Knowledge (XXG)

Homodyne detection

Source đź“ť

165:, homodyne detection lacks the ability of heterodyne detection to determine the size of a static discontinuity in elevation between two locations. (If there is a path between the two locations with smoothly changing elevation, then homodyne detection may in principle be able to track the signal phase along the path if sampling is dense enough). Homodyne detection is more readily applicable to 22: 122: 202:
frequency of the laser. Usually the scattered beam will be weak, in which case the (nearly) steady component of the detector output is a good measure of the instantaneous local oscillator intensity and therefore can be used to compensate for any fluctuations in the intensity of the laser.. The generated current signal from the
272:. However, challenges include reducing noise, increasing bandwidth and improving the integration of electronic and photonic components. Recently, these challenges have been overcome to demonstrate a free-space-coupled room temperature quantum sensor with large-scale integrated photonics and electronics. 238:
are homodyne detectors integrated into measurement equipment or packaged as stand-alone laboratory equipment for sensitive detection and highly selective filtering of weak or noisy signals. Homodyne/lock-in detection has been one of the most commonly used signal processing methods across a wide range
201:
scattering measurement, the laser beam is split into two parts. One is the local oscillator and the other is sent to the system to be probed. The scattered light is then mixed with the local oscillator on the detector. This arrangement has the advantage of being insensitive to fluctuations in the
222:
technology, the distinction is not the source of the local oscillator, but the frequency used. In heterodyne detection, the local oscillator is frequency-shifted, while in homodyne detection it has the same frequency as the radiation to be detected. See
253:, homodyne detection can offer advantages over magnitude detection. The homodyne technique can suppress excessive noise and undesired quadrature components (90° out-of-phase), and provide stable access to information that may be encoded into the 149:
of an oscillating signal, by comparing that signal with a standard oscillation that would be identical to the signal if it carried null information. "Homodyne" signifies a single frequency, in contrast to the dual frequencies employed in
420:
Maria Fuwa; Shuntaro Takeda; Marcin Zwierz; Howard M. Wiseman; Akira Furusawa (24 March 2015). "Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements".
548:
Su, Shi-Lei; Wang, Yuan; Guo, Qi; Wang, Hong-Fu; Zhang, Shou (2012). "Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity".
325: 507:
JOEL F. TASKER; JONATHAN FRAZER; Giacomo Ferranti; JONATHAN C. F. MATTHEWS (17 May 2024). "A Bi-CMOS electronic photonic integrated circuit quantum light detector".
269: 39: 606: 329: 105: 286:(QKD). An efficient receiver scheme for implementing QKD is balanced homodyne detection (BHD) using a positive–intrinsic–negative ( 86: 58: 43: 243: 65: 304: 72: 250: 224: 32: 601: 283: 207: 54: 364: 355: 130: 385:
Noll, D. C.; Nishimura, D. G.; Macovski, A. (1991). "Homodyne detection in magnetic resonance imaging".
557: 439: 279: 261: 151: 146: 476:
Gurses, Volkan; Davis, Samantha I.; Sinclair, Neil; Spiropulu, Maria; Hajimiri, Ali (13 June 2024),
516: 429: 79: 573: 455: 402: 235: 565: 526: 483: 447: 394: 190: 142: 569: 561: 443: 596: 265: 178: 158: 590: 254: 203: 121: 21: 206:
is often too weak to measure. It is therefore converted into a voltage using a
487: 299: 276: 162: 138: 577: 406: 287: 530: 459: 195:
is derived from the same source as the signal before the modulating process
166: 451: 398: 357:
Optical Homodyne Detections and Applications in Quantum Cryptography
521: 477: 434: 264:. This has led to the possibility of providing a room temperature 260:
Homodyne detection was one of the key techniques in demonstrating
219: 198: 15: 242:
Homodyne and heterodyne techniques are commonly used in
157:
When applied to processing of the reflected signal in
249:
In the processing of signals in some applications of
46:. Unsourced material may be challenged and removed. 479:Free-space quantum information platform on a chip 137:is a method of extracting information encoded as 8: 520: 433: 239:of experimental disciplines for decades. 106:Learn how and when to remove this message 326:"Heterodyne and homodyne interferometry" 120: 316: 270:continuous-variable quantum information 7: 471: 469: 387:IEEE Transactions on Medical Imaging 349: 347: 44:adding citations to reliable sources 328:. Renishaw plc (UK). Archived from 14: 20: 118:Sensor implementation technique 31:needs additional citations for 1: 570:10.1088/1674-1056/21/4/044205 305:Optical heterodyne detection 623: 251:magnetic resonance imaging 225:direct conversion receiver 125:Optical homodyne detection 607:Electronic test equipment 488:10.48550/arXiv.2406.09158 284:quantum key distribution 208:Transimpedance amplifier 282:system can be based on 187:the reference radiation 531:10.1126/sciadv.adk6890 324:Chapman, Mark (2002). 131:electrical engineering 126: 422:Nature Communications 124: 280:secure communication 262:quantum entanglement 197:. For example, in a 152:heterodyne detection 55:"Homodyne detection" 40:improve this article 562:2012ChPhB..21d4205S 444:2015NatCo...6E6665F 452:10.1038/ncomms7665 236:Lock-in amplifiers 135:homodyne detection 127: 550:Chinese Physics B 365:TĂ©lĂ©com ParisTech 363:(Thesis). Paris: 354:Xu, Qing (2009). 255:phase or polarity 244:thermoreflectance 116: 115: 108: 90: 614: 602:Nonlinear optics 581: 535: 534: 524: 509:Science Advances 504: 498: 497: 496: 494: 473: 464: 463: 437: 417: 411: 410: 399:10.1109/42.79473 382: 376: 375: 373: 371: 362: 351: 342: 341: 339: 337: 321: 214:Radio technology 191:local oscillator 111: 104: 100: 97: 91: 89: 48: 24: 16: 622: 621: 617: 616: 615: 613: 612: 611: 587: 586: 547: 544: 539: 538: 506: 505: 501: 492: 490: 475: 474: 467: 419: 418: 414: 384: 383: 379: 369: 367: 360: 353: 352: 345: 335: 333: 332:on 26 July 2017 323: 322: 318: 313: 296: 233: 216: 185:signifies that 175: 119: 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 620: 618: 610: 609: 604: 599: 589: 588: 583: 582: 543: 542:External links 540: 537: 536: 499: 465: 428:(6665): 6665. 412: 393:(2): 154–163. 377: 343: 315: 314: 312: 309: 308: 307: 302: 295: 292: 266:quantum sensor 232: 229: 215: 212: 179:interferometry 174: 171: 159:remote sensing 117: 114: 113: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 619: 608: 605: 603: 600: 598: 595: 594: 592: 585: 579: 575: 571: 567: 563: 559: 556:(4): 044205. 555: 551: 546: 545: 541: 532: 528: 523: 518: 514: 510: 503: 500: 489: 485: 481: 480: 472: 470: 466: 461: 457: 453: 449: 445: 441: 436: 431: 427: 423: 416: 413: 408: 404: 400: 396: 392: 388: 381: 378: 366: 359: 358: 350: 348: 344: 331: 327: 320: 317: 310: 306: 303: 301: 298: 297: 293: 291: 289: 285: 281: 278: 273: 271: 267: 263: 258: 256: 252: 247: 245: 240: 237: 230: 228: 226: 221: 213: 211: 209: 205: 204:photodetector 200: 196: 192: 188: 184: 180: 172: 170: 168: 164: 160: 155: 153: 148: 144: 140: 136: 132: 123: 110: 107: 99: 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: â€“  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 584: 553: 549: 512: 508: 502: 491:, retrieved 478: 425: 421: 415: 390: 386: 380: 368:. Retrieved 356: 334:. Retrieved 330:the original 319: 274: 259: 248: 246:techniques. 241: 234: 231:Applications 217: 194: 186: 182: 176: 156: 134: 128: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 493:3 September 370:14 February 336:14 February 257:of images. 177:In optical 591:Categories 522:2305.08990 311:References 300:Heterodyne 189:(i.e. the 163:topography 139:modulation 96:March 2015 66:newspapers 578:1674-1056 435:1412.7790 407:0278-0062 290:) diode. 277:encrypted 173:In optics 169:sensing. 147:frequency 460:25801071 294:See also 183:homodyne 167:velocity 558:Bibcode 440:Bibcode 145:and/or 141:of the 80:scholar 576:  515:(20). 458:  405:  82:  75:  68:  61:  53:  597:Waves 517:arXiv 430:arXiv 361:(PDF) 268:with 220:radio 199:laser 143:phase 87:JSTOR 73:books 574:ISSN 495:2024 456:PMID 403:ISSN 372:2017 338:2017 161:for 59:news 566:doi 527:doi 484:doi 448:doi 395:doi 288:PIN 275:An 218:In 129:In 42:by 593:: 572:. 564:. 554:21 552:. 525:. 513:10 511:. 482:, 468:^ 454:. 446:. 438:. 424:. 401:. 391:10 389:. 346:^ 227:. 210:. 193:) 181:, 154:. 133:, 580:. 568:: 560:: 533:. 529:: 519:: 486:: 462:. 450:: 442:: 432:: 426:6 409:. 397:: 374:. 340:. 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Homodyne detection"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

electrical engineering
modulation
phase
frequency
heterodyne detection
remote sensing
topography
velocity
interferometry
local oscillator
laser
photodetector
Transimpedance amplifier
radio
direct conversion receiver
Lock-in amplifiers
thermoreflectance
magnetic resonance imaging

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑