Knowledge (XXG)

Kohn–Luttinger superconductivity

Source 📝

308: 149:
Since Kohn–Luttinger mechanism does not require any additional interactions beyond Coulomb interactions, it can lead to superconductivity in any electronic system. However, the estimated critical temperature,
124: 372: 339: 177: 207: 214: 1000: 144: 382:
and variation of parameters may enhance the effect. Indeed, it is proposed that Kohn–Luttinger mechanism is responsible for superconductivity in rhombohedral
733: 670: 456:
Maiti, S.; Chubukov, A. V. (November 2014). "Superconductivity from repulsive interaction". In Bennemann, Karl-Heinz; Ketterson, John B. (eds.).
1092: 830: 940: 473: 1123: 1028: 749: 945: 663: 728: 698: 1069: 921: 865: 840: 30: 971: 900: 532:"Unconventional Superconductivity in Systems with Annular Fermi Surfaces: Application to Rhombohedral Trilayer Graphene" 916: 835: 703: 1128: 1023: 1018: 656: 723: 597:"Superconductivity from repulsive interactions in rhombohedral trilayer graphene: A Kohn-Luttinger-like mechanism" 976: 20: 759: 63: 54: 38: 810: 1102: 961: 893: 1013: 986: 966: 888: 883: 1087: 1043: 618: 553: 428: 42: 465: 1074: 825: 785: 634: 608: 577: 543: 348: 342: 315: 153: 182: 16:
Superconductivity mechanism based on attractive forces generated by screened Coulomb interaction
850: 679: 569: 469: 444: 417:"Kohn-Luttinger effect and the instability of a two-dimensional repulsive Fermi liquid at T=0" 53:
are formed due to electron–phonon interaction, Kohn–Luttinger mechanism is based on fact that
1059: 1033: 805: 780: 713: 626: 561: 512: 461: 436: 57: 1082: 129: 815: 531: 209:
and thus is extremely small. For example, for metals the critical temperature is given by
595:
Cea, Tommaso; Pantaleón, Pierre A.; Phong, Võ Tiến; Guinea, Francisco (1 February 2022).
622: 557: 432: 820: 764: 754: 718: 596: 500: 396: 1117: 638: 581: 379: 416: 855: 845: 800: 795: 565: 375: 303:{\displaystyle {\frac {k_{\rm {B}}T_{\rm {c}}}{E_{\rm {F}}}}=\exp(-(2\ell )^{4}),} 981: 790: 630: 50: 34: 530:
Ghazaryan, Areg; Holder, Tobias; Serbyn, Maksym; Berg, Erez (9 December 2021).
516: 693: 46: 440: 573: 448: 1008: 383: 397:"Contribution to the theory of superfluidity in an imperfect Fermi gas" 648: 613: 548: 1064: 1038: 1097: 126:
and can create Cooper instability for non-zero angular momentum
652: 378:. However, Kohn and Luttinger conjectured that nonspherical 395:
Gor'kov, L. P.; Melik-Barkhudarov, T. K. (November 1961).
179:, for Kohn–Luttinger superconductor is exponential in 351: 318: 217: 185: 156: 132: 66: 1052: 999: 954: 930: 909: 873: 864: 773: 742: 686: 499:Kohn, Walter; Luttinger, Joaquin M. (1 July 1955). 366: 333: 302: 201: 171: 138: 118: 664: 8: 427:(2). American Physical Society: 1097–1104. 870: 671: 657: 649: 511:(12). American Physical Society: 524–526. 612: 547: 542:(24). American Physical Society: 247001. 466:10.1093/acprof:oso/9780198719267.003.0004 357: 356: 350: 324: 323: 317: 288: 251: 250: 238: 237: 226: 225: 218: 216: 193: 184: 162: 161: 155: 131: 119:{\displaystyle \cos(2k_{F}r+\phi )/r^{3}} 110: 101: 83: 65: 607:(7). American Physical Society: 075432. 488: 386:, which has an annular Fermi surface. 501:"New mechanism for superconductivity" 7: 494: 492: 415:Chubukov, Andrey V. (15 July 1993). 358: 325: 252: 239: 227: 163: 14: 31:unconventional superconductivity 27:Kohn–Luttinger superconductivity 29:is a theoretical mechanism for 566:10.1103/PhysRevLett.127.247001 294: 285: 275: 269: 98: 73: 1: 631:10.1103/PhysRevB.105.075432 460:. Oxford. pp. 89–158. 458:Novel Superfluids: Volume 2 367:{\displaystyle E_{\rm {F}}} 334:{\displaystyle k_{\rm {B}}} 172:{\displaystyle T_{\rm {c}}} 1145: 1001:Technological applications 517:10.1103/PhysRevLett.15.524 202:{\displaystyle -\ell ^{4}} 18: 743:Characteristic parameters 1124:Condensed matter physics 760:London penetration depth 441:10.1103/PhysRevB.48.1097 39:Joaquin Mazdak Luttinger 19:Not to be confused with 1053:List of superconductors 931:By critical temperature 536:Physical Review Letters 505:Physical Review Letters 368: 335: 304: 203: 173: 140: 120: 699:Bean's critical state 369: 336: 305: 204: 174: 141: 139:{\displaystyle \ell } 121: 874:By magnetic response 349: 316: 215: 183: 154: 130: 64: 43:Friedel oscillations 21:Luttinger–Kohn model 826:persistent currents 811:Little–Parks effect 623:2022PhRvB.105g5432C 558:2021PhRvL.127x7001G 433:1993PhRvB..48.1097C 404:Soviet Physics JETP 58:Coulomb interaction 786:Andreev reflection 781:Abrikosov vortices 364: 343:Boltzmann constant 331: 300: 199: 169: 136: 116: 1129:Superconductivity 1111: 1110: 1029:quantum computing 995: 994: 851:superdiamagnetism 680:Superconductivity 601:Physical Review B 421:Physical Review B 258: 45:. In contrast to 1136: 1060:bilayer graphene 1034:Rutherford cable 946:room temperature 941:high temperature 871: 831:proximity effect 806:Josephson effect 750:coherence length 673: 666: 659: 650: 643: 642: 616: 592: 586: 585: 551: 527: 521: 520: 496: 479: 452: 411: 401: 373: 371: 370: 365: 363: 362: 361: 340: 338: 337: 332: 330: 329: 328: 309: 307: 306: 301: 293: 292: 259: 257: 256: 255: 245: 244: 243: 242: 232: 231: 230: 219: 208: 206: 205: 200: 198: 197: 178: 176: 175: 170: 168: 167: 166: 145: 143: 142: 137: 125: 123: 122: 117: 115: 114: 105: 88: 87: 1144: 1143: 1139: 1138: 1137: 1135: 1134: 1133: 1114: 1113: 1112: 1107: 1078: 1048: 991: 950: 937:low temperature 926: 905: 860: 816:Meissner effect 769: 765:Silsbee current 738: 704:Ginzburg–Landau 682: 677: 647: 646: 594: 593: 589: 529: 528: 524: 498: 497: 490: 485: 476: 455: 414: 410:(5): 1018–1022. 399: 394: 392: 390:Further reading 352: 347: 346: 319: 314: 313: 284: 246: 233: 221: 220: 213: 212: 189: 181: 180: 157: 152: 151: 128: 127: 106: 79: 62: 61: 24: 17: 12: 11: 5: 1142: 1140: 1132: 1131: 1126: 1116: 1115: 1109: 1108: 1106: 1105: 1100: 1095: 1090: 1085: 1080: 1076: 1072: 1067: 1062: 1056: 1054: 1050: 1049: 1047: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1014:electromagnets 1011: 1005: 1003: 997: 996: 993: 992: 990: 989: 984: 979: 974: 969: 964: 958: 956: 955:By composition 952: 951: 949: 948: 943: 938: 934: 932: 928: 927: 925: 924: 922:unconventional 919: 913: 911: 910:By explanation 907: 906: 904: 903: 898: 897: 896: 891: 886: 877: 875: 868: 866:Classification 862: 861: 859: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 808: 803: 798: 793: 788: 783: 777: 775: 771: 770: 768: 767: 762: 757: 755:critical field 752: 746: 744: 740: 739: 737: 736: 731: 726: 724:Mattis–Bardeen 721: 716: 711: 709:Kohn–Luttinger 706: 701: 696: 690: 688: 684: 683: 678: 676: 675: 668: 661: 653: 645: 644: 587: 522: 487: 486: 484: 481: 475:978-0198719267 474: 391: 388: 380:Fermi surfaces 360: 355: 327: 322: 299: 296: 291: 287: 283: 280: 277: 274: 271: 268: 265: 262: 254: 249: 241: 236: 229: 224: 196: 192: 188: 165: 160: 135: 113: 109: 104: 100: 97: 94: 91: 86: 82: 78: 75: 72: 69: 60:oscillates as 15: 13: 10: 9: 6: 4: 3: 2: 1141: 1130: 1127: 1125: 1122: 1121: 1119: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1057: 1055: 1051: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1006: 1004: 1002: 998: 988: 985: 983: 980: 978: 975: 973: 972:heavy fermion 970: 968: 965: 963: 960: 959: 957: 953: 947: 944: 942: 939: 936: 935: 933: 929: 923: 920: 918: 915: 914: 912: 908: 902: 901:ferromagnetic 899: 895: 892: 890: 887: 885: 882: 881: 879: 878: 876: 872: 869: 867: 863: 857: 854: 852: 849: 847: 846:supercurrents 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 778: 776: 772: 766: 763: 761: 758: 756: 753: 751: 748: 747: 745: 741: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 691: 689: 685: 681: 674: 669: 667: 662: 660: 655: 654: 651: 640: 636: 632: 628: 624: 620: 615: 610: 606: 602: 598: 591: 588: 583: 579: 575: 571: 567: 563: 559: 555: 550: 545: 541: 537: 533: 526: 523: 518: 514: 510: 506: 502: 495: 493: 489: 482: 480: 477: 471: 467: 463: 459: 453: 450: 446: 442: 438: 434: 430: 426: 422: 418: 412: 409: 405: 398: 389: 387: 385: 381: 377: 353: 344: 320: 310: 297: 289: 281: 278: 272: 266: 263: 260: 247: 234: 222: 210: 194: 190: 186: 158: 147: 133: 111: 107: 102: 95: 92: 89: 84: 80: 76: 70: 67: 59: 56: 52: 48: 44: 40: 36: 32: 28: 22: 982:oxypnictides 917:conventional 856:superstripes 801:flux pumping 796:flux pinning 791:Cooper pairs 708: 604: 600: 590: 539: 535: 525: 508: 504: 457: 454: 424: 420: 413: 407: 403: 393: 376:Fermi energy 311: 211: 148: 51:Cooper pairs 33:proposed by 26: 25: 841:SU(2) color 821:Homes's law 49:, in which 35:Walter Kohn 1118:Categories 977:iron-based 836:reentrance 614:2109.04345 549:2109.00011 483:References 47:BCS theory 774:Phenomena 639:237452263 582:237372021 282:ℓ 273:− 267:⁡ 191:ℓ 187:− 134:ℓ 96:ϕ 71:⁡ 41:based on 1009:cryotron 967:cuprates 962:covalent 719:Matthias 687:Theories 574:34951779 449:10007968 384:graphene 55:screened 1103:more... 987:organic 619:Bibcode 554:Bibcode 429:Bibcode 880:Types 714:London 637:  580:  572:  472:  447:  312:where 1093:TBCCO 1065:BSCCO 1044:wires 1039:SQUID 635:S2CID 609:arXiv 578:S2CID 544:arXiv 400:(PDF) 1098:YBCO 1088:NbTi 1083:NbSn 1070:LBCO 570:PMID 470:ISBN 445:PMID 345:and 37:and 1075:MgB 1024:NMR 1019:MRI 894:1.5 734:WHH 729:RVB 694:BCS 627:doi 605:105 562:doi 540:127 513:doi 462:doi 437:doi 374:is 341:is 264:exp 68:cos 1120:: 889:II 633:. 625:. 617:. 603:. 599:. 576:. 568:. 560:. 552:. 538:. 534:. 509:15 507:. 503:. 491:^ 468:. 443:. 435:. 425:48 423:. 419:. 408:13 406:. 402:. 146:. 1077:2 884:I 672:e 665:t 658:v 641:. 629:: 621:: 611:: 584:. 564:: 556:: 546:: 519:. 515:: 478:. 464:: 451:. 439:: 431:: 359:F 354:E 326:B 321:k 298:, 295:) 290:4 286:) 279:2 276:( 270:( 261:= 253:F 248:E 240:c 235:T 228:B 223:k 195:4 164:c 159:T 112:3 108:r 103:/ 99:) 93:+ 90:r 85:F 81:k 77:2 74:( 23:.

Index

Luttinger–Kohn model
unconventional superconductivity
Walter Kohn
Joaquin Mazdak Luttinger
Friedel oscillations
BCS theory
Cooper pairs
screened
Coulomb interaction
Boltzmann constant
Fermi energy
Fermi surfaces
graphene
"Contribution to the theory of superfluidity in an imperfect Fermi gas"
"Kohn-Luttinger effect and the instability of a two-dimensional repulsive Fermi liquid at T=0"
Bibcode
1993PhRvB..48.1097C
doi
10.1103/PhysRevB.48.1097
PMID
10007968
doi
10.1093/acprof:oso/9780198719267.003.0004
ISBN
978-0198719267


"New mechanism for superconductivity"
doi
10.1103/PhysRevLett.15.524

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.