Knowledge (XXG)

Lyapunov time

Source đź“ť

67:. However, measures in terms of 2-foldings and 10-foldings are sometimes found, since they correspond to the loss of one bit of information or one digit of precision respectively. 61:
of the system. By convention, it is defined as the time for the distance between nearby trajectories of the system to increase by a factor of
203: 244: 75: 78:. However, empirical estimation of the Lyapunov time is often associated with computational or inherent uncertainties. 365: 276:
Friedland, G.; Metere, A. (2018). "Isomorphism between Maximum Lyapunov Exponent and Shannon's Channel Capacity".
63: 310: 70:
While it is used in many applications of dynamical systems theory, it has been particularly used in
71: 339: 277: 213: 42: 240: 46: 318: 28: 208: 147: 314: 58: 236:
Extracting Knowledge from Time Series: An Introduction to Nonlinear Empirical Modeling
359: 39: 338:
Gerlach, E. (2009). "On the Numerical Computability of Asteroidal Lyapunov Times".
165: 111: 32: 234: 136: 20: 121: 36: 323: 298: 282: 344: 177: 100: 125: 299:"A Comparison Between Methods to Compute Lyapunov Exponents" 233:
Bezruchko, Boris P.; Smirnov, Dmitry A. (5 September 2010).
45:. It is defined as the inverse of a system's largest 74:where it is important for the problem of the 8: 297:Tancredi, G.; Sánchez, A.; Roig, F. (2001). 188:1 cm of argon at triple point (84 K, 69 kPa) 57:The Lyapunov time mirrors the limits of the 264:Chaos, Scattering and Statistical Mechanics 27:is the characteristic timescale on which a 343: 322: 281: 258: 256: 266:, Cambridge University Press, 2005. p. 7 88: 225: 7: 14: 16:Timescale of dynamical systems 1: 204:Belousov–Zhabotinsky reaction 157:Chemical chaotic oscillations 76:stability of the Solar System 239:. Springer. pp. 56–57. 382: 303:The Astronomical Journal 35:. It is named after the 168:chaotic oscillations 86:Typical values are: 315:2001AJ....121.1171T 180:at room temperature 72:celestial mechanics 214:Three-body problem 130:1–5 million years 43:Aleksandr Lyapunov 366:Dynamical systems 195: 194: 106:20 million years 47:Lyapunov exponent 373: 350: 349: 347: 335: 329: 328: 326: 309:(2): 1171–1179. 294: 288: 287: 285: 273: 267: 262:Pierre Gaspard, 260: 251: 250: 230: 116:5 million years 89: 29:dynamical system 381: 380: 376: 375: 374: 372: 371: 370: 356: 355: 354: 353: 337: 336: 332: 296: 295: 291: 275: 274: 270: 261: 254: 247: 232: 231: 227: 222: 209:Molecular chaos 200: 191:3.7Ă—10 seconds 183:3.7Ă—10 seconds 84: 55: 17: 12: 11: 5: 379: 377: 369: 368: 358: 357: 352: 351: 330: 324:10.1086/318732 289: 268: 252: 245: 224: 223: 221: 218: 217: 216: 211: 206: 199: 196: 193: 192: 189: 185: 184: 181: 173: 172: 169: 162: 161: 158: 154: 153: 150: 143: 142: 139: 132: 131: 128: 118: 117: 114: 108: 107: 104: 97: 96: 95:Lyapunov time 93: 83: 80: 59:predictability 54: 51: 15: 13: 10: 9: 6: 4: 3: 2: 378: 367: 364: 363: 361: 346: 341: 334: 331: 325: 320: 316: 312: 308: 304: 300: 293: 290: 284: 279: 272: 269: 265: 259: 257: 253: 248: 246:9783642126000 242: 238: 237: 229: 226: 219: 215: 212: 210: 207: 205: 202: 201: 197: 190: 187: 186: 182: 179: 175: 174: 170: 167: 164: 163: 159: 156: 155: 151: 149: 145: 144: 140: 138: 134: 133: 129: 127: 123: 120: 119: 115: 113: 110: 109: 105: 102: 99: 98: 94: 91: 90: 87: 81: 79: 77: 73: 68: 66: 65: 60: 52: 50: 48: 44: 41: 40:mathematician 38: 34: 30: 26: 25:Lyapunov time 22: 333: 306: 302: 292: 271: 263: 235: 228: 166:Hydrodynamic 160:5.4 minutes 146:Rotation of 141:4,000 years 112:Solar System 85: 69: 62: 56: 24: 18: 137:36 Atalante 21:mathematics 283:1706.08638 220:References 171:2 seconds 122:Axial tilt 345:0901.4871 135:Orbit of 360:Category 198:See also 176:1 cm of 152:36 days 148:Hyperion 103:'s orbit 82:Examples 311:Bibcode 37:Russian 33:chaotic 243:  92:System 23:, the 340:arXiv 278:arXiv 178:argon 101:Pluto 241:ISBN 126:Mars 319:doi 307:121 124:of 53:Use 31:is 19:In 362:: 317:. 305:. 301:. 255:^ 49:. 348:. 342:: 327:. 321:: 313:: 286:. 280:: 249:. 64:e

Index

mathematics
dynamical system
chaotic
Russian
mathematician
Aleksandr Lyapunov
Lyapunov exponent
predictability
e
celestial mechanics
stability of the Solar System
Pluto
Solar System
Axial tilt
Mars
36 Atalante
Hyperion
Hydrodynamic
argon
Belousov–Zhabotinsky reaction
Molecular chaos
Three-body problem
Extracting Knowledge from Time Series: An Introduction to Nonlinear Empirical Modeling
ISBN
9783642126000


arXiv
1706.08638
"A Comparison Between Methods to Compute Lyapunov Exponents"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑