Knowledge

IEEE 802.15.4

Source 📝

455: 702: 179: 77: 36: 769:
two beacons act as its limits and provide synchronization to other devices as well as configuration information. A superframe consists of sixteen equal-length slots, which can be further divided into an active part and an inactive part, during which the coordinator may enter power saving mode, not needing to control its network.
686:(FFD). It can serve as the coordinator of a personal area network just as it may function as a common node. It implements a general model of communication which allows it to talk to any other device: it may also relay messages, in which case it is dubbed a coordinator (PAN coordinator when it is in charge of the whole network). 626:. The physical frame-format is specified in IEEE802.15.4-2011 in section 5.2. It is tailored to the fact that most IEEE 802.15.4 PHYs only support frames of up to 127 bytes (adaptation layer protocols such as the IETF's 6LoWPAN provide fragmentation schemes to support larger network layer packets). 594:
IEEE 802.15.4e was chartered to define a MAC amendment to the existing standard 802.15.4-2006 which adopts a channel hopping strategy to improve support for the industrial market. Channel hopping increases robustness against external interference and persistent multi-path fading. On February 6, 2012,
554:
Beyond these three bands, the IEEE 802.15.4c study group considered the newly opened 314–316 MHz, 430–434 MHz, and 779–787 MHz bands in China, while the IEEE 802.15 Task Group 4d defined an amendment to 802.15.4-2006 to support the new 950–956 MHz band in Japan. The first standard
407:
Even lower rates can be used, which results in lower power consumption. As already mentioned, the main goal of IEEE 802.15.4 regarding WPANs is the emphasis on achieving low manufacturing and operating costs through the use of relatively simple transceivers, while enabling application flexibility and
725:
networks. However, every network needs at least one FFD to work as the coordinator of the network. Networks are thus formed by groups of devices separated by suitable distances. Each device has a unique 64-bit identifier, and if some conditions are met, short 16-bit identifiers can be used within a
784:
guaranteed time slots, trailing at the end of the superframe. The first part of the superframe must be sufficient to give service to the network structure and its devices. Superframes are typically utilized within the context of low-latency devices, whose associations must be kept even if inactive
768:
are the basic unit of data transport, of which there are four fundamental types (data, acknowledgment, beacon and MAC command frames), which provide a reasonable tradeoff between simplicity and robustness. Additionally, a superframe structure, defined by the coordinator, may be used, in which case
796:
is optional. Data transfers from the coordinator usually follow device requests: if beacons are in use, these are used to signal requests; the coordinator acknowledges the request and then sends the data in packets which are acknowledged by the device. The same is done when superframes are not in
744:
communications. Further topological restrictions may be added; the standard mentions the cluster tree as a structure which exploits the fact that an RFD may only be associated with one FFD at a time to form a network where RFDs are exclusively leaves of a tree, and most of the nodes are FFDs. The
756:
pattern is also supported, where the coordinator of the network will necessarily be the central node. Such a network can originate when an FFD decides to create its own PAN and declare itself its coordinator, after choosing a unique PAN identifier. After that, other devices can join the network,
710: 403:
with even lower power requirements for increased battery operating time, through the definition of not one, but several physical layers. Lower transfer rates of 20 and 40 kbit/s were initially defined, with the 100 kbit/s rate being added in the current revision.
383:
IEEE standard 802.15.4 is intended to offer the fundamental lower network layers of a type of wireless personal area network (WPAN), which focuses on low-cost, low-speed ubiquitous communication between devices. It can be contrasted with other approaches, such as
834:
Because the predicted environment of these devices demands maximization of battery life, the protocols tend to favor the methods which lead to it, implementing periodic checks for pending messages, the frequency of which depends on application needs.
826:
Confirmation messages may be optional under certain circumstances, in which case a success assumption is made. Whatever the case, if a device is unable to process a frame at a given time, it simply does not confirm its reception:
388:, which offers more bandwidth and requires more power. The emphasis is on very low-cost communication of nearby devices with little to no underlying infrastructure, intending to exploit this to lower power consumption even more. 983:
A. Mishra, C. Na and D. Rosenburgh, "On Scheduling Guaranteed Time Slots for Time Sensitive Transactions in IEEE 802.15.4 Networks," MILCOM 2007 - IEEE Military Communications Conference, Orlando, FL, USA, 2007, pp. 1-7.
607:(MAC) enables the transmission of MAC frames through the use of the physical channel. Besides the data service, it offers a management interface and itself manages access to the physical channel and network 573:(CSS). The UWB PHY is allocated frequencies in three ranges: below 1 GHz, between 3 and 5 GHz, and between 6 and 10 GHz. The CSS PHY is allocated spectrum in the 2450 MHz ISM band. 838:
Regarding secure communications, the MAC sublayer offers facilities which can be harnessed by upper layers to achieve the desired level of security. Higher-layer processes may specify keys to perform
853:
In addition to this secure mode, there is another, insecure MAC mode, which allows access control lists merely as a means to decide on the acceptance of frames according to their (presumed) source.
1434: 693:(RFD). These are meant to be extremely simple devices with very modest resource and communication requirements; due to this, they can only communicate with FFDs and can never act as coordinators. 532:
improves the maximum data rates of the 868/915 MHz bands, bringing them up to support 100 and 250 kbit/s as well. Moreover, it goes on to define four physical layers depending on the
823:
algorithm; acknowledgments do not adhere to this discipline. Common data transmission utilizes unallocated slots when beaconing is in use; again, confirmations do not follow the same process.
780:. Every transmission must end before the arrival of the second beacon. As mentioned before, applications with well-defined bandwidth needs can use up to seven domains of one or more 804:
or synchronization mechanisms; in this case, communication between any two devices is possible, whereas in "structured" modes one of the devices must be the network coordinator.
496:, which offers access to every physical layer management function and maintains a database of information on related personal area networks. Thus, the PHY manages the physical 732:
networks can form arbitrary patterns of connections, and their extension is only limited by the distance between each pair of nodes. They are meant to serve as the basis for
526:(DSSS) techniques: one working in the 868/915 MHz bands with transfer rates of 20 and 40 kbit/s, and one in the 2450 MHz band with a rate of 250 kbit/s. 1147: 1142: 819:
access method. Networks which are not using beaconing mechanisms utilize an unslotted variation which is based on the listening of the medium, leveraged by a
1641: 2409: 477:
sublayer accessing the MAC through a convergence sublayer. Implementations may rely on external devices or be purely embedded, self-functioning devices.
850:
between successive receptions to ensure that presumably old frames, or data which is no longer considered valid, does not transcend to higher layers.
1174: 503:, performs channel selection along with energy and signal management functions. It operates on one of three possible unlicensed frequency bands: 2509: 1062: 1057: 1052: 579:
IEEE 802.15.4c and IEEE 802.15.4d were released expanding the available PHYs with several additional PHYs: one for 780 MHz band using
2445: 2435: 842:
to protect the payload and restrict it to a group of devices or just a point-to-point link; these groups of devices can be specified in
1284: 1077: 1072: 1067: 1710: 1229: 996: 280: 262: 160: 63: 937: 536:
method used. Three of them preserve the DSSS approach: in the 868/915 MHz bands, using either binary or, optionally, offset
485:
The physical layer is the bottom layer in the OSI reference model used worldwide, and protocols layers transmit packets using it
1409: 793: 781: 773: 584: 522: 1047: 1042: 1691: 200: 196: 98: 91: 49: 243: 141: 565:
was released expanding the four PHYs available in the earlier 2006 version to six, including one PHY using direct sequence
510:
902–928 MHz: North America, originally allowed up to ten channels (2003), but since has been extended to thirty (2006)
470:; although only the lower layers are defined in the standard, interaction with upper layers is intended, possibly using an 1666: 435: 215: 113: 1167: 749:
whose nodes are cluster tree networks with a local coordinator for each cluster, in addition to the global coordinator.
2075: 1636: 1339: 1254: 1234: 828: 222: 120: 2478: 1207: 1183: 612: 352: 2045: 1244: 663: 643: 392: 372: 344: 634:
No higher-level layers or interoperability sublayers are defined in the standard. Other specifications, such as
1479: 229: 127: 434:
Support for time- and data-rate–sensitive applications through the ability to operate with either CSMA/CA or
2483: 1344: 1334: 1314: 1160: 807:
In general, all implemented procedures follow a typical request-confirm/indication-response classification.
736:
capable of performing self-management and organization. Since the standard does not define a network layer,
726:
restricted environment. Namely, within each PAN domain, communications will probably use short identifiers.
647: 189: 87: 963: 1656: 1217: 544: 211: 109: 2450: 1573: 1309: 831:
can be performed a number of times, following after that a decision of whether to abort or keep trying.
604: 595:
the IEEE Standards Association Board approved IEEE 802.15.4e which concluded all Task Group 4e efforts.
570: 294: 1716: 1646: 1464: 1394: 788:
Data transfers to the coordinator require a beacon synchronization phase, if applicable, followed by
474: 442: 431:
Power management functions to adjust compromises of link speed speed and quality and energy detection
316: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 843: 820: 543:
An optional alternative 868/915 MHz layer is defined using a combination of binary keying and
416: 1598: 1474: 588: 580: 537: 55: 454: 2504: 2147: 2142: 2122: 2106: 2100: 2095: 2090: 2085: 2080: 2070: 2065: 2055: 2050: 1686: 1516: 741: 368: 348: 2275: 2016: 2011: 2001: 1996: 1991: 1986: 1981: 1976: 1966: 1961: 1956: 1951: 1941: 1936: 1931: 1926: 1911: 1906: 1901: 1896: 1891: 2040: 1706: 1132: 709: 463: 701: 236: 134: 1469: 548: 497: 438:
access modes. The TDMA mode of operation is supported via the GTS feature of the standard.
400: 985: 2324: 1454: 1449: 1369: 1319: 941: 733: 623: 566: 562: 356: 312: 2498: 2430: 2374: 2369: 2364: 2309: 2304: 2294: 2270: 2246: 2234: 2223: 2212: 2200: 2195: 2190: 2185: 2172: 2161: 1651: 1631: 1484: 1459: 1389: 1279: 1224: 839: 396: 492:(PHY) provides the data transmission service. It also, provides an interface to the 2414: 2404: 2152: 2137: 2132: 2127: 2117: 2060: 1701: 1696: 1681: 1676: 1671: 1621: 746: 722: 718: 666:
operating systems also use some components of IEEE 802.15.4 hardware and software.
615:
and handles node associations. Finally, it offers hook points for secure services.
608: 355:
specifications, each of which further extends the standard by developing the upper
332: 1122: 1117: 1112: 1107: 1102: 1097: 1092: 1087: 1082: 17: 1137: 1127: 507:
868.0–868.6 MHz: Europe, allows one communication channel (2003, 2006, 2011)
2286: 2026: 1780: 1661: 1626: 1616: 1593: 1588: 1583: 1578: 1561: 1556: 1546: 902: 500: 320: 178: 76: 797:
use, only in this case there are no beacons to keep track of pending messages.
2399: 2394: 1726: 1608: 1541: 1536: 1531: 1526: 1521: 1511: 765: 533: 471: 328: 399:
of 250 kbit/s. Bandwidth tradeoffs are possible to favor more radically
2460: 2440: 2298: 1551: 1444: 1439: 1424: 1414: 1404: 1384: 1379: 1364: 1354: 1349: 1329: 1324: 1304: 1299: 1294: 1289: 1274: 1239: 862: 740:
is not directly supported, but such an additional layer can add support for
467: 462:
Devices are designed to interact with each other over a conceptually simple
323:
working group, which defined the standard in 2003. It is the basis for the
551:). Dynamic switching between supported 868/915 MHz PHYs is possible. 1731: 1503: 1494: 1212: 1202: 1197: 1037: 921: 513:
2400–2483.5 MHz: worldwide use, up to sixteen channels (2003, 2006)
2455: 2251: 2217: 2166: 2111: 2006: 1971: 1946: 1921: 1916: 1886: 1881: 1876: 1870: 1864: 1859: 1854: 1849: 1843: 1837: 1832: 1827: 1822: 1816: 1810: 1805: 1800: 1795: 1740: 1374: 1359: 892: 877: 872: 816: 801: 789: 777: 737: 659: 651: 639: 423: 360: 340: 1007:
IEEE Computer Society, (August 31, 2007). IEEE Standard 802.15.4a-2007
2318: 1790: 1785: 1775: 1770: 1765: 1760: 1755: 1750: 1745: 1419: 1249: 1025:
IEEE Computer Society, (April 17, 2009). IEEE Standard 802.15.4d-2009
1016:
IEEE Computer Society, (April 17, 2009). IEEE Standard 802.15.4c-2009
897: 655: 635: 324: 391:
The basic framework conceives a 10-meter communications range with
2176: 2031: 1566: 1429: 1269: 887: 867: 708: 700: 453: 385: 1152: 1399: 1264: 1259: 882: 364: 336: 1156: 441:
IEEE 802.15.4-conformant devices may use one of three possible
172: 70: 29: 792:
transmission (by means of slots if superframes are in use);
419:
applications with reservation of Guaranteed Time Slots (GTS)
371:(IP) over WPANs, and is itself used by upper layers such as 622:
use 802.1D or 802.1Q; i.e., it does not exchange standard
547:(thus based on parallel, not sequential, spread spectrum; 359:, which are not defined in IEEE 802.15.4. In particular, 27:
IEEE standard for low-rate wireless personal area networks
757:
which is fully independent from all other star networks.
555:
amendments by these groups were released in April 2009.
303:
is a technical standard that defines the operation of a
520:
of the standard specifies two physical layers based on
466:. The definition of the network layers is based on the 986:
https://ieeexplore.ieee.org/abstract/document/4455149/
2423: 2387: 2285: 2025: 1725: 1607: 1502: 1493: 1190: 203:. Unsourced material may be challenged and removed. 800:Point-to-point networks may either use unslotted 776:occurs between their limits, and is resolved by 679:The standard defines two types of network node. 611:. It also controls frame validation, guarantees 540:(QPSK); in the 2450 MHz band, using QPSK. 1168: 8: 428:Integrated support for secure communications 64:Learn how and when to remove these messages 1499: 1175: 1161: 1153: 938:"Security in 802.15.4 and ZigBee networks" 815:The physical medium is accessed through a 281:Learn how and when to remove this message 263:Learn how and when to remove this message 161:Learn how and when to remove this message 931: 929: 658:, Unison RTOS, DSPnano RTOS, nanoQplus, 618:Note that the IEEE 802.15 standard does 583:or MPSK, another for 950 MHz using 293:For broader coverage of this topic, see 913: 745:structure can be extended as a generic 319:for LR-WPANs, and is maintained by the 305:low-rate wireless personal area network 922:http://www.ieee802.org/15/pub/TG4.html 445:for operation (868/915/2450 MHz). 97:Please improve this article by adding 7: 201:adding citations to reliable sources 705:IEEE 802.15.4 star and peer-to-peer 936:Gascón, David (February 5, 2009). 25: 45:This article has multiple issues. 920:IEEE 802.15 WPAN™ Task Group 4, 730:Peer-to-peer (or point-to-point) 717:Networks can be built as either 494:physical layer management entity 177: 75: 34: 523:direct-sequence spread spectrum 411:Key 802.15.4 features include: 188:needs additional citations for 53:or discuss these issues on the 997:IEEE Std 802.15.4-2011 8.1.2.2 1: 2510:Wireless networking standards 689:On the other hand, there are 538:quadrature phase-shift keying 99:secondary or tertiary sources 1123:IEEE standard 802.15.4a-2007 1118:IEEE standard 802.15.4c-2009 1113:IEEE standard 802.15.4d-2009 1108:IEEE standard 802.15.4e-2012 1103:IEEE standard 802.15.4f-2012 1098:IEEE standard 802.15.4g-2012 1093:IEEE standard 802.15.4j-2013 1088:IEEE standard 802.15.4k-2013 1083:IEEE standard 802.15.4m-2014 1078:IEEE standard 802.15.4n-2016 1073:IEEE standard 802.15.4p-2014 1068:IEEE standard 802.15.4q-2016 1063:IEEE standard 802.15.4t-2017 1058:IEEE standard 802.15.4u-2016 1053:IEEE standard 802.15.4v-2017 964:"ISA100 Committee Home Page" 846:. Furthermore, MAC computes 829:timeout-based retransmission 458:IEEE 802.15.4 protocol stack 422:Collision avoidance through 1148:IEEE standard 802.15.4-2003 1143:IEEE standard 802.15.4-2006 1138:IEEE standard 802.15.4-2011 1133:IEEE standard 802.15.4-2015 1128:IEEE standard 802.15.4-2020 761:Data transport architecture 2526: 2479:IEEE Standards Association 821:random exponential backoff 785:for long periods of time. 713:IEEE 802.15.4 cluster tree 646:, build on this standard. 363:defines a binding for the 292: 2469: 518:The original 2003 version 811:Reliability and security 691:reduced-function devices 569:(UWB) and another using 2484:Category:IEEE standards 1048:IEEE standard 802.15.4z 840:symmetric cryptography 714: 706: 545:amplitude-shift keying 459: 86:relies excessively on 712: 704: 682:The first one is the 605:medium access control 571:chirp spread spectrum 457: 450:Protocol architecture 311:). It specifies the 295:Personal area network 844:access control lists 684:full-function device 475:logical link control 317:media access control 197:improve this article 1038:802.15.4 Task Group 772:Within superframes 752:A more structured 715: 707: 481:The physical layer 460: 18:IEEE 802.15.4-2003 2492: 2491: 2383: 2382: 530:The 2006 revision 369:Internet Protocol 291: 290: 283: 273: 272: 265: 247: 171: 170: 163: 145: 68: 16:(Redirected from 2517: 1500: 1177: 1170: 1163: 1154: 1026: 1023: 1017: 1014: 1008: 1005: 999: 994: 988: 981: 975: 974: 972: 970: 960: 954: 953: 951: 949: 944:on 19 March 2012 940:. Archived from 933: 924: 918: 848:freshness checks 464:wireless network 415:Suitability for 401:embedded devices 286: 279: 268: 261: 257: 254: 248: 246: 205: 181: 173: 166: 159: 155: 152: 146: 144: 103: 79: 71: 60: 38: 37: 30: 21: 2525: 2524: 2520: 2519: 2518: 2516: 2515: 2514: 2495: 2494: 2493: 2488: 2465: 2419: 2379: 2281: 2029: 2021: 1729: 1721: 1603: 1489: 1186: 1181: 1043:Get IEEE 802.15 1034: 1029: 1024: 1020: 1015: 1011: 1006: 1002: 995: 991: 982: 978: 968: 966: 962: 961: 957: 947: 945: 935: 934: 927: 919: 915: 911: 859: 813: 763: 734:ad hoc networks 699: 677: 672: 632: 624:Ethernet frames 601: 483: 452: 443:frequency bands 381: 367:version of the 298: 287: 276: 275: 274: 269: 258: 252: 249: 212:"IEEE 802.15.4" 206: 204: 194: 182: 167: 156: 150: 147: 110:"IEEE 802.15.4" 104: 102: 96: 92:primary sources 80: 39: 35: 28: 23: 22: 15: 12: 11: 5: 2523: 2521: 2513: 2512: 2507: 2497: 2496: 2490: 2489: 2487: 2486: 2481: 2476: 2470: 2467: 2466: 2464: 2463: 2458: 2453: 2448: 2443: 2438: 2433: 2427: 2425: 2421: 2420: 2418: 2417: 2412: 2407: 2402: 2397: 2391: 2389: 2385: 2384: 2381: 2380: 2378: 2377: 2372: 2367: 2362: 2357: 2352: 2347: 2342: 2337: 2332: 2327: 2322: 2312: 2307: 2302: 2291: 2289: 2283: 2282: 2280: 2279: 2267: 2264: 2261: 2258: 2255: 2243: 2240: 2237: 2232: 2229: 2226: 2221: 2209: 2206: 2203: 2198: 2193: 2188: 2183: 2180: 2170: 2158: 2155: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2103: 2098: 2093: 2088: 2083: 2078: 2073: 2068: 2063: 2058: 2053: 2048: 2043: 2037: 2035: 2023: 2022: 2020: 2019: 2014: 2009: 2004: 1999: 1994: 1989: 1984: 1979: 1974: 1969: 1964: 1959: 1954: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1867: 1862: 1857: 1852: 1847: 1840: 1835: 1830: 1825: 1820: 1813: 1808: 1803: 1798: 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1758: 1753: 1748: 1743: 1737: 1735: 1723: 1722: 1720: 1719: 1714: 1704: 1699: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1613: 1611: 1605: 1604: 1602: 1601: 1596: 1591: 1586: 1581: 1576: 1571: 1570: 1569: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1524: 1519: 1514: 1508: 1506: 1497: 1491: 1490: 1488: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1222: 1221: 1220: 1210: 1205: 1200: 1194: 1192: 1188: 1187: 1184:IEEE standards 1182: 1180: 1179: 1172: 1165: 1157: 1151: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1060: 1055: 1050: 1045: 1040: 1033: 1032:External links 1030: 1028: 1027: 1018: 1009: 1000: 989: 976: 955: 925: 912: 910: 907: 906: 905: 900: 895: 890: 885: 880: 875: 870: 865: 858: 855: 812: 809: 794:acknowledgment 782:contentionless 762: 759: 698: 695: 676: 673: 671: 668: 631: 628: 600: 597: 577:In April, 2009 567:ultra-wideband 563:IEEE 802.15.4a 559:In August 2007 515: 514: 511: 508: 490:physical layer 482: 479: 451: 448: 447: 446: 439: 432: 429: 426: 420: 408:adaptability. 380: 377: 313:physical layer 289: 288: 271: 270: 185: 183: 176: 169: 168: 83: 81: 74: 69: 43: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2522: 2511: 2508: 2506: 2503: 2502: 2500: 2485: 2482: 2480: 2477: 2475: 2472: 2471: 2468: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2428: 2426: 2422: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2392: 2390: 2386: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2323: 2320: 2316: 2313: 2311: 2308: 2306: 2303: 2300: 2296: 2293: 2292: 2290: 2288: 2284: 2277: 2273: 2272: 2268: 2265: 2262: 2259: 2256: 2253: 2249: 2248: 2244: 2241: 2238: 2236: 2233: 2230: 2227: 2225: 2222: 2219: 2215: 2214: 2210: 2207: 2204: 2202: 2199: 2197: 2194: 2192: 2189: 2187: 2184: 2181: 2178: 2174: 2171: 2168: 2164: 2163: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2113: 2109: 2108: 2104: 2102: 2099: 2097: 2094: 2092: 2089: 2087: 2084: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2038: 2036: 2033: 2028: 2024: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1872: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1845: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1818: 1814: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1738: 1736: 1733: 1728: 1724: 1718: 1715: 1712: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1614: 1612: 1610: 1606: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1568: 1567:WiMAX · d · e 1565: 1564: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1509: 1507: 1505: 1501: 1498: 1496: 1492: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1219: 1216: 1215: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1195: 1193: 1189: 1185: 1178: 1173: 1171: 1166: 1164: 1159: 1158: 1155: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1035: 1031: 1022: 1019: 1013: 1010: 1004: 1001: 998: 993: 990: 987: 980: 977: 965: 959: 956: 943: 939: 932: 930: 926: 923: 917: 914: 908: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 864: 861: 860: 856: 854: 851: 849: 845: 841: 836: 832: 830: 824: 822: 818: 810: 808: 805: 803: 798: 795: 791: 786: 783: 779: 775: 770: 767: 760: 758: 755: 750: 748: 743: 739: 735: 731: 727: 724: 720: 711: 703: 696: 694: 692: 687: 685: 680: 674: 670:Network model 669: 667: 665: 661: 657: 653: 649: 645: 641: 637: 630:Higher layers 629: 627: 625: 621: 616: 614: 610: 606: 599:The MAC layer 598: 596: 592: 590: 586: 582: 578: 574: 572: 568: 564: 560: 556: 552: 550: 546: 541: 539: 535: 531: 527: 525: 524: 519: 512: 509: 506: 505: 504: 502: 499: 495: 491: 486: 480: 478: 476: 473: 469: 465: 456: 449: 444: 440: 437: 433: 430: 427: 425: 421: 418: 414: 413: 412: 409: 405: 402: 398: 397:transfer rate 394: 393:line of sight 389: 387: 378: 376: 374: 370: 366: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 301:IEEE 802.15.4 296: 285: 282: 267: 264: 256: 253:February 2022 245: 242: 238: 235: 231: 228: 224: 221: 217: 214: –  213: 209: 208:Find sources: 202: 198: 192: 191: 186:This article 184: 180: 175: 174: 165: 162: 154: 151:November 2018 143: 140: 136: 133: 129: 126: 122: 119: 115: 112: –  111: 107: 106:Find sources: 100: 94: 93: 89: 84:This article 82: 78: 73: 72: 67: 65: 58: 57: 52: 51: 46: 41: 32: 31: 19: 2473: 2314: 2269: 2245: 2211: 2160: 2105: 1869: 1842: 1815: 1021: 1012: 1003: 992: 979: 967:. Retrieved 958: 946:. Retrieved 942:the original 916: 852: 847: 837: 833: 825: 814: 806: 799: 787: 771: 764: 753: 751: 747:mesh network 729: 728: 719:peer-to-peer 716: 690: 688: 683: 681: 678: 638:, SNAP, and 633: 619: 617: 602: 593: 576: 575: 558: 557: 553: 542: 529: 528: 521: 517: 516: 493: 489: 487: 484: 461: 410: 406: 390: 382: 333:WirelessHART 308: 304: 300: 299: 277: 259: 250: 240: 233: 226: 219: 207: 195:Please help 190:verification 187: 157: 148: 138: 131: 124: 117: 105: 85: 61: 54: 48: 47:Please help 44: 2046:legacy mode 903:UWB ranging 501:transceiver 321:IEEE 802.15 2499:Categories 2424:Superseded 1495:802 series 948:9 December 909:References 774:contention 697:Topologies 675:Node types 613:time slots 534:modulation 472:IEEE 802.2 329:ISA100.11a 223:newspapers 121:newspapers 88:references 50:improve it 2299:Bluetooth 863:Bluetooth 609:beaconing 468:OSI model 417:real-time 56:talk page 2505:IEEE 802 2474:See also 2431:754-1985 2388:Proposed 1732:Ethernet 1218:Revision 857:See also 742:multihop 379:Overview 2415:P1906.1 2276:Wi-Fi 8 2252:Wi-Fi 7 2218:Wi-Fi 6 2167:Wi-Fi 5 2112:Wi-Fi 4 1191:Current 969:20 July 893:NeuRFon 883:LoRaWAN 878:INSTEON 873:EnOcean 817:CSMA/CA 802:CSMA/CA 790:CSMA/CA 778:CSMA/CA 738:routing 660:Contiki 652:OpenWSN 640:6LoWPAN 424:CSMA/CA 361:6LoWPAN 341:6LoWPAN 309:LR-WPAN 237:scholar 135:scholar 2319:Zigbee 2287:802.15 2027:802.11 1265:1149.1 898:Sigfox 766:Frames 664:Zephyr 656:TinyOS 644:Thread 636:Zigbee 581:O-QPSK 373:Thread 357:layers 349:Matter 345:Thread 325:Zigbee 239:  232:  225:  218:  210:  137:  130:  123:  116:  108:  2410:P1823 2405:P1699 2400:P1619 2395:P1363 2177:WiGig 2041:-1997 2032:Wi-Fi 1741:-1983 1727:802.3 1609:802.1 1485:42010 1480:29148 1475:16326 1470:16085 1465:14764 1460:12207 1455:11073 888:LPWAN 868:DASH7 498:radio 395:at a 386:Wi-Fi 244:JSTOR 230:books 142:JSTOR 128:books 2461:1471 2456:1364 2451:1362 2446:1233 2441:1219 1711:LACP 1450:2050 1445:2030 1440:1905 1435:1904 1430:1902 1425:1901 1420:1900 1415:1855 1410:1850 1405:1849 1400:1815 1395:1801 1390:1800 1385:1733 1380:1722 1375:1685 1370:1675 1365:1667 1360:1666 1355:1619 1350:1613 1345:1603 1340:1596 1335:1588 1330:1584 1325:1547 1320:1541 1315:1516 1310:1497 1305:1451 1300:1394 1295:1355 1290:1284 1285:1278 1280:1275 1275:1164 1270:1154 1260:1076 1255:1016 1250:1014 1245:1003 971:2011 950:2010 754:star 723:star 662:and 648:RIOT 603:The 589:BPSK 585:GFSK 549:PSSS 488:The 436:TDMA 365:IPv6 353:SNAP 351:and 337:MiWi 315:and 216:news 114:news 2436:830 2360:.4z 2355:.4g 2350:.4f 2345:.4e 2340:.4d 2335:.4c 2330:.4b 2325:.4a 1652:Qbb 1647:Qaz 1642:Qay 1637:Qat 1632:Qav 1599:.24 1594:.22 1589:.21 1584:.20 1579:.18 1574:.17 1562:.16 1557:.14 1552:.12 1547:.10 1504:802 1240:896 1235:829 1230:828 1225:854 1213:754 1208:730 1203:693 1198:488 721:or 620:not 587:or 199:by 90:to 2501:: 2375:.7 2370:.6 2365:.5 2315:.4 2310:.3 2305:.2 2295:.1 2271:bn 2266:bk 2263:bi 2260:bh 2257:bf 2247:be 2242:bd 2239:bc 2235:bb 2231:ba 2228:az 2224:ay 2213:ax 2208:aq 2205:ak 2201:aj 2196:ai 2191:ah 2186:af 2182:ae 2173:ad 2162:ac 2157:aa 2017:df 2012:de 2007:dd 2002:db 1997:da 1992:cz 1987:cy 1982:cx 1977:cw 1972:cv 1967:cu 1962:ct 1957:cs 1952:cr 1947:cq 1942:cp 1937:cn 1932:cm 1927:ck 1922:ch 1917:cg 1912:ce 1907:cd 1902:cc 1897:cb 1892:ca 1887:bz 1882:by 1877:bu 1871:bt 1865:ba 1860:az 1855:av 1850:au 1844:at 1838:aq 1833:an 1828:ak 1823:ah 1817:af 1811:ae 1806:ad 1801:ac 1796:ab 1717:BA 1707:AX 1702:AS 1697:aq 1692:ak 1687:ah 1682:ag 1677:AE 1672:ad 1667:AB 1542:.9 1537:.8 1532:.7 1527:.6 1522:.5 1517:.4 1512:.2 928:^ 654:, 650:, 591:. 561:, 375:. 347:, 343:, 339:, 335:, 331:, 327:, 101:. 59:. 2321:) 2317:( 2301:) 2297:( 2278:) 2274:( 2254:) 2250:( 2220:) 2216:( 2179:) 2175:( 2169:) 2165:( 2153:z 2148:y 2143:w 2138:v 2133:u 2128:s 2123:r 2118:p 2114:) 2110:( 2107:n 2101:k 2096:j 2091:i 2086:h 2081:g 2076:f 2071:e 2066:d 2061:c 2056:b 2051:a 2034:) 2030:( 1791:z 1786:y 1781:x 1776:u 1771:j 1766:i 1761:e 1756:d 1751:b 1746:a 1734:) 1730:( 1713:) 1709:( 1662:X 1657:w 1627:Q 1622:p 1617:D 1176:e 1169:t 1162:v 973:. 952:. 642:/ 307:( 297:. 284:) 278:( 266:) 260:( 255:) 251:( 241:· 234:· 227:· 220:· 193:. 164:) 158:( 153:) 149:( 139:· 132:· 125:· 118:· 95:. 66:) 62:( 20:)

Index

IEEE 802.15.4-2003
improve it
talk page
Learn how and when to remove these messages

references
primary sources
secondary or tertiary sources
"IEEE 802.15.4"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

verification
improve this article
adding citations to reliable sources
"IEEE 802.15.4"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Learn how and when to remove this message
Personal area network
physical layer
media access control

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.