Knowledge (XXG)

Koecher–Vinberg theorem

Source 📝

323: 610: 189: 431: 396: 360: 492: 457: 119: 162: 552: 235: 212: 139: 89: 247: 751: 710: 497:
The Koecher–Vinberg theorem now states that these properties precisely characterize the positive cones of Jordan algebras.
756: 557: 42: 399: 727: 167: 404: 662: 706: 369: 332: 654: 462: 436: 50: 22: 54: 98: 144: 537: 530: 504: 220: 197: 124: 74: 46: 38: 30: 745: 238: 215: 57: 700: 69: 34: 666: 318:{\displaystyle C^{*}=\{a\in A:\forall b\in C\langle a,b\rangle >0\}} 658: 534:. The domain of positivity associated with a real Jordan algebra 702:
The Minnesota Notes on Jordan Algebras and Their Applications
524:
Convex cones satisfying these four properties are called
560: 540: 465: 439: 407: 372: 335: 250: 223: 200: 170: 147: 127: 101: 77: 49:and so-called domains of positivity. Thus it links 645:Koecher, Max (1957). "Positivitatsbereiche im R". 604: 546: 486: 451: 425: 390: 354: 317: 229: 206: 183: 156: 133: 113: 83: 503:: There is a one-to-one correspondence between 625: 8: 680:Vinberg, E. B. (1961). "Homogeneous Cones". 605:{\displaystyle A_{+}=\{a^{2}\colon a\in A\}} 599: 574: 312: 303: 291: 264: 60:views on state spaces of physical systems. 581: 565: 559: 539: 464: 438: 406: 371: 346: 334: 255: 249: 222: 199: 171: 169: 146: 126: 100: 76: 637: 621: 554:is the interior of the 'positive' cone 29:is a reconstruction theorem for real 7: 279: 14: 33:. It was proved independently by 647:American Journal of Mathematics 184:{\displaystyle {\overline {C}}} 475: 469: 443: 433:that restricts to a bijection 426:{\displaystyle T\colon A\to A} 417: 1: 505:formally real Jordan algebras 47:formally real Jordan algebras 176: 732:Analysis on Symmetric Cones 626:Faraut & Koranyi (1994) 507:and convex cones that are: 18:Theorem of operator algebra 773: 734:. Oxford University Press. 43:one-to-one correspondence 752:Non-associative algebras 391:{\displaystyle a,b\in C} 366:when to any two points 355:{\displaystyle C=C^{*}} 41:in 1961. It provides a 27:Koecher–Vinberg theorem 606: 548: 488: 487:{\displaystyle T(a)=b} 453: 452:{\displaystyle C\to C} 427: 392: 356: 319: 231: 208: 185: 158: 135: 115: 85: 699:Koecher, Max (1999). 607: 549: 526:domains of positivity 489: 454: 428: 400:linear transformation 393: 357: 325:. The cone is called 320: 232: 209: 186: 159: 136: 116: 86: 558: 538: 463: 437: 405: 370: 333: 248: 221: 198: 168: 145: 125: 99: 75: 757:Theorems in algebra 164:are in the closure 114:{\displaystyle a=0} 602: 544: 484: 449: 423: 388: 352: 315: 227: 204: 181: 157:{\displaystyle -a} 154: 131: 111: 81: 51:operator algebraic 682:Soviet Math. Dokl 620:For a proof, see 547:{\displaystyle A} 230:{\displaystyle A} 207:{\displaystyle C} 179: 134:{\displaystyle a} 84:{\displaystyle C} 764: 736: 735: 723: 717: 716: 696: 690: 689: 677: 671: 670: 642: 611: 609: 608: 603: 586: 585: 570: 569: 553: 551: 550: 545: 493: 491: 490: 485: 458: 456: 455: 450: 432: 430: 429: 424: 398:there is a real 397: 395: 394: 389: 361: 359: 358: 353: 351: 350: 324: 322: 321: 316: 260: 259: 236: 234: 233: 228: 213: 211: 210: 205: 190: 188: 187: 182: 180: 172: 163: 161: 160: 155: 140: 138: 137: 132: 120: 118: 117: 112: 90: 88: 87: 82: 23:operator algebra 772: 771: 767: 766: 765: 763: 762: 761: 742: 741: 740: 739: 725: 724: 720: 713: 698: 697: 693: 679: 678: 674: 659:10.2307/2372563 644: 643: 639: 634: 618: 577: 561: 556: 555: 536: 535: 531:symmetric cones 461: 460: 435: 434: 403: 402: 368: 367: 362:. It is called 342: 331: 330: 251: 246: 245: 219: 218: 196: 195: 166: 165: 143: 142: 123: 122: 97: 96: 73: 72: 66: 58:order theoretic 31:Jordan algebras 19: 12: 11: 5: 770: 768: 760: 759: 754: 744: 743: 738: 737: 718: 711: 691: 672: 653:(3): 575–596. 636: 635: 633: 630: 622:Koecher (1999) 617: 614: 601: 598: 595: 592: 589: 584: 580: 576: 573: 568: 564: 543: 522: 521: 518: 515: 512: 483: 480: 477: 474: 471: 468: 459:and satisfies 448: 445: 442: 422: 419: 416: 413: 410: 387: 384: 381: 378: 375: 349: 345: 341: 338: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 284: 281: 278: 275: 272: 269: 266: 263: 258: 254: 226: 203: 194:A convex cone 178: 175: 153: 150: 130: 121:whenever both 110: 107: 104: 80: 65: 62: 39:Ernest Vinberg 17: 13: 10: 9: 6: 4: 3: 2: 769: 758: 755: 753: 750: 749: 747: 733: 729: 722: 719: 714: 712:3-540-66360-6 708: 704: 703: 695: 692: 687: 683: 676: 673: 668: 664: 660: 656: 652: 648: 641: 638: 631: 629: 627: 623: 615: 613: 596: 593: 590: 587: 582: 578: 571: 566: 562: 541: 533: 532: 527: 519: 516: 513: 510: 509: 508: 506: 502: 498: 495: 481: 478: 472: 466: 446: 440: 420: 414: 411: 408: 401: 385: 382: 379: 376: 373: 365: 347: 343: 339: 336: 328: 309: 306: 300: 297: 294: 288: 285: 282: 276: 273: 270: 267: 261: 256: 252: 244: 240: 239:inner product 224: 217: 201: 192: 173: 151: 148: 128: 108: 105: 102: 94: 78: 71: 63: 61: 59: 56: 52: 48: 44: 40: 36: 32: 28: 24: 16: 731: 726:Faraut, J.; 721: 705:. Springer. 701: 694: 685: 681: 675: 650: 646: 640: 619: 529: 525: 523: 517:homogeneous; 500: 499: 496: 363: 326: 242: 216:vector space 193: 92: 67: 37:in 1957 and 26: 20: 15: 728:Koranyi, A. 364:homogeneous 70:convex cone 35:Max Koecher 746:Categories 688:: 787–790. 632:References 520:self-dual. 91:is called 594:∈ 588:: 444:→ 418:→ 412:: 383:∈ 348:∗ 327:self-dual 304:⟩ 292:⟨ 286:∈ 280:∀ 271:∈ 257:∗ 243:dual cone 177:¯ 149:− 64:Statement 730:(1994). 514:regular; 237:with an 45:between 667:2372563 501:Theorem 93:regular 709:  665:  241:has a 55:convex 25:, the 663:JSTOR 616:Proof 511:open; 329:when 214:in a 707:ISBN 307:> 141:and 53:and 655:doi 624:or 528:or 95:if 21:In 748:: 684:. 661:. 651:97 649:. 628:. 612:. 494:. 191:. 68:A 715:. 686:1 669:. 657:: 600:} 597:A 591:a 583:2 579:a 575:{ 572:= 567:+ 563:A 542:A 482:b 479:= 476:) 473:a 470:( 467:T 447:C 441:C 421:A 415:A 409:T 386:C 380:b 377:, 374:a 344:C 340:= 337:C 313:} 310:0 301:b 298:, 295:a 289:C 283:b 277:: 274:A 268:a 265:{ 262:= 253:C 225:A 202:C 174:C 152:a 129:a 109:0 106:= 103:a 79:C

Index

operator algebra
Jordan algebras
Max Koecher
Ernest Vinberg
one-to-one correspondence
formally real Jordan algebras
operator algebraic
convex
order theoretic
convex cone
vector space
inner product
linear transformation
formally real Jordan algebras
symmetric cones
Koecher (1999)
Faraut & Koranyi (1994)
doi
10.2307/2372563
JSTOR
2372563
The Minnesota Notes on Jordan Algebras and Their Applications
ISBN
3-540-66360-6
Koranyi, A.
Categories
Non-associative algebras
Theorems in algebra

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.