Knowledge (XXG)

High-resolution transmission electron microscopy

Source 📝

47:
resolution scanning transmission electron microscopy, mostly in high angle annular dark field mode, this article describes mainly the imaging of an object by recording the two-dimensional spatial wave amplitude distribution in the image plane, similar to a "classic" light microscope. For disambiguation, the technique is also often referred to as phase contrast transmission electron microscopy, although this term is less appropriate. At present, the highest point resolution realised in high resolution transmission electron microscopy is around 0.5
1967: 3127: 75: 66:, contrast is not intuitively interpretable, as the image is influenced by aberrations of the imaging lenses in the microscope. The largest contributions for uncorrected instruments typically come from defocus and astigmatism. The latter can be estimated from the so-called Thon ring pattern appearing in the Fourier transform modulus of an image of a thin amorphous film. 1330: 3139: 1486: 28: 95:
wave incident on the sample surface. As it penetrates the sample, it is attracted by the positive atomic potentials of the atom cores, and channels along the atom columns of the crystallographic lattice (s-state model). At the same time, the interaction between the electron wave in different atom columns leads to
94:
The interaction of the electron wave with the crystallographic structure of the sample is complex, but a qualitative idea of the interaction can readily be obtained. Each imaging electron interacts independently with the sample. Above the sample, the wave of an electron can be approximated as a plane
90:
with itself. Due to our inability to record the phase of an electron wave, only the amplitude in the image plane is recorded. However, a large part of the structure information of the sample is contained in the phase of the electron wave. In order to detect it, the aberrations of the microscope (like
166:
a direct representation of the samples crystallographic structure. For instance, high intensity might or might not indicate the presence of an atom column in that precise location (see simulation). The relationship between the exit wave and the image wave is a highly nonlinear one and is a function
2248:
C. Kisielowski; B. Freitag; M. Bischoff; H. van Lin; S. Lazar; G. Knippels; P. Tiemeijer; M. van der Stam; S. von Harrach; M. Stekelenburg; M. Haider; H. Muller; P. Hartel; B. Kabius; D. Miller; I. Petrov; E. Olson; T. Donchev; E. A. Kenik; A. Lupini; J. Bentley; S. Pennycook; A. M. Minor; A. K.
2014:
takes advantage of the fact that the contrast transfer function is focus dependent. A series of about 20 pictures is shot under the same imaging conditions with the exception of the focus which is incremented between each take. Together with exact knowledge of the contrast transfer function, the
2007:
expressly for transmission electron microscopy applications, uses a prism to split the beam into a reference beam and a second one passing through the sample. Phase changes between the two are then translated in small shifts of the interference pattern, which allows recovering both phase and
46:
that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp-bonded carbon (e.g., graphene, C nanotubes). While this term is often also used to refer to high
1161: 479:
is the defocus. In transmission electron microscopy, defocus can easily be controlled and measured to high precision. Thus one can easily alter the shape of the contrast transfer function by defocusing the sample. Contrary to optical applications, defocusing can increase the precision and
2035:
Both methods extend the point resolution of the microscope past the information limit, which is the highest possible resolution achievable on a given machine. The ideal defocus value for this type of imaging is known as Lichte defocus and is usually several hundred nanometers negative.
1472:
project at Lawrence Berkeley National Laboratory resulted in the first transmission electron microscope to reach an information limit of <0.5 Å in 2009 by the use of a highly stable mechanical and electrical environment, an ultra-bright, monochromated electron source and
103:, which is almost all real samples, still remains the holy grail of electron microscopy. However, the physics of electron scattering and electron microscope image formation are sufficiently well known to allow accurate simulation of electron microscope images. 1764:
which corresponds to 6.1 nm on the CM300. Contributions with a spatial frequency higher than the point resolution can be filtered out with an appropriate aperture leading to easily interpretable images at the cost of a lot of information lost.
2249:
Schmid; T. Duden; V. Radmilovic; Q. Ramasse; R. Erni; M. Watanabe; E. Stach; P. Denes; U. Dahmen (2008). "Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscopy with 0.5 Å information limit".
498:
which usually dampens the signal of beams scattered at high angles, and imposes a maximum to the transmitted spatial frequency. This maximum determines the highest resolution attainable with a microscope and is known as the information limit.
1773:
Gabor defocus is used in electron holography where both amplitude and phase of the image wave are recorded. One thus wants to minimize crosstalk between the two. The Gabor defocus can be expressed as a function of the Scherzer defocus as
1993:
First however, both phase and amplitude of the electron wave in the image plane must be measured. As our instruments only record amplitudes, an alternative method to recover the phase has to be used. There are two methods in use today:
459: 1854:. To maximize the information throughput, Hannes Lichte proposed in 1991 a defocus of a fundamentally different nature than the Scherzer defocus: because the dampening of the envelope function scales with the first derivative of 350:
will enter contrast in the final image. If one takes into account only spherical aberration to third order and defocus, χ is rotationally symmetric about the optical axis of the microscope and thus only depends on the modulus
1759: 1493:
Choosing the optimum defocus is crucial to fully exploit the capabilities of an electron microscope in high resolution transmission electron microscopy mode. However, there is no simple answer as to which one is the best.
1325:{\displaystyle \delta =C_{c}{\sqrt {4\left({\frac {\Delta I_{\text{obj}}}{I_{\text{obj}}}}\right)^{2}+\left({\frac {\Delta E}{V_{\text{acc}}}}\right)^{2}+\left({\frac {\Delta V_{\text{acc}}}{V_{\text{acc}}}}\right)^{2}}},} 1947: 1622: 1824: 639: 157:
relative to the incident wave peaks at the location of the atom columns. The exit wave now passes through the imaging system of the microscope where it undergoes further phase change and interferes as the
1990:
the wave in the image plane is back propagated numerically to the sample. If all properties of the microscope are well known, it is possible to recover the real exit wave with very high accuracy.
1497:
In Gaussian focus one sets the defocus to zero, the sample is in focus. As a consequence contrast in the image plane gets its image components from the minimal area of the sample, the contrast is
1423: 1378: 1008: 297: 1461: 1142: 2771: 2092: 1468: 59:
can be resolved. For 3-dimensional crystals, it is necessary to combine several views, taken from different angles, into a 3D map. This technique is called electron tomography.
1553:
are transferred into image intensity with a similar phase. In 1949, Scherzer found that the optimum defocus depends on microscope properties like the spherical aberration
487:
cuts off beams scattered above a certain critical angle (given by the objective pole piece for ex), thus effectively limiting the attainable resolution. However it is the
2749: 2378: 2067: 2898: 2601: 2888: 2491: 367: 2791: 2764: 2699: 2759: 2082: 1676: 1501:(no blurring and information overlap from other parts of the sample). The contrast transfer function becomes a function that oscillates quickly with 2903: 3165: 1628: 1874: 2719: 1570: 2843: 2709: 2656: 2405: 2186: 2072: 2124: 1780: 3098: 2826: 2811: 2737: 2105: 141:(spatial frequencies correspond to scattering angles, or distances of rays from the optical axis in a diffraction plane). The phase change 1958:
is the maximum transmitted spatial frequency. For the CM300 with an information limit of 0.8 Å Lichte defocus lies at −272 nm.
1031:, the damping due to this envelope function can be minimized by optimizing the defocus at which the image is recorded (Lichte defocus). 757:. These two envelopes determine the information limit by damping the signal transfer in Fourier space with increasing spatial frequency 513: 91:
defocus) have to be tuned in a way that converts the phase of the wave at the specimen exit plane into amplitudes in the image plane.
2848: 2681: 2534: 2484: 2056: 62:
One of the difficulties with high resolution transmission electron microscopy is that image formation relies on phase contrast. In
1024:) vanished, this envelope function would be a constant one. In case of an uncorrected transmission electron microscope with fixed 2836: 2831: 2729: 2704: 2671: 2335:
O'Keefe, M. A., Buseck, P. R. and S. Iijima (1978). "Computed crystal structure images for high resolution electron microscopy".
2097: 2046: 43: 2908: 2893: 2873: 83: 2611: 1013:
where α is the semiangle of the pencil of rays illuminating the sample. Clearly, if the wave aberration ('here represented by
3170: 2676: 2519: 2425: 3143: 1834:
To exploit all beams transmitted through the microscope up to the information limit, one relies on a complex method called
2853: 2816: 2661: 1838:
which consists in mathematically reversing the effect of the contrast transfer function to recover the original exit wave
1383: 1338: 184: 3131: 2691: 2477: 2077: 1513:
the contribution to contrast in the recorded image will be reversed, thus making interpretation of the image difficult.
2119: 344:
The last, sinusoidal term of the contrast transfer function will determine the sign with which components of frequency
766: 100: 213: 2878: 2796: 180: 3103: 3057: 2883: 3093: 719:
Specimen drift and vibration can be minimized in a stable environment. It is usually the spherical aberration
1428: 2806: 2742: 2616: 2575: 1466:
The information limit of current state-of-the-art transmission electron microscopes is well below 1 Å. The
2996: 2155: 1040: 63: 3001: 2821: 2372: 207:, assume the weak phase object approximation (thin sample), then the contrast transfer function becomes 87: 3006: 2565: 2344: 2258: 2214: 2051: 1645: 1425:
represent instabilities in of the total current in the magnetic lenses and the acceleration voltage.
2971: 2956: 2863: 2858: 2801: 2666: 2648: 2580: 2570: 2514: 2500: 2062: 17: 3042: 2621: 2585: 2360: 2282: 2230: 162:
in the imaging plane (mostly a digital pixel detector like a CCD camera). The recorded image is
187:
in the imaging lenses of a microscope. It describes their effect on the phase of the exit wave
132:
is a superposition of a plane wave and a multitude of diffracted beams with different in plane
2986: 2981: 2401: 2317: 2274: 2202: 2182: 2174: 1966: 323: 133: 96: 2936: 2868: 2456: 2352: 2309: 2266: 2222: 2151:
CTF Explorer by Max V. Sidorov, freeware program to calculate the contrast transfer function
1474: 99:. The exact description of dynamical scattering of electrons in a sample not satisfying the 2991: 454:{\displaystyle \chi (u)={\frac {\pi }{2}}C_{s}\lambda ^{3}u^{4}-\pi \Delta f\lambda u^{2}} 82:
The contrast of a high resolution transmission electron microscopy image arises from the
2348: 2262: 2218: 745:, together with current and voltage instabilities that define the temporal coherency in 2946: 2560: 2394: 56: 48: 2313: 3159: 3022: 2966: 2626: 2460: 2234: 2087: 3073: 2286: 3083: 3047: 2941: 2931: 2606: 2555: 2364: 2004: 2421: 2150: 2140: 3027: 2961: 2951: 2300:
Geuens, P; van Dyck, D (Dec 2002). "The S-state model: a work horse for HRTEM".
1754:{\displaystyle u_{\text{res}}({\text{Scherzer}})=0.6\lambda ^{3/4}C_{s}^{1/4},} 3108: 2529: 2524: 2270: 2226: 1999: 1627:
where the factor 1.2 defines the extended Scherzer defocus. For the CM300 at
2976: 2631: 74: 52: 32: 2321: 2278: 1942:{\displaystyle \Delta f_{\text{Lichte}}=-0.75C_{s}(u_{\max }\lambda )^{2},} 3078: 2544: 1667: 1659:
The point resolution of a microscope is defined as the spatial frequency
1617:{\displaystyle \Delta f_{\text{Scherzer}}=-1.2{\sqrt {C_{s}\lambda }}\,} 1509:. This means that for certain diffracted beams with a spatial frequency 3088: 3032: 2714: 2469: 2447:
Lichte, Hannes (1991). "Optimum focus for taking electron holograms".
1819:{\displaystyle \Delta f_{\text{Gabor}}=0.56\Delta f_{\text{Scherzer}}} 3052: 2356: 2205:; et al. (2006). "Imaging dislocation cores - the way forward". 1485: 1481:
Optimum defocus in high resolution transmission electron microscopy
27: 2396:
Transmission electron microscopy: A textbook for materials science
1965: 1484: 73: 26: 2139:
Topical review "Optics of high-performance electron Microscopes"
1670:
for the first time. At Scherzer defocus this value is maximized:
341:
is a function of the aberrations of the electron optical system.
3037: 634:{\displaystyle E(u)=E_{s}(u)E_{c}(u)E_{d}(u)E_{v}(u)E_{D}(u),\,} 2473: 106:
As a result of the interaction with a crystalline sample, the
167:
of the aberrations of the microscope. It is described by the
55:). At these small scales, individual atoms of a crystal and 1148:
Here, δ is the focal spread with the chromatic aberration
2156:
High Resolution Transmission Electron Microscopy Overview
1463:
is the energy spread of electrons emitted by the source.
1549:) and creates a wide band where low spatial frequencies 2093:
Transmission Electron Aberration-corrected Microscope
1877: 1858:, Lichte proposed a focus minimizing the modulus of d 1783: 1679: 1573: 1521:
In Scherzer defocus, one aims to counter the term in
1431: 1386: 1341: 1164: 1043: 769: 516: 370: 216: 1418:{\displaystyle \Delta V_{\text{acc}}/V_{\text{acc}}} 1373:{\displaystyle \Delta I_{\text{obj}}/I_{\text{obj}}} 3066: 3015: 2924: 2917: 2784: 2728: 2690: 2647: 2640: 2594: 2543: 2507: 2141:
Sci. Technol. Adv. Mater. 9 (2008) 014107 (30pages)
1034:The temporal envelope function can be expressed as 507:can be described as a product of single envelopes: 2393: 1941: 1818: 1753: 1616: 1455: 1417: 1372: 1324: 1136: 1002: 633: 453: 291: 1666:where the contrast transfer function crosses the 322:describes the attenuation of the wave for higher 2179:Experimental high-resolution electron microscopy 2111:High-resolution transmission electron microscopy 2068:Energy filtered transmission electron microscopy 1918: 1489:contrast transfer function of the OAM microscope 40:High-resolution transmission electron microscopy 1640:= 0.6mm and an accelerating voltage of 300keV ( 1003:{\displaystyle E_{s}(u)=\exp \left=\exp \left,} 203:and propagates it to the image wave. Following 2899:Serial block-face scanning electron microscopy 2602:Detectors for transmission electron microscopy 292:{\displaystyle CTF(u)=A(u)E(u)2\sin(\chi (u))} 2485: 2392:Williams, David B.; Carter, C. Barry (1996). 1970:Exit wave reconstruction through focal series 8: 2377:: CS1 maint: multiple names: authors list ( 1537:). Thus by choosing the right defocus value 2921: 2644: 2492: 2478: 2470: 726:that limits spatial coherency and defines 2083:Scanning transmission electron microscope 1930: 1917: 1904: 1885: 1876: 1810: 1791: 1782: 1738: 1734: 1729: 1715: 1711: 1693: 1684: 1678: 1613: 1602: 1596: 1581: 1572: 1447: 1438: 1430: 1409: 1400: 1394: 1385: 1364: 1355: 1349: 1340: 1311: 1299: 1288: 1278: 1264: 1252: 1238: 1224: 1212: 1201: 1191: 1181: 1175: 1163: 1120: 1110: 1080: 1048: 1042: 986: 961: 951: 941: 928: 909: 876: 847: 841: 830: 811: 774: 768: 630: 612: 593: 574: 555: 536: 515: 471:is the spherical aberration coefficient, 445: 420: 410: 400: 386: 369: 215: 183:is a function of limiting apertures and 126:as a function of the spatial coordinate 2166: 1456:{\displaystyle \Delta E/V_{\text{acc}}} 2370: 1560:and the accelerating voltage (through 2073:Scanning confocal electron microscopy 480:interpretability of the micrographs. 7: 3138: 1137:{\displaystyle E_{c}(u)=\exp \left,} 175:The phase contrast transfer function 18:High-resolution electron microscopy 2008:amplitude of the interfering wave. 1878: 1803: 1784: 1574: 1432: 1387: 1342: 1281: 1241: 1194: 970: 848: 432: 42:is an imaging mode of specialized 25: 2535:Timeline of microscope technology 2428:from the original on 7 April 2014 2057:Electron energy loss spectroscopy 2015:series allows for computation of 475:is the electron wavelength, and Δ 70:Image contrast and interpretation 44:transmission electron microscopes 3137: 3126: 3125: 2098:Transmission Electron Microscopy 2047:Electron beam induced deposition 2894:Precession electron diffraction 101:weak phase object approximation 3166:Electron microscopy techniques 1927: 1910: 1698: 1690: 1060: 1054: 983: 934: 858: 852: 786: 780: 659:: angular spread of the source 624: 618: 605: 599: 586: 580: 567: 561: 548: 542: 526: 520: 380: 374: 286: 283: 277: 271: 259: 253: 247: 241: 232: 226: 1: 2314:10.1016/s0304-3991(02)00276-0 2181:. New York: Oxford U. Press. 738:and the chromatic aberration 78:Simulated HREM images for GaN 2461:10.1016/0304-3991(91)90105-F 2251:Microscopy and Microanalysis 2125:Resources in other libraries 2078:Scanning electron microscope 2012:Through focal series method 3187: 2879:Immune electron microscopy 2797:Annular dark-field imaging 2612:Everhart–Thornley detector 2400:. New York: Plenum Press. 181:contrast transfer function 169:contrast transfer function 86:in the image plane of the 3121: 3033:Hitachi High-Technologies 2271:10.1017/S1431927608080902 2227:10.1080/14786430600776322 2120:Resources in your library 2003:, which was developed by 1525:with the parabolic term Δ 31:High-resolution image of 3058:Thermo Fisher Scientific 2884:Geometric phase analysis 2772:Aberration-Corrected TEM 1962:Exit wave reconstruction 1836:exit wave reconstruction 1564:) in the following way: 2807:Charge contrast imaging 2617:Field electron emission 2422:"TEAM project web page" 1477:aberration correctors. 110:right below the sample 2997:Thomas Eugene Everhart 1971: 1943: 1820: 1755: 1646:Wavelength calculation 1618: 1490: 1457: 1419: 1374: 1326: 1138: 1004: 673:: chromatic aberration 635: 455: 293: 79: 64:phase-contrast imaging 36: 3171:Scientific techniques 3002:Vernon Ellis Cosslett 2822:Dark-field microscopy 1974:To calculate back to 1969: 1944: 1821: 1756: 1619: 1488: 1458: 1420: 1375: 1327: 1139: 1005: 636: 456: 294: 77: 30: 3007:Vladimir K. Zworykin 2657:Correlative light EM 2566:Electron diffraction 2213:(29–31): 4781–4796. 2052:Electron diffraction 1875: 1781: 1677: 1571: 1429: 1384: 1339: 1162: 1041: 767: 701:: specimen vibration 514: 368: 214: 2972:Manfred von Ardenne 2957:Gerasimos Danilatos 2864:Electron tomography 2859:Electron holography 2802:Cathodoluminescence 2581:Secondary electrons 2571:Electron scattering 2515:Electron microscopy 2501:Electron microscopy 2349:1978Natur.274..322O 2263:2008MiMic..14..469K 2219:2006PMag...86.4781S 2063:Electron microscope 1747: 205:Williams and Carter 134:spatial frequencies 3094:Digital Micrograph 2700:Environmental SEM 2622:Field emission gun 2586:X-ray fluorescence 1972: 1939: 1816: 1751: 1725: 1614: 1491: 1453: 1415: 1370: 1322: 1155:as the parameter: 1134: 1000: 631: 451: 289: 108:electron exit wave 80: 37: 3153: 3152: 3117: 3116: 2987:Nestor J. Zaluzec 2982:Maximilian Haider 2780: 2779: 2407:978-0-306-45324-3 2343:(5669): 322–324. 2188:978-0-19-505405-7 2175:Spence, John C. H 2106:Library resources 1888: 1813: 1794: 1696: 1687: 1611: 1584: 1450: 1412: 1397: 1367: 1352: 1317: 1305: 1302: 1291: 1258: 1255: 1218: 1215: 1204: 1088: 922: 870: 824: 489:envelope function 485:aperture function 394: 361:|, given by 331:envelope function 324:spatial frequency 312:aperture function 97:Bragg diffraction 16:(Redirected from 3178: 3141: 3140: 3129: 3128: 2937:Bodo von Borries 2922: 2682:Photoemission EM 2645: 2494: 2487: 2480: 2471: 2465: 2464: 2444: 2438: 2437: 2435: 2433: 2418: 2412: 2411: 2399: 2389: 2383: 2382: 2376: 2368: 2357:10.1038/274322a0 2332: 2326: 2325: 2297: 2291: 2290: 2245: 2239: 2238: 2203:Spence, J. C. H. 2199: 2193: 2192: 2171: 1948: 1946: 1945: 1940: 1935: 1934: 1922: 1921: 1909: 1908: 1890: 1889: 1886: 1825: 1823: 1822: 1817: 1815: 1814: 1811: 1796: 1795: 1792: 1760: 1758: 1757: 1752: 1746: 1742: 1733: 1724: 1723: 1719: 1697: 1694: 1689: 1688: 1685: 1654:= -41.25 nm 1623: 1621: 1620: 1615: 1612: 1607: 1606: 1597: 1586: 1585: 1582: 1517:Scherzer defocus 1462: 1460: 1459: 1454: 1452: 1451: 1448: 1442: 1424: 1422: 1421: 1416: 1414: 1413: 1410: 1404: 1399: 1398: 1395: 1379: 1377: 1376: 1371: 1369: 1368: 1365: 1359: 1354: 1353: 1350: 1331: 1329: 1328: 1323: 1318: 1316: 1315: 1310: 1306: 1304: 1303: 1300: 1294: 1293: 1292: 1289: 1279: 1269: 1268: 1263: 1259: 1257: 1256: 1253: 1247: 1239: 1229: 1228: 1223: 1219: 1217: 1216: 1213: 1207: 1206: 1205: 1202: 1192: 1182: 1180: 1179: 1143: 1141: 1140: 1135: 1130: 1126: 1125: 1124: 1115: 1114: 1109: 1105: 1089: 1081: 1053: 1052: 1009: 1007: 1006: 1001: 996: 992: 991: 990: 966: 965: 956: 955: 946: 945: 933: 932: 927: 923: 918: 910: 886: 882: 881: 880: 875: 871: 869: 861: 851: 842: 835: 834: 829: 825: 820: 812: 779: 778: 687:: specimen drift 640: 638: 637: 632: 617: 616: 598: 597: 579: 578: 560: 559: 541: 540: 460: 458: 457: 452: 450: 449: 425: 424: 415: 414: 405: 404: 395: 387: 298: 296: 295: 290: 21: 3186: 3185: 3181: 3180: 3179: 3177: 3176: 3175: 3156: 3155: 3154: 3149: 3113: 3062: 3011: 2992:Ondrej Krivanek 2913: 2776: 2724: 2686: 2672:Liquid-Phase EM 2636: 2595:Instrumentation 2590: 2548: 2539: 2503: 2498: 2468: 2449:Ultramicroscopy 2446: 2445: 2441: 2431: 2429: 2420: 2419: 2415: 2408: 2391: 2390: 2386: 2369: 2334: 2333: 2329: 2308:(3–4): 179–98. 2302:Ultramicroscopy 2299: 2298: 2294: 2247: 2246: 2242: 2201: 2200: 2196: 2189: 2173: 2172: 2168: 2164: 2136: 2131: 2130: 2129: 2114: 2113: 2109: 2102: 2042: 2020: 1979: 1964: 1957: 1926: 1913: 1900: 1881: 1873: 1872: 1843: 1832: 1806: 1787: 1779: 1778: 1771: 1707: 1680: 1675: 1674: 1665: 1653: 1639: 1598: 1577: 1569: 1568: 1558: 1519: 1506: 1483: 1443: 1427: 1426: 1405: 1390: 1382: 1381: 1360: 1345: 1337: 1336: 1295: 1284: 1280: 1274: 1273: 1248: 1240: 1234: 1233: 1208: 1197: 1193: 1187: 1186: 1171: 1160: 1159: 1153: 1116: 1095: 1091: 1090: 1076: 1072: 1044: 1039: 1038: 1029: 1018: 982: 957: 947: 937: 911: 905: 904: 900: 896: 862: 843: 837: 836: 813: 807: 806: 802: 798: 770: 765: 764: 750: 743: 731: 724: 708: 694: 680: 666: 652: 608: 589: 570: 551: 532: 512: 511: 469: 441: 416: 406: 396: 366: 365: 212: 211: 192: 177: 146: 115: 72: 23: 22: 15: 12: 11: 5: 3184: 3182: 3174: 3173: 3168: 3158: 3157: 3151: 3150: 3148: 3147: 3135: 3122: 3119: 3118: 3115: 3114: 3112: 3111: 3106: 3101: 3099:Direct methods 3096: 3091: 3086: 3081: 3076: 3070: 3068: 3064: 3063: 3061: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3019: 3017: 3013: 3012: 3010: 3009: 3004: 2999: 2994: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2947:Ernst G. Bauer 2944: 2939: 2934: 2928: 2926: 2919: 2915: 2914: 2912: 2911: 2906: 2901: 2896: 2891: 2886: 2881: 2876: 2871: 2866: 2861: 2856: 2851: 2846: 2841: 2840: 2839: 2829: 2824: 2819: 2814: 2809: 2804: 2799: 2794: 2788: 2786: 2782: 2781: 2778: 2777: 2775: 2774: 2769: 2768: 2767: 2757: 2752: 2747: 2746: 2745: 2734: 2732: 2726: 2725: 2723: 2722: 2717: 2712: 2707: 2702: 2696: 2694: 2688: 2687: 2685: 2684: 2679: 2674: 2669: 2664: 2659: 2653: 2651: 2642: 2638: 2637: 2635: 2634: 2629: 2624: 2619: 2614: 2609: 2604: 2598: 2596: 2592: 2591: 2589: 2588: 2583: 2578: 2573: 2568: 2563: 2561:Bremsstrahlung 2558: 2552: 2550: 2541: 2540: 2538: 2537: 2532: 2527: 2522: 2517: 2511: 2509: 2505: 2504: 2499: 2497: 2496: 2489: 2482: 2474: 2467: 2466: 2439: 2413: 2406: 2384: 2327: 2292: 2257:(5): 469–477. 2240: 2194: 2187: 2165: 2163: 2160: 2159: 2158: 2153: 2148: 2145:free download 2135: 2132: 2128: 2127: 2122: 2116: 2115: 2104: 2103: 2101: 2100: 2095: 2090: 2085: 2080: 2075: 2070: 2065: 2060: 2054: 2049: 2043: 2041: 2038: 2033: 2032: 2018: 2009: 1977: 1963: 1960: 1955: 1938: 1933: 1929: 1925: 1920: 1916: 1912: 1907: 1903: 1899: 1896: 1893: 1884: 1880: 1841: 1831: 1830:Lichte defocus 1828: 1827: 1826: 1809: 1805: 1802: 1799: 1790: 1786: 1770: 1767: 1762: 1761: 1750: 1745: 1741: 1737: 1732: 1728: 1722: 1718: 1714: 1710: 1706: 1703: 1700: 1692: 1683: 1663: 1651: 1635: 1625: 1624: 1610: 1605: 1601: 1595: 1592: 1589: 1580: 1576: 1556: 1518: 1515: 1504: 1482: 1479: 1446: 1441: 1437: 1434: 1408: 1403: 1393: 1389: 1363: 1358: 1348: 1344: 1333: 1332: 1321: 1314: 1309: 1298: 1287: 1283: 1277: 1272: 1267: 1262: 1251: 1246: 1243: 1237: 1232: 1227: 1222: 1211: 1200: 1196: 1190: 1185: 1178: 1174: 1170: 1167: 1151: 1146: 1145: 1133: 1129: 1123: 1119: 1113: 1108: 1104: 1101: 1098: 1094: 1087: 1084: 1079: 1075: 1071: 1068: 1065: 1062: 1059: 1056: 1051: 1047: 1027: 1016: 1011: 1010: 999: 995: 989: 985: 981: 978: 975: 972: 969: 964: 960: 954: 950: 944: 940: 936: 931: 926: 921: 917: 914: 908: 903: 899: 895: 892: 889: 885: 879: 874: 868: 865: 860: 857: 854: 850: 846: 840: 833: 828: 823: 819: 816: 810: 805: 801: 797: 794: 791: 788: 785: 782: 777: 773: 748: 741: 729: 722: 717: 716: 706: 702: 692: 688: 678: 674: 664: 660: 650: 642: 641: 629: 626: 623: 620: 615: 611: 607: 604: 601: 596: 592: 588: 585: 582: 577: 573: 569: 566: 563: 558: 554: 550: 547: 544: 539: 535: 531: 528: 525: 522: 519: 467: 462: 461: 448: 444: 440: 437: 434: 431: 428: 423: 419: 413: 409: 403: 399: 393: 390: 385: 382: 379: 376: 373: 329:, also called 300: 299: 288: 285: 282: 279: 276: 273: 270: 267: 264: 261: 258: 255: 252: 249: 246: 243: 240: 237: 234: 231: 228: 225: 222: 219: 190: 176: 173: 144: 113: 71: 68: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3183: 3172: 3169: 3167: 3164: 3163: 3161: 3146: 3145: 3136: 3134: 3133: 3124: 3123: 3120: 3110: 3107: 3105: 3102: 3100: 3097: 3095: 3092: 3090: 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3071: 3069: 3065: 3059: 3056: 3054: 3051: 3049: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3023:Carl Zeiss AG 3021: 3020: 3018: 3016:Manufacturers 3014: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2967:James Hillier 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2929: 2927: 2923: 2920: 2916: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2838: 2835: 2834: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2789: 2787: 2783: 2773: 2770: 2766: 2763: 2762: 2761: 2758: 2756: 2753: 2751: 2748: 2744: 2741: 2740: 2739: 2736: 2735: 2733: 2731: 2727: 2721: 2720:Ultrafast SEM 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2697: 2695: 2693: 2689: 2683: 2680: 2678: 2677:Low-energy EM 2675: 2673: 2670: 2668: 2665: 2663: 2660: 2658: 2655: 2654: 2652: 2650: 2646: 2643: 2639: 2633: 2630: 2628: 2627:Magnetic lens 2625: 2623: 2620: 2618: 2615: 2613: 2610: 2608: 2605: 2603: 2600: 2599: 2597: 2593: 2587: 2584: 2582: 2579: 2577: 2576:Kikuchi lines 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2553: 2551: 2546: 2542: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2512: 2510: 2506: 2502: 2495: 2490: 2488: 2483: 2481: 2476: 2475: 2472: 2462: 2458: 2454: 2450: 2443: 2440: 2427: 2423: 2417: 2414: 2409: 2403: 2398: 2397: 2388: 2385: 2380: 2374: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2331: 2328: 2323: 2319: 2315: 2311: 2307: 2303: 2296: 2293: 2288: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2244: 2241: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2198: 2195: 2190: 2184: 2180: 2176: 2170: 2167: 2161: 2157: 2154: 2152: 2149: 2147: 2146: 2142: 2138: 2137: 2133: 2126: 2123: 2121: 2118: 2117: 2112: 2107: 2099: 2096: 2094: 2091: 2089: 2088:Talbot Effect 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2058: 2055: 2053: 2050: 2048: 2045: 2044: 2039: 2037: 2031:(see figure). 2030: 2028: 2024: 2013: 2010: 2006: 2002: 2001: 1997: 1996: 1995: 1991: 1989: 1987: 1983: 1968: 1961: 1959: 1954: 1949: 1936: 1931: 1923: 1914: 1905: 1901: 1897: 1894: 1891: 1882: 1870: 1869: 1865: 1861: 1857: 1853: 1851: 1847: 1837: 1829: 1807: 1800: 1797: 1788: 1777: 1776: 1775: 1769:Gabor defocus 1768: 1766: 1748: 1743: 1739: 1735: 1730: 1726: 1720: 1716: 1712: 1708: 1704: 1701: 1681: 1673: 1672: 1671: 1669: 1662: 1657: 1655: 1647: 1643: 1638: 1634: 1630: 1608: 1603: 1599: 1593: 1590: 1587: 1578: 1567: 1566: 1565: 1563: 1559: 1552: 1548: 1544: 1541:one flattens 1540: 1536: 1532: 1528: 1524: 1516: 1514: 1512: 1508: 1500: 1495: 1487: 1480: 1478: 1476: 1471: 1470: 1464: 1444: 1439: 1435: 1406: 1401: 1391: 1361: 1356: 1346: 1319: 1312: 1307: 1296: 1285: 1275: 1270: 1265: 1260: 1249: 1244: 1235: 1230: 1225: 1220: 1209: 1198: 1188: 1183: 1176: 1172: 1168: 1165: 1158: 1157: 1156: 1154: 1131: 1127: 1121: 1117: 1111: 1106: 1102: 1099: 1096: 1092: 1085: 1082: 1077: 1073: 1069: 1066: 1063: 1057: 1049: 1045: 1037: 1036: 1035: 1032: 1030: 1023: 1019: 997: 993: 987: 979: 976: 973: 967: 962: 958: 952: 948: 942: 938: 929: 924: 919: 915: 912: 906: 901: 897: 893: 890: 887: 883: 877: 872: 866: 863: 855: 844: 838: 831: 826: 821: 817: 814: 808: 803: 799: 795: 792: 789: 783: 775: 771: 763: 762: 761: 760: 756: 754: 744: 737: 735: 725: 714: 712: 703: 700: 698: 689: 686: 684: 675: 672: 670: 661: 658: 656: 647: 646: 645: 627: 621: 613: 609: 602: 594: 590: 583: 575: 571: 564: 556: 552: 545: 537: 533: 529: 523: 517: 510: 509: 508: 506: 504: 497: 495: 490: 486: 481: 478: 474: 470: 446: 442: 438: 435: 429: 426: 421: 417: 411: 407: 401: 397: 391: 388: 383: 377: 371: 364: 363: 362: 360: 359: 354: 349: 348: 342: 340: 338: 332: 328: 325: 321: 319: 313: 309: 307: 280: 274: 268: 265: 262: 256: 250: 244: 238: 235: 229: 223: 220: 217: 210: 209: 208: 206: 202: 200: 196: 186: 182: 174: 172: 170: 165: 161: 156: 154: 150: 140: 139: 135: 131: 130: 125: 123: 119: 109: 104: 102: 98: 92: 89: 88:electron wave 85: 76: 69: 67: 65: 60: 58: 54: 50: 45: 41: 34: 29: 19: 3142: 3130: 3084:EM Data Bank 3048:Nion Company 2942:Dennis Gabor 2932:Albert Crewe 2754: 2710:Confocal SEM 2607:Electron gun 2556:Auger effect 2455:(1): 13–22. 2452: 2448: 2442: 2430:. Retrieved 2416: 2395: 2387: 2373:cite journal 2340: 2336: 2330: 2305: 2301: 2295: 2254: 2250: 2243: 2210: 2206: 2197: 2178: 2169: 2144: 2143: 2110: 2034: 2026: 2022: 2016: 2011: 1998: 1992: 1985: 1981: 1975: 1973: 1952: 1950: 1871: 1867: 1863: 1859: 1855: 1849: 1845: 1839: 1835: 1833: 1772: 1763: 1660: 1658: 1649: 1648:) result in 1644:= 1.97 pm) ( 1641: 1636: 1632: 1626: 1561: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1520: 1510: 1502: 1498: 1496: 1492: 1467: 1465: 1334: 1149: 1147: 1033: 1025: 1021: 1014: 1012: 758: 752: 746: 739: 733: 727: 720: 718: 710: 704: 696: 690: 682: 676: 668: 662: 654: 648: 643: 502: 500: 493: 491: 488: 484: 482: 476: 472: 465: 463: 357: 356: 352: 346: 345: 343: 336: 334: 330: 326: 317: 315: 311: 305: 303: 301: 204: 198: 194: 188: 178: 168: 163: 159: 152: 148: 142: 137: 136: 128: 127: 121: 117: 111: 107: 105: 93: 84:interference 81: 61: 51:(0.050  39: 38: 3028:FEI Company 2962:Harald Rose 2952:Ernst Ruska 2641:Microscopes 2549:with matter 2547:interaction 185:aberrations 3160:Categories 3109:Multislice 2925:Developers 2785:Techniques 2530:Microscope 2525:Micrograph 2162:References 2000:Holography 1335:The terms 715:: detector 179:The phase 160:image wave 2977:Max Knoll 2632:Stigmator 2235:135976739 2207:Phil. Mag 2177:(1988) . 1924:λ 1895:− 1879:Δ 1804:Δ 1785:Δ 1709:λ 1609:λ 1591:− 1575:Δ 1499:localized 1433:Δ 1388:Δ 1343:Δ 1282:Δ 1242:Δ 1195:Δ 1166:δ 1103:δ 1100:λ 1097:π 1078:− 1070:⁡ 977:λ 971:Δ 949:λ 920:λ 916:α 913:π 902:− 894:⁡ 864:δ 845:δ 822:λ 818:α 815:π 804:− 796:⁡ 439:λ 433:Δ 430:π 427:− 408:λ 389:π 372:χ 275:χ 269:⁡ 49:ångströms 33:magnesium 3132:Category 3079:CrysTBox 3067:Software 2738:Cryo-TEM 2545:Electron 2426:Archived 2322:12492230 2287:12689183 2279:18793491 2134:Articles 2040:See also 1812:Scherzer 1695:Scherzer 1668:abscissa 1652:Scherzer 1583:Scherzer 1475:hexapole 355:= | 3144:Commons 2792:4D STEM 2765:4D STEM 2743:Cryo-ET 2715:SEM-XRF 2705:CryoSEM 2662:Cryo-EM 2520:History 2432:12 June 2365:4163994 2345:Bibcode 2259:Bibcode 2215:Bibcode 1473:double- 644:due to 310:is the 57:defects 35:sample. 3089:EMsoft 3074:CASINO 3053:TESCAN 2918:Others 2817:cryoEM 2508:Basics 2404:  2363:  2337:Nature 2320:  2285:  2277:  2233:  2185:  2108:about 2059:(EELS) 1951:where 1887:Lichte 464:where 302:where 3043:Leica 2889:PINEM 2755:HRTEM 2750:EFTEM 2361:S2CID 2283:S2CID 2231:S2CID 2005:Gabor 1793:Gabor 1020:and Δ 3104:IUCr 3038:JEOL 2909:WBDF 2904:WDXS 2854:EBIC 2849:EELS 2844:ECCI 2832:EBSD 2812:CBED 2760:STEM 2434:2013 2402:ISBN 2379:link 2318:PMID 2275:PMID 2183:ISBN 1898:0.75 1856:χ(u) 1801:0.56 1629:NCEM 1469:TEAM 1380:and 483:The 2874:FEM 2869:FIB 2837:TKD 2827:EDS 2730:TEM 2692:SEM 2667:EMP 2457:doi 2353:doi 2341:274 2310:doi 2306:3–4 2267:doi 2223:doi 1956:max 1919:max 1866:)/d 1705:0.6 1686:res 1664:res 1594:1.2 1529:of 1449:acc 1411:acc 1396:acc 1366:obj 1351:obj 1301:acc 1290:acc 1254:acc 1214:obj 1203:obj 1067:exp 891:exp 793:exp 266:sin 164:not 3162:: 2649:EM 2453:38 2451:. 2424:. 2375:}} 2371:{{ 2359:. 2351:. 2339:. 2316:. 2304:. 2281:. 2273:. 2265:. 2255:14 2253:. 2229:. 2221:. 2211:86 2209:. 1656:. 1650:Δf 1631:, 1539:Δf 1527:fu 501:E( 492:E( 335:χ( 333:. 316:E( 314:, 304:A( 171:. 53:nm 2493:e 2486:t 2479:v 2463:. 2459:: 2436:. 2410:. 2381:) 2367:. 2355:: 2347:: 2324:. 2312:: 2289:. 2269:: 2261:: 2237:. 2225:: 2217:: 2191:. 2029:) 2027:u 2025:, 2023:x 2021:( 2019:e 2017:φ 1988:) 1986:u 1984:, 1982:x 1980:( 1978:e 1976:φ 1953:u 1937:, 1932:2 1928:) 1915:u 1911:( 1906:s 1902:C 1892:= 1883:f 1868:u 1864:u 1862:( 1860:χ 1852:) 1850:u 1848:, 1846:x 1844:( 1842:e 1840:φ 1808:f 1798:= 1789:f 1749:, 1744:4 1740:/ 1736:1 1731:s 1727:C 1721:4 1717:/ 1713:3 1702:= 1699:) 1691:( 1682:u 1661:u 1642:λ 1637:s 1633:C 1604:s 1600:C 1588:= 1579:f 1562:λ 1557:s 1555:C 1551:u 1547:u 1545:( 1543:χ 1535:u 1533:( 1531:χ 1523:u 1511:u 1507:u 1505:s 1503:C 1445:V 1440:/ 1436:E 1407:V 1402:/ 1392:V 1362:I 1357:/ 1347:I 1320:, 1313:2 1308:) 1297:V 1286:V 1276:( 1271:+ 1266:2 1261:) 1250:V 1245:E 1236:( 1231:+ 1226:2 1221:) 1210:I 1199:I 1189:( 1184:4 1177:c 1173:C 1169:= 1152:c 1150:C 1144:. 1132:, 1128:] 1122:4 1118:u 1112:2 1107:) 1093:( 1086:2 1083:1 1074:[ 1064:= 1061:) 1058:u 1055:( 1050:c 1046:E 1028:s 1026:C 1022:f 1017:s 1015:C 998:, 994:] 988:2 984:) 980:u 974:f 968:+ 963:3 959:u 953:3 943:s 939:C 935:( 930:2 925:) 907:( 898:[ 888:= 884:] 878:2 873:) 867:u 859:) 856:u 853:( 849:X 839:( 832:2 827:) 809:( 800:[ 790:= 787:) 784:u 781:( 776:s 772:E 759:u 755:) 753:u 751:( 749:c 747:E 742:c 740:C 736:) 734:u 732:( 730:s 728:E 723:s 721:C 713:) 711:u 709:( 707:D 705:E 699:) 697:u 695:( 693:v 691:E 685:) 683:u 681:( 679:d 677:E 671:) 669:u 667:( 665:c 663:E 657:) 655:u 653:( 651:s 649:E 628:, 625:) 622:u 619:( 614:D 610:E 606:) 603:u 600:( 595:v 591:E 587:) 584:u 581:( 576:d 572:E 568:) 565:u 562:( 557:c 553:E 549:) 546:u 543:( 538:s 534:E 530:= 527:) 524:u 521:( 518:E 505:) 503:u 496:) 494:u 477:f 473:λ 468:s 466:C 447:2 443:u 436:f 422:4 418:u 412:3 402:s 398:C 392:2 384:= 381:) 378:u 375:( 358:u 353:u 347:u 339:) 337:u 327:u 320:) 318:u 308:) 306:u 287:) 284:) 281:u 278:( 272:( 263:2 260:) 257:u 254:( 251:E 248:) 245:u 242:( 239:A 236:= 233:) 230:u 227:( 224:F 221:T 218:C 201:) 199:u 197:, 195:x 193:( 191:e 189:φ 155:) 153:u 151:, 149:x 147:( 145:e 143:φ 138:u 129:x 124:) 122:u 120:, 118:x 116:( 114:e 112:φ 20:)

Index

High-resolution electron microscopy

magnesium
transmission electron microscopes
ångströms
nm
defects
phase-contrast imaging

interference
electron wave
Bragg diffraction
weak phase object approximation
spatial frequencies
contrast transfer function
aberrations
spatial frequency
TEAM
hexapole

NCEM
Wavelength calculation
abscissa

Holography
Gabor
Electron beam induced deposition
Electron diffraction
Electron energy loss spectroscopy
Electron microscope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.