Knowledge

Incompressible flow

Source đź“ť

1069: 645:, because the density can change as observed from a fixed position as fluid flows through the control volume. This approach maintains generality, and not requiring that the partial time derivative of the density vanish illustrates that compressible fluids can still undergo incompressible flow. What interests us is the change in density of a control volume that moves along with the flow velocity, 33: 388: 866: 839: 2007:, the anelastic constraint extends incompressible flow validity to stratified density and/or temperature as well as pressure. This allows the thermodynamic variables to relax to an 'atmospheric' base state seen in the lower atmosphere when used in the field of meteorology, for example. This condition can also be used for various astrophysical systems. 565: 2073:
perturbations in density and/or temperature. The assumption is that the flow remains within a Mach number limit (normally less than 0.3) for any solution using such a constraint to be valid. Again, in accordance with all incompressible flows the pressure deviation must be small in comparison to the
1064:{\displaystyle {\mathrm {d} \rho \over \mathrm {d} t}={\partial \rho \over \partial t}+{\partial \rho \over \partial x}{\mathrm {d} x \over \mathrm {d} t}+{\partial \rho \over \partial y}{\mathrm {d} y \over \mathrm {d} t}+{\partial \rho \over \partial z}{\mathrm {d} z \over \mathrm {d} t}.} 1876: 701: 1318:
And so beginning with the conservation of mass and the constraint that the density within a moving volume of fluid remains constant, it has been shown that an equivalent condition required for incompressible flow is that the divergence of the flow velocity vanishes.
1560: 1189: 1889:
In fluid dynamics, a flow is considered incompressible if the divergence of the flow velocity is zero. However, related formulations can sometimes be used, depending on the flow system being modelled. Some versions are described below:
461: 2068:
constraint can be derived from the compressible Euler equations using scale analysis of non-dimensional quantities. The restraint, like the previous in this section, allows for the removal of acoustic waves, but also allows for
1391: 1267: 628: 1772: 2123: 2062: 834:{\displaystyle {\partial \rho \over \partial t}+{\nabla \cdot \left(\rho \mathbf {u} \right)}={\partial \rho \over \partial t}+{\nabla \rho \cdot \mathbf {u} }+{\rho \left(\nabla \cdot \mathbf {u} \right)}=0.} 2001: 322: 450:
The negative sign in the above expression ensures that outward flow results in a decrease in the mass with respect to time, using the convention that the surface area vector points outward. Now, using the
1276:, had changed), which we have prohibited. We must then require that the material derivative of the density vanishes, and equivalently (for non-zero density) so must the divergence of the flow velocity: 444: 1726: 1606: 690: 384: 1641: 1471: 1313: 1931: 1680: 1881:
Thus homogeneous materials always undergo flow that is incompressible, but the converse is not true. That is, compressible materials might not experience compression in the flow.
1482: 1757: 1569:
of the density is zero. Thus if one follows a material element, its mass density remains constant. Note that the material derivative consists of two terms. The first term
1112: 2143: 1933:. This can assume either constant density (strict incompressible) or varying density flow. The varying density set accepts solutions involving small perturbations in 2163: 1327:
In some fields, a measure of the incompressibility of a flow is the change in density as a result of the pressure variations. This is best expressed in terms of the
266: 226: 2173:
The stringent nature of incompressible flow equations means that specific mathematical techniques have been devised to solve them. Some of these methods include:
560:{\displaystyle {\iiint \limits _{V}{\partial \rho \over \partial t}\,\mathrm {d} V}={-\iiint \limits _{V}\left(\nabla \cdot \mathbf {J} \right)\,\mathrm {d} V},} 196:
Incompressible flow does not imply that the fluid itself is incompressible. It is shown in the derivation below that under the right conditions even the flow of
409: 1336: 1200: 1871:{\displaystyle {\frac {D\rho }{Dt}}={\frac {\partial \rho }{\partial t}}+\mathbf {u} \cdot \nabla \rho =0\ \Rightarrow \ \nabla \cdot \mathbf {u} =0} 1272:
A change in the density over time would imply that the fluid had either compressed or expanded (or that the mass contained in our constant volume,
576: 1647:(convection term for scalar field). For a flow to be accounted as bearing incompressibility, the accretion sum of these terms should vanish. 637:. When we speak of the partial derivative of the density with respect to time, we refer to this rate of change within a control volume of 50: 2081: 2020: 2278: 1950: 2178: 274: 116: 240:(discussed below) of the density must vanish to ensure incompressible flow. Before introducing this constraint, we must apply the 97: 2202: 414: 69: 54: 1688: 1572: 76: 655: 641:. By letting the partial time derivative of the density be non-zero, we are not restricting ourselves to incompressible 2207: 849: 2078:
These methods make differing assumptions about the flow, but all take into account the general form of the constraint
346: 83: 1615: 1441: 1282: 1938: 1900: 845: 2228: 193:
of the flow velocity is zero (see the derivation below, which illustrates why these conditions are equivalent).
65: 2349: 2255: 2197: 1657: 135: 43: 1643:
describes the changes in the density as the material element moves from one point to another. This is the
1566: 1555:{\displaystyle {\frac {D\rho }{Dt}}={\frac {\partial \rho }{\partial t}}+\mathbf {u} \cdot \nabla \rho =0} 1424: 139: 143: 2303: 2243: 2004: 1184:{\displaystyle {D\rho \over Dt}={\partial \rho \over \partial t}+{\nabla \rho \cdot \mathbf {u} }.} 241: 1733: 1608:
describes how the density of the material element changes with time. This term is also known as the
633:
The partial derivative of the density with respect to time need not vanish to ensure incompressible
1103: 237: 154: 2293: 1420: 1413: 452: 197: 90: 455:
we can derive the relationship between the flux and the partial time derivative of the density:
2319: 2259: 162: 2128: 2311: 2251: 2148: 853: 336: 251: 211: 1328: 245: 150: 335:, across its boundaries. Mathematically, we can represent this constraint in terms of a 2307: 2247: 394: 328: 2343: 1074:
So if we choose a control volume that is moving at the same rate as the fluid (i.e. (
182: 178: 1386:{\displaystyle \beta ={\frac {1}{\rho }}{\frac {\mathrm {d} \rho }{\mathrm {d} p}}.} 17: 1396:
If the compressibility is acceptably small, the flow is considered incompressible.
174: 1419:
Otherwise, if an incompressible flow also has a curl of zero, so that it is also
1262:{\displaystyle {D\rho \over Dt}={-\rho \left(\nabla \cdot \mathbf {u} \right)}.} 2065: 327:
The conservation of mass requires that the time derivative of the mass inside a
32: 1409: 1405: 857: 190: 166: 2263: 623:{\displaystyle {\partial \rho \over \partial t}=-\nabla \cdot \mathbf {J} .} 1435:
As defined earlier, an incompressible (isochoric) flow is the one in which
649:. The flux is related to the flow velocity through the following function: 142:. For strings which cannot be reduced by a given compression algorithm, see 2298: 208:
The fundamental requirement for incompressible flow is that the density,
134:"Incompressible" redirects here. For the property of vector fields, see 1934: 170: 2118:{\displaystyle \nabla \cdot \left(\alpha \mathbf {u} \right)=\beta } 2057:{\displaystyle \nabla \cdot \left(\alpha \mathbf {u} \right)=\beta } 1408:
flow velocity field. But a solenoidal field, besides having a zero
2315: 1996:{\displaystyle {\nabla \cdot \left(\rho _{o}\mathbf {u} \right)=0}} 2279:"Low Mach Number Modeling of Type Ia Supernovae. I. Hydrodynamics" 1654:
is one that has constant density throughout. For such a material,
244:
to generate the necessary relations. The mass is calculated by a
200:
can, to a good approximation, be modelled as incompressible flow.
1937:, pressure and/or temperature fields, and can allow for pressure 1194:
And so using the continuity equation derived above, we see that:
2277:
Almgren, A.S.; Bell, J.B.; Rendleman, C.A.; Zingale, M. (2006).
317:{\displaystyle {m}={\iiint \limits _{V}\!\rho \,\mathrm {d} V}.} 26: 185:— is time-invariant. An equivalent statement that implies 844:
The previous relation (where we have used the appropriate
439:{\displaystyle \mathbf {J} \cdot \mathrm {d} \mathbf {S} } 2256:
10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
1412:, also has the additional connotation of having non-zero 1721:{\displaystyle {\frac {\partial \rho }{\partial t}}=0} 1577: 2151: 2131: 2084: 2023: 1953: 1903: 1775: 1736: 1691: 1660: 1618: 1601:{\displaystyle {\tfrac {\partial \rho }{\partial t}}} 1575: 1485: 1444: 1339: 1285: 1203: 1115: 869: 704: 658: 579: 464: 417: 397: 349: 277: 254: 236:. Mathematically, this constraint implies that the 214: 685:{\displaystyle {\mathbf {J} }={\rho \mathbf {u} }.} 57:. Unsourced material may be challenged and removed. 2184:Artificial compressibility technique (approximate) 2157: 2137: 2117: 2056: 1995: 1925: 1870: 1751: 1720: 1674: 1635: 1600: 1554: 1465: 1385: 1307: 1261: 1183: 1063: 833: 684: 622: 559: 438: 403: 378: 316: 260: 220: 852:. Now, we need the following relation about the 297: 695:So that the conservation of mass implies that: 379:{\displaystyle {\partial m \over \partial t}=-} 1766:From the continuity equation it follows that 1636:{\displaystyle \mathbf {u} \cdot \nabla \rho } 1466:{\displaystyle \nabla \cdot \mathbf {u} =0.\,} 1308:{\displaystyle {\nabla \cdot \mathbf {u} }=0.} 1926:{\displaystyle {\nabla \cdot \mathbf {u} =0}} 228:, is constant within a small element volume, 8: 131:Fluid flow in which density remains constant 1423:, then the flow velocity field is actually 1102:), then this expression simplifies to the 2297: 2150: 2130: 2099: 2083: 2038: 2022: 1976: 1970: 1954: 1952: 1911: 1904: 1902: 1857: 1822: 1799: 1776: 1774: 1735: 1692: 1690: 1667: 1659: 1619: 1617: 1576: 1574: 1532: 1509: 1486: 1484: 1462: 1451: 1443: 1404:An incompressible flow is described by a 1369: 1359: 1356: 1346: 1338: 1293: 1286: 1284: 1245: 1227: 1204: 1202: 1172: 1162: 1139: 1116: 1114: 1047: 1037: 1034: 1014: 1000: 990: 987: 967: 953: 943: 940: 920: 897: 883: 873: 870: 868: 814: 799: 790: 780: 757: 743: 728: 705: 703: 673: 669: 660: 659: 657: 612: 580: 578: 545: 544: 534: 517: 509: 497: 496: 476: 470: 465: 463: 431: 426: 418: 416: 396: 350: 348: 302: 301: 291: 286: 278: 276: 253: 213: 117:Learn how and when to remove this message 2229:"Improving the Anelastic Approximation" 2219: 1675:{\displaystyle \rho ={\text{constant}}} 2125:for general flow dependent functions 7: 1652:homogeneous, incompressible material 138:. For the topological property, see 55:adding citations to reliable sources 2236:Journal of the Atmospheric Sciences 2003:. Principally used in the field of 856:of the density (where we apply the 232:, which moves at the flow velocity 2085: 2024: 1955: 1905: 1851: 1830: 1810: 1802: 1737: 1703: 1695: 1627: 1588: 1580: 1540: 1520: 1512: 1476:This is equivalent to saying that 1445: 1370: 1360: 1287: 1239: 1163: 1150: 1142: 1048: 1038: 1025: 1017: 1001: 991: 978: 970: 954: 944: 931: 923: 908: 900: 884: 874: 808: 781: 768: 760: 729: 716: 708: 606: 591: 583: 546: 528: 498: 487: 479: 427: 361: 353: 303: 25: 2203:Euler equations (fluid dynamics) 2187:Compressibility pre-conditioning 2100: 2039: 1977: 1912: 1858: 1823: 1620: 1533: 1452: 1294: 1246: 1173: 815: 791: 744: 674: 661: 613: 535: 432: 419: 386: 31: 42:needs additional citations for 1845: 1752:{\displaystyle \nabla \rho =0} 1416:(i.e., rotational component). 1: 2181:(both approximate and exact) 1400:Relation to solenoidal field 1323:Relation to compressibility 331:be equal to the mass flux, 181:volume that moves with the 2366: 133: 2169:Numerical approximations 2015:pseudo-incompressibility 1885:Related flow constraints 1431:Difference from material 2208:Navier–Stokes equations 2138:{\displaystyle \alpha } 136:Solenoidal vector field 2159: 2158:{\displaystyle \beta } 2139: 2119: 2058: 1997: 1927: 1872: 1753: 1722: 1682:. This implies that, 1676: 1637: 1602: 1556: 1467: 1387: 1309: 1263: 1185: 1065: 835: 686: 624: 561: 440: 405: 380: 318: 262: 222: 169:in which the material 140:Incompressible surface 2286:Astrophysical Journal 2227:Durran, D.R. (1989). 2198:Bernoulli's principle 2160: 2140: 2120: 2059: 1998: 1928: 1873: 1754: 1723: 1677: 1650:On the other hand, a 1638: 1603: 1557: 1468: 1388: 1310: 1264: 1186: 1066: 836: 687: 625: 562: 441: 406: 381: 319: 263: 261:{\displaystyle \rho } 223: 221:{\displaystyle \rho } 144:Incompressible string 66:"Incompressible flow" 2149: 2129: 2082: 2074:pressure base state. 2021: 2011:Low Mach-number flow 2005:atmospheric sciences 1951: 1901: 1773: 1734: 1689: 1658: 1616: 1573: 1483: 1442: 1337: 1283: 1201: 1113: 867: 702: 656: 577: 462: 415: 395: 347: 275: 252: 242:conservation of mass 212: 153:, or more generally 51:improve this article 18:Incompressible fluid 2308:2006ApJ...637..922A 2248:1989JAtS...46.1453D 1895:Incompressible flow 1612:. The second term, 1567:material derivative 1104:material derivative 850:continuity equation 238:material derivative 198:compressible fluids 187:incompressible flow 159:incompressible flow 155:continuum mechanics 2155: 2135: 2115: 2054: 1993: 1923: 1868: 1749: 1718: 1672: 1633: 1598: 1596: 1552: 1463: 1383: 1305: 1259: 1181: 1061: 848:) is known as the 831: 682: 620: 557: 522: 475: 453:divergence theorem 436: 401: 376: 314: 296: 258: 218: 2242:(11): 1453–1461. 2179:projection method 1850: 1844: 1817: 1794: 1710: 1670: 1595: 1527: 1504: 1378: 1354: 1222: 1157: 1134: 1056: 1032: 1009: 985: 962: 938: 915: 892: 775: 723: 598: 513: 494: 466: 404:{\displaystyle S} 368: 287: 127: 126: 119: 101: 16:(Redirected from 2357: 2334: 2333: 2331: 2330: 2324: 2318:. Archived from 2301: 2299:astro-ph/0509892 2283: 2274: 2268: 2267: 2233: 2224: 2164: 2162: 2161: 2156: 2144: 2142: 2141: 2136: 2124: 2122: 2121: 2116: 2108: 2104: 2103: 2063: 2061: 2060: 2055: 2047: 2043: 2042: 2002: 2000: 1999: 1994: 1992: 1985: 1981: 1980: 1975: 1974: 1932: 1930: 1929: 1924: 1922: 1915: 1877: 1875: 1874: 1869: 1861: 1848: 1842: 1826: 1818: 1816: 1808: 1800: 1795: 1793: 1785: 1777: 1758: 1756: 1755: 1750: 1727: 1725: 1724: 1719: 1711: 1709: 1701: 1693: 1681: 1679: 1678: 1673: 1671: 1668: 1642: 1640: 1639: 1634: 1623: 1607: 1605: 1604: 1599: 1597: 1594: 1586: 1578: 1561: 1559: 1558: 1553: 1536: 1528: 1526: 1518: 1510: 1505: 1503: 1495: 1487: 1472: 1470: 1469: 1464: 1455: 1392: 1390: 1389: 1384: 1379: 1377: 1373: 1367: 1363: 1357: 1355: 1347: 1314: 1312: 1311: 1306: 1298: 1297: 1268: 1266: 1265: 1260: 1255: 1254: 1250: 1249: 1223: 1221: 1213: 1205: 1190: 1188: 1187: 1182: 1177: 1176: 1158: 1156: 1148: 1140: 1135: 1133: 1125: 1117: 1070: 1068: 1067: 1062: 1057: 1055: 1051: 1045: 1041: 1035: 1033: 1031: 1023: 1015: 1010: 1008: 1004: 998: 994: 988: 986: 984: 976: 968: 963: 961: 957: 951: 947: 941: 939: 937: 929: 921: 916: 914: 906: 898: 893: 891: 887: 881: 877: 871: 854:total derivative 840: 838: 837: 832: 824: 823: 819: 818: 795: 794: 776: 774: 766: 758: 753: 752: 748: 747: 724: 722: 714: 706: 691: 689: 688: 683: 678: 677: 665: 664: 629: 627: 626: 621: 616: 599: 597: 589: 581: 566: 564: 563: 558: 553: 549: 543: 539: 538: 521: 505: 501: 495: 493: 485: 477: 474: 446: 445: 443: 442: 437: 435: 430: 422: 411: 410: 408: 407: 402: 390: 389: 385: 383: 382: 377: 369: 367: 359: 351: 337:surface integral 323: 321: 320: 315: 310: 306: 295: 282: 267: 265: 264: 259: 248:of the density, 227: 225: 224: 219: 122: 115: 111: 108: 102: 100: 59: 35: 27: 21: 2365: 2364: 2360: 2359: 2358: 2356: 2355: 2354: 2350:Fluid mechanics 2340: 2339: 2338: 2337: 2328: 2326: 2322: 2281: 2276: 2275: 2271: 2231: 2226: 2225: 2221: 2216: 2194: 2171: 2147: 2146: 2127: 2126: 2095: 2091: 2080: 2079: 2034: 2030: 2019: 2018: 1966: 1965: 1961: 1949: 1948: 1899: 1898: 1887: 1809: 1801: 1786: 1778: 1771: 1770: 1732: 1731: 1702: 1694: 1687: 1686: 1656: 1655: 1614: 1613: 1587: 1579: 1571: 1570: 1519: 1511: 1496: 1488: 1481: 1480: 1440: 1439: 1433: 1402: 1368: 1358: 1335: 1334: 1329:compressibility 1325: 1281: 1280: 1238: 1234: 1214: 1206: 1199: 1198: 1149: 1141: 1126: 1118: 1111: 1110: 1046: 1036: 1024: 1016: 999: 989: 977: 969: 952: 942: 930: 922: 907: 899: 882: 872: 865: 864: 807: 803: 767: 759: 739: 735: 715: 707: 700: 699: 654: 653: 590: 582: 575: 574: 527: 523: 486: 478: 460: 459: 413: 412: 393: 392: 391: 387: 360: 352: 345: 344: 343: 273: 272: 250: 249: 246:volume integral 210: 209: 206: 151:fluid mechanics 147: 132: 123: 112: 106: 103: 60: 58: 48: 36: 23: 22: 15: 12: 11: 5: 2363: 2361: 2353: 2352: 2342: 2341: 2336: 2335: 2316:10.1086/498426 2292:(2): 922–936. 2269: 2218: 2217: 2215: 2212: 2211: 2210: 2205: 2200: 2193: 2190: 2189: 2188: 2185: 2182: 2170: 2167: 2154: 2134: 2114: 2111: 2107: 2102: 2098: 2094: 2090: 2087: 2076: 2075: 2053: 2050: 2046: 2041: 2037: 2033: 2029: 2026: 2008: 1991: 1988: 1984: 1979: 1973: 1969: 1964: 1960: 1957: 1945:Anelastic flow 1942: 1941:in the domain. 1939:stratification 1921: 1918: 1914: 1910: 1907: 1886: 1883: 1879: 1878: 1867: 1864: 1860: 1856: 1853: 1847: 1841: 1838: 1835: 1832: 1829: 1825: 1821: 1815: 1812: 1807: 1804: 1798: 1792: 1789: 1784: 1781: 1764: 1763: 1748: 1745: 1742: 1739: 1729: 1717: 1714: 1708: 1705: 1700: 1697: 1666: 1663: 1645:advection term 1632: 1629: 1626: 1622: 1593: 1590: 1585: 1582: 1563: 1562: 1551: 1548: 1545: 1542: 1539: 1535: 1531: 1525: 1522: 1517: 1514: 1508: 1502: 1499: 1494: 1491: 1474: 1473: 1461: 1458: 1454: 1450: 1447: 1432: 1429: 1401: 1398: 1394: 1393: 1382: 1376: 1372: 1366: 1362: 1353: 1350: 1345: 1342: 1324: 1321: 1316: 1315: 1304: 1301: 1296: 1292: 1289: 1270: 1269: 1258: 1253: 1248: 1244: 1241: 1237: 1233: 1230: 1226: 1220: 1217: 1212: 1209: 1192: 1191: 1180: 1175: 1171: 1168: 1165: 1161: 1155: 1152: 1147: 1144: 1138: 1132: 1129: 1124: 1121: 1098:) =  1072: 1071: 1060: 1054: 1050: 1044: 1040: 1030: 1027: 1022: 1019: 1013: 1007: 1003: 997: 993: 983: 980: 975: 972: 966: 960: 956: 950: 946: 936: 933: 928: 925: 919: 913: 910: 905: 902: 896: 890: 886: 880: 876: 842: 841: 830: 827: 822: 817: 813: 810: 806: 802: 798: 793: 789: 786: 783: 779: 773: 770: 765: 762: 756: 751: 746: 742: 738: 734: 731: 727: 721: 718: 713: 710: 693: 692: 681: 676: 672: 668: 663: 639:fixed position 631: 630: 619: 615: 611: 608: 605: 602: 596: 593: 588: 585: 568: 567: 556: 552: 548: 542: 537: 533: 530: 526: 520: 516: 512: 508: 504: 500: 492: 489: 484: 481: 473: 469: 448: 447: 434: 429: 425: 421: 400: 375: 372: 366: 363: 358: 355: 329:control volume 325: 324: 313: 309: 305: 300: 294: 290: 285: 281: 257: 217: 205: 202: 165:) refers to a 163:isochoric flow 130: 125: 124: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2362: 2351: 2348: 2347: 2345: 2325:on 2008-10-31 2321: 2317: 2313: 2309: 2305: 2300: 2295: 2291: 2287: 2280: 2273: 2270: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2230: 2223: 2220: 2213: 2209: 2206: 2204: 2201: 2199: 2196: 2195: 2191: 2186: 2183: 2180: 2176: 2175: 2174: 2168: 2166: 2152: 2132: 2112: 2109: 2105: 2096: 2092: 2088: 2072: 2067: 2051: 2048: 2044: 2035: 2031: 2027: 2016: 2012: 2009: 2006: 1989: 1986: 1982: 1971: 1967: 1962: 1958: 1946: 1943: 1940: 1936: 1919: 1916: 1908: 1896: 1893: 1892: 1891: 1884: 1882: 1865: 1862: 1854: 1839: 1836: 1833: 1827: 1819: 1813: 1805: 1796: 1790: 1787: 1782: 1779: 1769: 1768: 1767: 1761: 1760:independently 1746: 1743: 1740: 1730: 1715: 1712: 1706: 1698: 1685: 1684: 1683: 1664: 1661: 1653: 1648: 1646: 1630: 1624: 1611: 1610:unsteady term 1591: 1583: 1568: 1549: 1546: 1543: 1537: 1529: 1523: 1515: 1506: 1500: 1497: 1492: 1489: 1479: 1478: 1477: 1459: 1456: 1448: 1438: 1437: 1436: 1430: 1428: 1426: 1422: 1417: 1415: 1411: 1407: 1399: 1397: 1380: 1374: 1364: 1351: 1348: 1343: 1340: 1333: 1332: 1331: 1330: 1322: 1320: 1302: 1299: 1290: 1279: 1278: 1277: 1275: 1256: 1251: 1242: 1235: 1231: 1228: 1224: 1218: 1215: 1210: 1207: 1197: 1196: 1195: 1178: 1169: 1166: 1159: 1153: 1145: 1136: 1130: 1127: 1122: 1119: 1109: 1108: 1107: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1058: 1052: 1042: 1028: 1020: 1011: 1005: 995: 981: 973: 964: 958: 948: 934: 926: 917: 911: 903: 894: 888: 878: 863: 862: 861: 859: 855: 851: 847: 828: 825: 820: 811: 804: 800: 796: 787: 784: 777: 771: 763: 754: 749: 740: 736: 732: 725: 719: 711: 698: 697: 696: 679: 670: 666: 652: 651: 650: 648: 644: 640: 636: 617: 609: 603: 600: 594: 586: 573: 572: 571: 554: 550: 540: 531: 524: 518: 514: 510: 506: 502: 490: 482: 471: 467: 458: 457: 456: 454: 423: 398: 373: 370: 364: 356: 342: 341: 340: 338: 334: 330: 311: 307: 298: 292: 288: 283: 279: 271: 270: 269: 255: 247: 243: 239: 235: 231: 215: 203: 201: 199: 194: 192: 188: 184: 183:flow velocity 180: 179:infinitesimal 176: 172: 168: 164: 160: 156: 152: 145: 141: 137: 129: 121: 118: 110: 107:December 2019 99: 96: 92: 89: 85: 82: 78: 75: 71: 68: â€“  67: 63: 62:Find sources: 56: 52: 46: 45: 40:This article 38: 34: 29: 28: 19: 2327:. Retrieved 2320:the original 2289: 2285: 2272: 2239: 2235: 2222: 2172: 2077: 2070: 2014: 2010: 1944: 1894: 1888: 1880: 1765: 1759: 1651: 1649: 1644: 1609: 1564: 1475: 1434: 1421:irrotational 1418: 1403: 1395: 1326: 1317: 1273: 1271: 1193: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1073: 846:product rule 843: 694: 646: 642: 638: 634: 632: 569: 449: 332: 326: 233: 229: 207: 195: 189:is that the 186: 175:fluid parcel 158: 148: 128: 113: 104: 94: 87: 80: 73: 61: 49:Please help 44:verification 41: 2066:Mach-number 570:therefore: 2329:2008-12-04 2214:References 2064:. The low 1410:divergence 1406:solenoidal 858:chain rule 204:Derivation 191:divergence 77:newspapers 2264:1520-0469 2153:β 2133:α 2113:β 2097:α 2089:⋅ 2086:∇ 2052:β 2036:α 2028:⋅ 2025:∇ 1968:ρ 1959:⋅ 1956:∇ 1909:⋅ 1906:∇ 1855:⋅ 1852:∇ 1846:⇒ 1834:ρ 1831:∇ 1828:⋅ 1811:∂ 1806:ρ 1803:∂ 1783:ρ 1741:ρ 1738:∇ 1704:∂ 1699:ρ 1696:∂ 1662:ρ 1631:ρ 1628:∇ 1625:⋅ 1589:∂ 1584:ρ 1581:∂ 1565:i.e. the 1544:ρ 1541:∇ 1538:⋅ 1521:∂ 1516:ρ 1513:∂ 1493:ρ 1449:⋅ 1446:∇ 1425:Laplacian 1365:ρ 1352:ρ 1341:β 1291:⋅ 1288:∇ 1243:⋅ 1240:∇ 1232:ρ 1229:− 1211:ρ 1170:⋅ 1167:ρ 1164:∇ 1151:∂ 1146:ρ 1143:∂ 1123:ρ 1026:∂ 1021:ρ 1018:∂ 979:∂ 974:ρ 971:∂ 932:∂ 927:ρ 924:∂ 909:∂ 904:ρ 901:∂ 879:ρ 812:⋅ 809:∇ 801:ρ 788:⋅ 785:ρ 782:∇ 769:∂ 764:ρ 761:∂ 741:ρ 733:⋅ 730:∇ 717:∂ 712:ρ 709:∂ 671:ρ 610:⋅ 607:∇ 604:− 592:∂ 587:ρ 584:∂ 532:⋅ 529:∇ 515:∭ 511:− 488:∂ 483:ρ 480:∂ 468:∭ 424:⋅ 374:− 362:∂ 354:∂ 299:ρ 289:∭ 256:ρ 216:ρ 2344:Category 2192:See also 1669:constant 173:of each 2304:Bibcode 2244:Bibcode 1935:density 1090:,  1082:,  171:density 91:scholar 2262:  1849:  1843:  643:fluids 93:  86:  79:  72:  64:  2323:(PDF) 2294:arXiv 2282:(PDF) 2232:(PDF) 2071:large 2013:, or 177:— an 98:JSTOR 84:books 2260:ISSN 2177:The 2145:and 1414:curl 635:flow 167:flow 70:news 2312:doi 2290:637 2252:doi 1728:and 860:): 149:In 53:by 2346:: 2310:. 2302:. 2288:. 2284:. 2258:. 2250:. 2240:46 2238:. 2234:. 2165:. 2017:: 1947:: 1897:: 1460:0. 1427:. 1303:0. 1274:dV 1106:: 1096:dt 1092:dz 1088:dt 1084:dy 1080:dt 1076:dx 829:0. 339:: 268:: 230:dV 157:, 2332:. 2314:: 2306:: 2296:: 2266:. 2254:: 2246:: 2110:= 2106:) 2101:u 2093:( 2049:= 2045:) 2040:u 2032:( 1990:0 1987:= 1983:) 1978:u 1972:o 1963:( 1920:0 1917:= 1913:u 1866:0 1863:= 1859:u 1840:0 1837:= 1824:u 1820:+ 1814:t 1797:= 1791:t 1788:D 1780:D 1762:. 1747:0 1744:= 1716:0 1713:= 1707:t 1665:= 1621:u 1592:t 1550:0 1547:= 1534:u 1530:+ 1524:t 1507:= 1501:t 1498:D 1490:D 1457:= 1453:u 1381:. 1375:p 1371:d 1361:d 1349:1 1344:= 1300:= 1295:u 1257:. 1252:) 1247:u 1236:( 1225:= 1219:t 1216:D 1208:D 1179:. 1174:u 1160:+ 1154:t 1137:= 1131:t 1128:D 1120:D 1100:u 1094:/ 1086:/ 1078:/ 1059:. 1053:t 1049:d 1043:z 1039:d 1029:z 1012:+ 1006:t 1002:d 996:y 992:d 982:y 965:+ 959:t 955:d 949:x 945:d 935:x 918:+ 912:t 895:= 889:t 885:d 875:d 826:= 821:) 816:u 805:( 797:+ 792:u 778:+ 772:t 755:= 750:) 745:u 737:( 726:+ 720:t 680:. 675:u 667:= 662:J 647:u 618:. 614:J 601:= 595:t 555:, 551:V 547:d 541:) 536:J 525:( 519:V 507:= 503:V 499:d 491:t 472:V 433:S 428:d 420:J 399:S 371:= 365:t 357:m 333:J 312:. 308:V 304:d 293:V 284:= 280:m 234:u 161:( 146:. 120:) 114:( 109:) 105:( 95:· 88:· 81:· 74:· 47:. 20:)

Index

Incompressible fluid

verification
improve this article
adding citations to reliable sources
"Incompressible flow"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Solenoidal vector field
Incompressible surface
Incompressible string
fluid mechanics
continuum mechanics
isochoric flow
flow
density
fluid parcel
infinitesimal
flow velocity
divergence
compressible fluids
material derivative
conservation of mass
volume integral
control volume
surface integral

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑