743:: 3723:. 3698:. 3686:. 3668:, 3662:: 3654:. 3635:. 3631:. 3601:. 3589:. 3575:^ 3561:. 3549:. 3505:. 3493:. 3470:. 3458:. 3435:. 3427:. 3417:40 3415:. 3403:^ 3387:. 3346:. 3336:30 3334:. 3309:. 3307:66 3272:. 3268:. 3243:51 3241:. 3216:. 3194:. 3186:. 3176:57 3174:. 3151:. 3143:. 3133:22 3131:. 3101:, 3089:, 3066:. 3058:. 3050:. 3042:. 3028:. 3007:^ 2985:, 2845:. 422:1− 420:Ga 405:1− 403:Ga 342:A 324:. 184:CD 146:, 82:. 30:A 3731:. 3727:: 3719:: 3706:. 3702:: 3694:: 3666:. 3645:. 3609:. 3597:: 3569:. 3557:: 3513:. 3509:: 3501:: 3478:. 3474:: 3466:: 3443:. 3431:: 3423:: 3397:. 3354:. 3350:: 3342:: 3319:. 3286:. 3280:: 3253:. 3249:: 3226:. 3202:. 3190:: 3182:: 3159:. 3147:: 3139:: 3097:: 3074:. 3046:: 3036:: 2954:2 2949:2 2872:4 2870:O 2868:3 2825:E 2819:V 2814:2 2802:b 2798:m 2794:2 2785:= 2779:E 2776:d 2768:d 2751:E 2746:2 2734:w 2730:m 2726:2 2720:= 2714:E 2711:d 2706:k 2703:d 2675:) 2672:2 2666:9 2663:( 2655:E 2652:d 2644:d 2629:b 2625:m 2621:1 2616:+ 2610:E 2607:d 2602:k 2599:d 2591:2 2586:w 2582:l 2573:) 2568:2 2562:w 2558:l 2554:k 2548:( 2540:2 2523:w 2519:m 2515:k 2507:) 2502:2 2496:w 2492:l 2488:k 2482:( 2470:E 2467:d 2462:k 2459:d 2444:w 2440:m 2436:1 2431:= 2425:E 2422:d 2417:f 2414:d 2381:) 2378:1 2372:9 2369:( 2361:E 2358:d 2350:d 2335:b 2331:m 2327:1 2316:E 2313:d 2308:k 2305:d 2297:2 2292:w 2288:l 2279:) 2274:2 2268:w 2264:l 2260:k 2254:( 2246:2 2229:w 2225:m 2221:k 2216:+ 2213:) 2208:2 2202:w 2198:l 2194:k 2188:( 2176:E 2173:d 2168:k 2165:d 2150:w 2146:m 2142:1 2137:= 2131:E 2128:d 2123:f 2120:d 2091:. 2079:) 2076:8 2073:( 2068:0 2065:= 2053:b 2049:m 2040:+ 2037:) 2032:2 2026:w 2022:l 2018:k 2012:( 1994:w 1990:m 1986:k 1978:= 1975:) 1972:E 1969:( 1966:f 1947:. 1935:) 1932:7 1929:( 1924:0 1921:= 1909:b 1905:m 1893:) 1888:2 1882:w 1878:l 1874:k 1868:( 1850:w 1846:m 1842:k 1834:= 1831:) 1828:E 1825:( 1822:f 1803:. 1791:) 1788:6 1785:( 1780:) 1775:2 1769:w 1765:l 1752:( 1734:b 1730:m 1725:B 1713:= 1710:) 1705:2 1699:w 1695:l 1691:k 1685:( 1667:w 1663:m 1658:A 1655:k 1617:m 1613:1 1597:. 1585:) 1582:5 1579:( 1574:) 1569:2 1563:w 1559:l 1546:( 1537:B 1534:= 1531:) 1526:2 1520:w 1516:l 1512:k 1506:( 1497:A 1470:2 1465:w 1461:l 1455:+ 1441:. 1429:) 1426:4 1423:( 1412:) 1409:E 1403:V 1400:( 1395:b 1391:m 1387:2 1381:= 1367:E 1362:w 1358:m 1354:2 1348:= 1345:k 1296:) 1293:3 1290:( 1283:2 1278:w 1274:l 1268:+ 1262:z 1253:) 1250:z 1247:( 1241:E 1238:= 1235:) 1232:z 1229:( 1223:V 1220:+ 1212:2 1208:z 1203:d 1197:) 1194:z 1191:( 1183:2 1178:d 1160:b 1156:m 1152:2 1146:2 1115:) 1112:2 1109:( 1102:2 1097:w 1093:l 1087:+ 1081:z 1073:2 1068:w 1064:l 1048:) 1045:z 1042:( 1036:E 1033:= 1025:2 1021:z 1016:d 1010:) 1007:z 1004:( 996:2 991:d 973:w 969:m 965:2 959:2 926:) 923:1 920:( 913:2 908:w 904:l 892:z 882:) 879:z 876:( 870:E 867:= 864:) 861:z 858:( 852:V 849:+ 841:2 837:z 832:d 826:) 823:z 820:( 812:2 807:d 789:b 785:m 781:2 775:2 738:w 734:l 694:) 691:z 688:( 679:z 659:m 655:1 633:) 630:z 627:( 594:w 590:l 539:x 521:/ 514:= 509:V 505:E 497:/ 491:C 487:E 461:V 457:E 449:/ 443:C 439:E 424:x 417:x 412:x 407:x 400:x 390:. 386:/ 305:n 303:- 301:n 273:2 269:2 112:/ 20:)

Index

Heterostructure
layers
semiconductors
band gaps
homojunction
solar cells
fast ion conductor
molecular beam epitaxy
chemical vapor deposition
van der Waals heterostructures
crystalline silicon
amorphous silicon
p–n junction
Heterojunction with Intrinsic Thin-Layer
Sanyo
Panasonic
lasers
Herbert Kroemer
population inversion
direct band gap
GaAs
AlAs
carriers
lasing
room temperature
material science
quantum size effects
quantum well
waveguides
index step

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑