Knowledge (XXG)

Kempner series

Source πŸ“

453:
digits are omitted, for example if we omit all denominators that have the decimal string 42. This can be proved in almost the same way. First we observe that we can work with numbers in base 10 and omit all denominators that have the given string as a "digit". The analogous argument to the base 10
239:−1 digits. Each of these numbers having no '9' is greater than or equal to 10, so the reciprocal of each of these numbers is less than or equal to 10. Therefore, the contribution of this group to the sum of reciprocals is less than 8 Γ— ( 230:
Kempner's proof of convergence is repeated in some textbooks, for example Hardy and Wright, and also appears as an exercise in Apostol. We group the terms of the sum by the number of digits in the denominator. The number of
444: 334: 144:
Heuristically, this series converges because most large integers contain every digit. For example, a random 100-digit integer is very likely to contain at least one '9', causing it to be excluded from the above sum.
101: 454:
case shows that this series converges. Now switching back to base 10, we see that this series contains all denominators that omit the given string, as well as denominators that include it if it is not on a "
235:-digit positive integers that have no digit equal to '9' is 8 Γ— 9 because there are 8 choices (1 through 8) for the first digit, and 9 independent choices (0 through 8) for each of the other 118:
because, unlike the harmonic series, it converges. Kempner showed the sum of this series is less than 90. Baillie showed that, rounded to 20 decimals, the actual sum is
540:
The upper bound of 80 is very crude. In 1916, Irwin showed that the value of the Kempner series is between 22.4 and 23.3, since refined to the value above, 22.92067...
458:-digit" boundary. For example, if we are omitting 42, the base-100 series would omit 4217 and 1742, but not 1427, so it is larger than the series that omits all 42s. 1173: 138: 371: 261: 720: 33: 936: 911: 1141: 839: 741: 509: β‰₯ 1 is decreasing and converges to 10 ln 10. The sequence is not in general decreasing starting with 24: 537:
The series converges extremely slowly. Baillie remarks that after summing 10 terms the remainder is still larger than 1.
1163: 1168: 664: 27:, formed by omitting all terms whose denominator expressed in base 10 contains the digit 9. That is, it is the sum 659: 563:-digit block. Therefore, with a small amount of computation, the original series (which is the value for 971: 837:
Schmelzer, Thomas; Baillie, Robert (June–July 2008). "Summing a Curious, Slowly Convergent Series".
1119: 1100: 1054: 1011: 995: 961: 880: 864: 816: 766: 1092: 1046: 987: 932: 907: 856: 808: 758: 716: 687: 111: 1084: 1038: 979: 848: 800: 750: 115: 1007: 876: 1150:. Mathematica package by Thomas Schmelzer and Robert Baillie implementing their algorithm. 1147: 1003: 872: 517:(9, 0) β‰ˆ 22.921 < 23.026 β‰ˆ 10 ln 10 <  975: 110:
takes only values whose decimal expansion has no nines. The series was first studied by
152:
for the more general problem of any omitted string of digits. For example, the sum of
1157: 900: 791:
Baillie, Robert (May 1979). "Sums of Reciprocals of Integers Missing a Given Digit".
1015: 884: 637:
one 9, is also convergent. Baillie showed that the sum of this last series is about
983: 852: 690: 1037:(10). Washington, DC: Mathematical Association of America: 866. December 1980. 952:
Farhi, Bakir (December 2008). "A Curious Result Related to Kempner's Series".
559: + 1)-digit block in terms of all higher power contributions of the 1096: 1050: 991: 860: 812: 762: 695: 439:{\displaystyle 9\sum _{n=1}^{\infty }\left({\frac {9}{10}}\right)^{n-1}=90.} 329:{\displaystyle 8\sum _{n=1}^{\infty }\left({\frac {9}{10}}\right)^{n-1}=80.} 149: 1118:
Baillie, Robert (2008). "Summing the curious series of Kempner and Irwin".
999: 868: 1104: 1058: 820: 770: 339:
The same argument works for any omitted non-zero digit. The number of
513: = 0; for example, for the original Kempner series we have 1088: 1042: 960:(10). Washington, DC: Mathematical Association of America: 933–938. 804: 754: 1083:(5). Washington, DC: Mathematical Association of America: 149–152. 847:(6). Washington, DC: Mathematical Association of America: 525–540. 799:(5). Washington, DC: Mathematical Association of America: 372–374. 96:{\displaystyle {\sideset {}{'}\sum _{n=1}^{\infty }}{\frac {1}{n}}} 1124: 966: 749:(2). Washington, DC: Mathematical Association of America: 48–50. 473:) of the reciprocals of the positive integers that have exactly 1144:. Preprint of the paper by Thomas Schmelzer and Robert Baillie. 739:
Kempner, A. J. (February 1914). "A Curious Convergent Series".
16:
Harmonic series with all terms containing the digit '9' removed
461:
Farhi considered generalized Kempner series, namely, the sums
343:-digit positive integers that have no '0' is 9, so the sum of 832: 830: 133: 583:
be a nonnegative integer. Irwin proved that the sum of 1/
1142:"Summing Curious, Slowly Convergent, Harmonic Subseries" 1075:
Irwin, Frank (May 1916). "A Curious Convergent Series".
579:
In 1916, Irwin also generalized Kempner's results. Let
209:
has no occurrence of the digit string "314159" is about
485: β‰€ 9 (so that the original Kempner series is 1148:"Summing Kempner's Curious (Slowly-Convergent) Series" 222:. (All values are rounded in the last decimal place.) 374: 264: 255:). Therefore the whole sum of reciprocals is at most 36: 574: 899: 438: 328: 95: 625:has no 9 is convergent. Therefore, the sum of 1/ 53: 617:one 9, is a convergent series. But the sum of 1/ 786: 784: 782: 780: 734: 732: 551:. He developed a recursion that expresses the 1070: 1068: 543:Baillie considered the sum of reciprocals of 8: 575:Irwin's generalizations of Kempner's results 1123: 965: 906:(5th ed.). Oxford: Clarendon Press. 715:. Princeton: Princeton University Press. 418: 404: 393: 382: 373: 308: 294: 283: 272: 263: 148:Schmelzer and Baillie found an efficient 83: 76: 65: 55: 43: 41: 40: 39: 37: 35: 902:An Introduction to the Theory of Numbers 675: 449:The series also converge if strings of 489:(9, 0)). He showed that for each 7: 681: 679: 898:Hardy, G. H.; E. M. Wright (1979). 56: 547:-th powers simultaneously for all 394: 284: 174:has no instances of "42" is about 77: 14: 713:Gamma: Exploring Euler's Constant 555:-th power contribution from the ( 1174:Base-dependent integer sequences 931:. Boston: Addison–Wesley. 571:) can be accurately estimated. 106:where the prime indicates that 984:10.1080/00029890.2008.11920611 853:10.1080/00029890.2008.11920559 187:. Another example: the sum of 1: 1077:American Mathematical Monthly 1031:American Mathematical Monthly 954:American Mathematical Monthly 840:American Mathematical Monthly 793:American Mathematical Monthly 742:American Mathematical Monthly 477:instances of the digit  365:has no digit '0' is at most 42: 665:List of sums of reciprocals 1190: 605:For example, the sum of 1/ 598:occurrences of any digit 23:is a modification of the 602:is a convergent series. 493:the sequence of values 114:in 1914. The series is 711:Havil, Julian (2003). 440: 398: 330: 288: 97: 81: 929:Mathematical Analysis 927:Apostol, Tom (1974). 567:= 1, summed over all 533:Approximation methods 441: 378: 331: 268: 98: 38: 481:where 0 β‰€  372: 262: 48: 34: 1164:Mathematical series 976:2008arXiv0807.3518F 50: 44: 1169:Numerical analysis 688:Weisstein, Eric W. 436: 326: 93: 722:978-0-691-09983-5 412: 302: 91: 1181: 1130: 1129: 1127: 1115: 1109: 1108: 1072: 1063: 1062: 1026: 1020: 1019: 969: 949: 943: 942: 924: 918: 917: 905: 895: 889: 888: 834: 825: 824: 788: 775: 774: 736: 727: 726: 708: 702: 701: 700: 691:"Kempner series" 683: 649: 648: 645: 642: 529: β‰₯ 1. 445: 443: 442: 437: 429: 428: 417: 413: 405: 397: 392: 360: 358: 357: 352: 349: 335: 333: 332: 327: 319: 318: 307: 303: 295: 287: 282: 254: 252: 251: 248: 245: 221: 220: 217: 214: 204: 202: 201: 196: 193: 186: 185: 182: 179: 169: 167: 166: 161: 158: 136: 130: 129: 126: 123: 116:counterintuitive 102: 100: 99: 94: 92: 84: 82: 80: 75: 64: 63: 59: 52: 51: 49: 1189: 1188: 1184: 1183: 1182: 1180: 1179: 1178: 1154: 1153: 1138: 1133: 1117: 1116: 1112: 1089:10.2307/2974352 1074: 1073: 1066: 1043:10.2307/2320815 1028: 1027: 1023: 951: 950: 946: 939: 926: 925: 921: 914: 897: 896: 892: 836: 835: 828: 805:10.2307/2321096 790: 789: 778: 755:10.2307/2972074 738: 737: 730: 723: 710: 709: 705: 686: 685: 684: 677: 673: 656: 646: 643: 640: 638: 577: 535: 400: 399: 370: 369: 353: 350: 347: 346: 344: 290: 289: 260: 259: 249: 246: 243: 242: 240: 228: 218: 215: 212: 210: 197: 194: 191: 190: 188: 183: 180: 177: 175: 162: 159: 156: 155: 153: 132: 127: 124: 121: 119: 54: 32: 31: 25:harmonic series 17: 12: 11: 5: 1187: 1185: 1177: 1176: 1171: 1166: 1156: 1155: 1152: 1151: 1145: 1137: 1136:External links 1134: 1132: 1131: 1110: 1064: 1021: 944: 937: 919: 912: 890: 826: 776: 728: 721: 703: 674: 672: 669: 668: 667: 662: 655: 652: 576: 573: 534: 531: 447: 446: 435: 432: 427: 424: 421: 416: 411: 408: 403: 396: 391: 388: 385: 381: 377: 337: 336: 325: 322: 317: 314: 311: 306: 301: 298: 293: 286: 281: 278: 275: 271: 267: 227: 224: 104: 103: 90: 87: 79: 74: 71: 68: 62: 58: 47: 21:Kempner series 15: 13: 10: 9: 6: 4: 3: 2: 1186: 1175: 1172: 1170: 1167: 1165: 1162: 1161: 1159: 1149: 1146: 1143: 1140: 1139: 1135: 1126: 1121: 1114: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1069: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1025: 1022: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 968: 963: 959: 955: 948: 945: 940: 938:0-201-00288-4 934: 930: 923: 920: 915: 913:0-19-853171-0 909: 904: 903: 894: 891: 886: 882: 878: 874: 870: 866: 862: 858: 854: 850: 846: 842: 841: 833: 831: 827: 822: 818: 814: 810: 806: 802: 798: 794: 787: 785: 783: 781: 777: 772: 768: 764: 760: 756: 752: 748: 744: 743: 735: 733: 729: 724: 718: 714: 707: 704: 698: 697: 692: 689: 682: 680: 676: 670: 666: 663: 661: 658: 657: 653: 651: 636: 632: 628: 624: 620: 616: 612: 608: 603: 601: 597: 594: 590: 586: 582: 572: 570: 566: 562: 558: 554: 550: 546: 541: 538: 532: 530: 528: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 472: 468: 464: 459: 457: 452: 433: 430: 425: 422: 419: 414: 409: 406: 401: 389: 386: 383: 379: 375: 368: 367: 366: 364: 356: 342: 323: 320: 315: 312: 309: 304: 299: 296: 291: 279: 276: 273: 269: 265: 258: 257: 256: 238: 234: 225: 223: 211:2302582.33386 208: 200: 173: 165: 151: 146: 142: 140: 135: 117: 113: 112:A. J. Kempner 109: 88: 85: 72: 69: 66: 60: 45: 30: 29: 28: 26: 22: 1113: 1080: 1076: 1034: 1030: 1024: 957: 953: 947: 928: 922: 901: 893: 844: 838: 796: 792: 746: 740: 712: 706: 694: 634: 630: 626: 622: 618: 614: 610: 606: 604: 599: 595: 592: 588: 584: 580: 578: 568: 564: 560: 556: 552: 548: 544: 542: 539: 536: 526: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 466: 462: 460: 455: 450: 448: 362: 354: 340: 338: 236: 232: 229: 206: 198: 171: 163: 147: 143: 107: 105: 20: 18: 525:) for  226:Convergence 1158:Categories 1029:"ERRATA". 131:(sequence 1125:0806.4410 1097:0002-9890 1051:0002-9890 992:0002-9890 967:0807.3518 861:0002-9890 813:0002-9890 763:0002-9890 696:MathWorld 660:Small set 521:(9,  423:− 395:∞ 380:∑ 313:− 285:∞ 270:∑ 176:228.44630 150:algorithm 78:∞ 57:∑ 46:∑ 1016:34840740 1000:27642640 885:11461182 869:27642532 654:See also 639:23.04428 120:22.92067 61:′ 1105:2974352 1059:2320815 1008:2468554 972:Bibcode 877:2416253 821:2321096 771:2972074 635:exactly 615:at most 593:at most 501:,  469:,  359:⁠ 345:⁠ 253:⁠ 241:⁠ 203:⁠ 189:⁠ 168:⁠ 154:⁠ 137:in the 134:A082838 1103:  1095:  1057:  1049:  1014:  1006:  998:  990:  935:  910:  883:  875:  867:  859:  819:  811:  769:  761:  719:  629:where 621:where 609:where 587:where 505:) for 361:where 205:where 170:where 1120:arXiv 1101:JSTOR 1055:JSTOR 1012:S2CID 996:JSTOR 962:arXiv 881:S2CID 865:JSTOR 817:JSTOR 767:JSTOR 671:Notes 647:31968 644:47848 641:70807 219:02376 216:07892 213:37826 184:25415 181:30813 178:41592 128:34816 125:64150 122:66192 1093:ISSN 1047:ISSN 988:ISSN 933:ISBN 908:ISBN 857:ISSN 809:ISSN 759:ISSN 717:ISBN 633:has 613:has 591:has 139:OEIS 19:The 1085:doi 1039:doi 980:doi 958:115 849:doi 845:115 801:doi 751:doi 434:90. 324:80. 141:). 1160:: 1099:. 1091:. 1081:23 1079:. 1067:^ 1053:. 1045:. 1035:87 1033:. 1010:. 1004:MR 1002:. 994:. 986:. 978:. 970:. 956:. 879:. 873:MR 871:. 863:. 855:. 843:. 829:^ 815:. 807:. 797:86 795:. 779:^ 765:. 757:. 747:21 745:. 731:^ 693:. 678:^ 650:. 410:10 300:10 250:10 1128:. 1122:: 1107:. 1087:: 1061:. 1041:: 1018:. 982:: 974:: 964:: 941:. 916:. 887:. 851:: 823:. 803:: 773:. 753:: 725:. 699:. 631:n 627:n 623:n 619:n 611:n 607:n 600:d 596:k 589:n 585:n 581:k 569:k 565:j 561:k 557:k 553:j 549:j 545:j 527:n 523:n 519:S 515:S 511:n 507:n 503:n 499:d 497:( 495:S 491:d 487:S 483:d 479:d 475:n 471:n 467:d 465:( 463:S 456:k 451:k 431:= 426:1 420:n 415:) 407:9 402:( 390:1 387:= 384:n 376:9 363:n 355:n 351:/ 348:1 341:n 321:= 316:1 310:n 305:) 297:9 292:( 280:1 277:= 274:n 266:8 247:/ 244:9 237:n 233:n 207:n 199:n 195:/ 192:1 172:n 164:n 160:/ 157:1 108:n 89:n 86:1 73:1 70:= 67:n

Index

harmonic series
A. J. Kempner
counterintuitive
A082838
OEIS
algorithm
Small set
List of sums of reciprocals


Weisstein, Eric W.
"Kempner series"
MathWorld
ISBN
978-0-691-09983-5


American Mathematical Monthly
doi
10.2307/2972074
ISSN
0002-9890
JSTOR
2972074




doi
10.2307/2321096

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑