Knowledge

Planetary coordinate system

Source 📝

31: 574: 291:, west longitudes (i.e., longitudes measured positively to the west) are used when the rotation is prograde, and east longitudes (i.e., longitudes measured positively to the east) when the rotation is retrograde. In simpler terms, imagine a distant, non-orbiting observer viewing a planet as it rotates. Also suppose that this observer is within the plane of the planet's equator. A point on the Equator that passes directly in front of this observer later in time has a higher planetographic longitude than a point that did so earlier in time. 1714: 364: 181: 1750: 548:, where its north and south polar radii differ by approximately 6 km (4 miles), however this difference is small enough that the average polar radius is used to define its ellipsoid. The Earth's Moon is effectively spherical, having almost no bulge at its equator. Where possible, a fixed observable surface feature is used when defining a reference meridian. 1726: 1762: 1738: 1774: 1218:, a scalene (triaxial) ellipsoid is a better fit than the oblate spheroid. For highly irregular bodies, the concept of a reference ellipsoid may have no useful value, so sometimes a spherical reference is used instead and points identified by planetocentric latitude and longitude. Even that can be problematic for 1195:
in 2005; the Daphnean ridge was discovered in 2017. The ridge on Iapetus is nearly 20 km wide, 13 km high and 1300 km long. The ridge on Atlas is proportionally even more remarkable given the moon's much smaller size, giving it a disk-like shape. Images of Pan show a structure similar
249:). The location of the prime meridian as well as the position of the body's north pole on the celestial sphere may vary with time due to precession of the axis of rotation of the planet (or satellite). If the position angle of the body's prime meridian increases with time, the body has a direct (or 302:
is defined as the counter-clockwise direction around the planet, as seen from above its north pole, and the north pole is whichever pole more closely aligns with the Earth's north pole. Longitudes traditionally have been written using "E" or "W" instead of "+" or "−" to indicate this polarity. For
1353:
Davies, M. E., T. R. Colvin, P. G. Rogers, P. G. Chodas, W. L. Sjogren, W. L. Akim, E. L. Stepanyantz, Z. P. Vlasova, and A. I. Zakharov, "The Rotation Period, Direction of the North Pole, and Geodetic Control Network of Venus," Journal of Geophysical Research, Vol. 97, £8, pp. 13,14 1-13,151,
336:
bodies have a natural reference longitude passing through the point nearest to their parent body: 0° the center of the primary-facing hemisphere, 90° the center of the leading hemisphere, 180° the center of the anti-primary hemisphere, and 270° the center of the trailing hemisphere. However,
651:
so that the difference of the major and minor semi-axes is 21.385 km (13 mi). This is only 0.335% of the major axis, so a representation of Earth on a computer screen would be sized as 300 pixels by 299 pixels. This is rather indistinguishable from a sphere shown as
318:, the only other planet with a solid surface visible from Earth, a thermocentric coordinate is used: the prime meridian runs through the point on the equator where the planet is hottest (due to the planet's rotation and orbit, the Sun briefly 1618:
Lemoine, Frank G.; Goossens, Sander; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T. (2013).
543:
For rigid-surface nearly-spherical bodies, which includes all the rocky planets and many moons, ellipsoids are defined in terms of the axis of rotation and the mean surface height excluding any atmosphere. Mars is actually
1188:. These ridges closely follow the moons' equators. The ridges appear to be unique to the Saturnian system, but it is uncertain whether the occurrences are related or a coincidence. The first three were discovered by the 1147:
Generally any celestial body that is rotating (and that is sufficiently massive to draw itself into spherical or near spherical shape) will have an equatorial bulge matching its rotation rate. With
284:, even this criterion fails (because its magnetosphere is very complex and does not really rotate in a steady fashion), and an agreed-upon value for the rotation of its equator is used instead. 1424:
Archinal, Brent A.; A'Hearn, Michael F.; Bowell, Edward L.; Conrad, Albert R.; et al. (2010). "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009".
634: 157:; it requires the specification of physical reference points or surfaces with fixed coordinates, such as a specific crater for the reference meridian or the best-fitting 739: 1270: 852: 828: 760: 198: 1245:. Many projections would lose their elegant and popular properties. For this reason spherical reference surfaces are frequently used in mapping programs. 1475: 1384:
Davies, M. E., P. G. Rogers, and T. R. Colvin, "A Control Network of Triton," Journal of Geophysical Research, Vol. 96, E l, pp. 15, 675-15, 681, 1991.
1310: 577:
Comparison of the rotation period (sped up 10 000 times, negative values denoting retrograde), flattening and axial tilt of the planets and the Moon
1799: 1209: 30: 1405:
Davies, M. E., and R. A. Berg, "Preliminary Control Net of Mars,"Journal of Geophysical Research, Vol. 76, No. 2, pps. 373-393, January 10, 1971.
1363:
Davies, M. E., and R. A. Berg, "Preliminary Control Net of Mars,"Journal of Geophysical Research, Vol. 76, No. 2, pps. 373-393, January 10, 1971.
1694: 306:
The modern standard for maps of Mars (since about 2002) is to use planetocentric coordinates. Guided by the works of historical astronomers,
233:
The longitude systems of most of those bodies with observable rigid surfaces have been defined by references to a surface feature such as a
1546:
Ardalan, A. A.; Karimi, R.; Grafarend, E. W. (2009). "A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars".
1344:
Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, NASA Atlas of Mercury, NASA Scientific and Technical Information Office, 1978.
532:
and mapping other planetary bodies including planets, their satellites, asteroids and comet nuclei. Some well observed bodies such as the
268:
and most of the satellites are in this category. For many of the satellites, it is assumed that the rotation rate is equal to the mean
1602: 1530: 220: 1414:
Davies, M. E., "Surface Coordinates and Cartography of Mercury," Journal of Geophysical Research, Vol. 80, No. 17, June 10, 1975.
1335:
Davies, M. E., "Surface Coordinates and Cartography of Mercury," Journal of Geophysical Research, Vol. 80, No. 17, June 10, 1975.
1265: 1205: 559:. Since they have no permanent observable features, the choices of prime meridians are made according to mathematical rules. 202: 341:
due to non-circular orbits or axial tilts causes this point to move around any fixed point on the celestial body like an
414: 77: 69: 1804: 743:
in which he included a proof that a rotating self-gravitating fluid body in equilibrium takes the form of an oblate
1794: 1704: 326:, giving it more sunlight). By convention, this meridian is defined as exactly twenty degrees of longitude east of 319: 73: 1311:
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
579: 261: 93: 1214:
Small moons, asteroids, and comet nuclei frequently have irregular shapes. For some of these, such as Jupiter's
1322: 170: 1479: 1241:; however, triaxial ellipsoids would render many computations more complicated, especially those related to 573: 191: 276:, since their surface features are constantly changing and moving at various rates, the rotation of their 1275: 610: 39: 1713: 1677: 1375:, Thomas A. Hauge, et al.: Control Networks for the Galilean Satellites: November 1979 R-2532-JPL/NASA 1824: 1632: 1594: 1433: 949: 529: 452: 1829: 1814: 1678:
The WGS84 parameters are listed in the National Geospatial-Intelligence Agency publication TR8350.2
756: 525: 448: 425:
of revolution for which the equatorial radius is larger than the polar radius, such that they are
1809: 1766: 1754: 1718: 1571: 1457: 1285: 1254: 1238: 80: 1660: 1598: 1563: 1526: 1449: 1393: 1280: 456: 437: 260:
In the absence of other information, the axis of rotation is assumed to be normal to the mean
254: 138: 1500: 1819: 1778: 1730: 1650: 1640: 1555: 1518: 1441: 1372: 1168: 772: 661: 410: 354: 327: 315: 307: 265: 242: 158: 114: 110: 106: 88: 1226:, in that latitude and longitude don't always uniquely identify a single surface location. 1189: 545: 426: 1636: 1437: 555:, an effective surface for an ellipsoid is chosen as the equal-pressure boundary of one 1242: 1185: 1173: 837: 813: 489: 441: 298:
is always measured positively to the east, regardless of which way the planet rotates.
277: 269: 150: 126: 35: 363: 1788: 1575: 1522: 1461: 1172:. Equatorial ridges are a feature of at least four of Saturn's moons: the large moon 250: 234: 134: 1476:"USGS Astrogeology: Rotation and pole position for the Sun and planets (IAU WGCCRE)" 1742: 1290: 1234: 1177: 734: 273: 102: 17: 496:
volcanic plateau, a continent-size region of elevated terrain, and its antipodes.
492:. The main departures from the ellipsoid expected of an ideal fluid are from the 180: 1559: 1513:
Wieczorek, M. A. (2007). "Gravity and Topography of the Terrestrial Planets".
1445: 1259: 1219: 1181: 794: 568: 556: 510: 445: 333: 323: 238: 154: 1664: 1567: 1453: 1655: 1230: 1215: 744: 485: 464: 422: 338: 1223: 748: 501: 460: 402: 342: 246: 87:
other than Earth. Similar coordinate systems are defined for other solid
1645: 1620: 1106: 995: 752: 682: 552: 493: 406: 205: in this section. Unsourced material may be challenged and removed. 142: 130: 1158:
is the planet with the largest equatorial bulge in our Solar System.
1155: 1066: 1032: 696: 484:) has been measured using flight paths of satellite missions such as 476: 311: 84: 1396:– Copyright 2000 – 2010 European Space Agency. All rights reserved. 664:
the flattening to highlight the concept of any planet's oblateness.
1737: 101:. The coordinate systems for almost all of the solid bodies in the 866: 591: 587: 572: 514: 468: 118: 29: 906: 710: 537: 533: 506: 481: 418: 122: 98: 1196:
to that of Atlas, while the one on Daphnis is less pronounced.
34:
Chart of lunar maria with lines of longitude and latitude. The
714: 417:). The reference surfaces for some planets (such as Earth and 358: 303:
example, −91°, 91°W, +269° and 269°E all mean the same thing.
281: 174: 778:
Equatorial bulge of the Solar Systems major celestial bodies
1621:"High‒degree gravity models from GRAIL primary mission data" 241:
is that pole of rotation that lies on the north side of the
375: 1702: 840: 816: 613: 444:, by means of physical quantities analogous to the 280:is used as a reference instead. In the case of the 1631:(8). American Geophysical Union (AGU): 1676–1698. 846: 822: 628: 625: 253:) rotation; otherwise the rotation is said to be 1693:Book III Proposition XIX Problem III, p. 407 in 1323:"Planetocentric and planetographic coordinates" 1166:Equatorial bulges should not be confused with 1271:List of tallest mountains in the Solar System 540:now have quite precise reference ellipsoids. 8: 1426:Celestial Mechanics and Dynamical Astronomy 751:). The amount of flattening depends on the 409:) can be defined as orthogonal to the mean 1237:, etc.) tend to be better approximated by 776: 1654: 1644: 839: 815: 624: 614: 612: 440:can be expressed with respect to a given 221:Learn how and when to remove this message 1625:Journal of Geophysical Research: Planets 1394:Where is zero degrees longitude on Mars? 1210:Map projection of the triaxial ellipsoid 153:for other planetary bodies, such as the 1709: 1303: 605:(equatorial radius): 6 378 137.0 m 459:of the reference ellipsoid surface) or 647:(polar radius): 6 356 752.3142 m, 636:(inverse flattening): 298.257 223 563 7: 1501:First map of extraterrestrial planet 310:established the meridian of Mars at 203:adding citations to reliable sources 521:Ellipsoid of revolution (spheroid) 401:may be similarly defined. The zero 629:{\displaystyle {\frac {1}{f}}\,\!} 25: 1772: 1760: 1748: 1736: 1724: 1712: 1591:Mars The story of the Red Planet 1523:10.1016/B978-044452748-6.00156-5 362: 179: 1800:Astronomical coordinate systems 1266:Astronomical coordinate systems 671:values in the Solar System are 190:needs additional citations for 1206:Triaxial ellipsoidal longitude 245:of the Solar System (near the 1: 528:are also useful for defining 322:at noon at this point during 68:) is a generalization of the 27:Coordinate system for planets 662:typically greatly exaggerate 415:poles of astronomical bodies 48:planetary coordinate system 1846: 1589:Cattermole, Peter (1992). 1203: 770: 566: 352: 168: 1560:10.1007/s11038-009-9342-7 1503:– Center of Astrophysics. 1446:10.1007/s10569-010-9320-4 831: 810: 805: 800: 793: 788: 785: 782: 551:For gaseous planets like 94:selenographic coordinates 1695:Andrew Motte translation 1548:Earth, Moon, and Planets 1293:(Topography of the Moon) 713:. The flattening of the 660:pix. Thus illustrations 451:(compared to a constant 296:planetocentric longitude 289:planetographic longitude 171:Prime meridian (planets) 640:from which one derives 399:planetocentric latitude 395:Planetographic latitude 161:as zero-level surface. 149:is a generalization of 1515:Treatise on Geophysics 848: 824: 630: 583: 43: 1276:Planetary cartography 849: 825: 771:Further information: 631: 576: 567:Further information: 467:(above and below the 272:. In the case of the 50:(also referred to as 40:near side of the Moon 38:is the centre of the 33: 1595:Springer Netherlands 1517:. pp. 165–206. 838: 814: 755:and the balance of 729:Origin of flattening 611: 530:geodetic coordinates 526:Reference ellipsoids 509:) has been measured 453:nominal Earth radius 199:improve this article 105:were established by 1637:2013JGRE..118.1676L 1482:on October 24, 2011 1438:2011CeMDA.109..101A 1262:(geography of Mars) 1239:triaxial ellipsoids 1176:and the tiny moons 1138:1 : 31.22 1129:1 : 58.54 1098:1 : 27.71 1089:1 : 43.62 1046:1 : 10.21 1012:1 : 15.41 889:1 : 299.4 779: 757:gravitational force 590:ellipsoid to model 449:geocentric distance 18:Longitude (planets) 1805:Coordinate systems 1646:10.1002/jgre.20118 1286:Topography of Mars 1255:Apparent longitude 1200:Triaxial ellipsoid 1058:1 : 5.62 1024:1 : 9.59 984:1 : 13.1 972:1 : 13.3 844: 820: 777: 626: 584: 505:(the geoid of the 374:. You can help by 81:coordinate systems 44: 1795:Planetary science 1281:Planetary surface 1169:equatorial ridges 1162:Equatorial ridges 1145: 1144: 938:1 : 175 929:1 : 170 898:1 : 232 847:{\displaystyle f} 823:{\displaystyle f} 761:centrifugal force 747:of revolution (a 622: 517:twin satellites. 457:geocentric radius 438:Vertical position 392: 391: 231: 230: 223: 91:, such as in the 16:(Redirected from 1837: 1777: 1776: 1775: 1765: 1764: 1763: 1753: 1752: 1751: 1741: 1740: 1729: 1728: 1727: 1717: 1716: 1708: 1697: 1687: 1681: 1675: 1669: 1668: 1658: 1656:2060/20140010292 1648: 1615: 1609: 1608: 1586: 1580: 1579: 1543: 1537: 1536: 1510: 1504: 1498: 1492: 1491: 1489: 1487: 1478:. Archived from 1472: 1466: 1465: 1421: 1415: 1412: 1406: 1403: 1397: 1391: 1385: 1382: 1376: 1373:Merton E. Davies 1370: 1364: 1361: 1355: 1351: 1345: 1342: 1336: 1333: 1327: 1326: 1319: 1313: 1308: 1229:Smaller bodies ( 1222:bodies, such as 1154: 1152: 1125: 1119: 1113: 1085: 1079: 1073: 1054: 1017: 1008: 989: 977: 968: 962: 956: 943: 925: 919: 913: 885: 879: 873: 853: 851: 850: 845: 829: 827: 826: 821: 780: 773:Equatorial bulge 767:Equatorial bulge 724: 722: 708: 707: 703: 694: 693: 689: 680: 679: 675: 670: 659: 655: 646: 635: 633: 632: 627: 623: 615: 604: 582: 427:oblate spheroids 411:axis of rotation 387: 384: 366: 359: 355:Equatorial bulge 308:Merton E. Davies 243:invariable plane 226: 219: 215: 212: 206: 183: 175: 159:equigeopotential 111:Rand Corporation 107:Merton E. Davies 89:celestial bodies 21: 1845: 1844: 1840: 1839: 1838: 1836: 1835: 1834: 1785: 1784: 1783: 1773: 1771: 1761: 1759: 1749: 1747: 1735: 1725: 1723: 1711: 1703: 1701: 1700: 1688: 1684: 1676: 1672: 1617: 1616: 1612: 1605: 1597:. p. 185. 1588: 1587: 1583: 1545: 1544: 1540: 1533: 1512: 1511: 1507: 1499: 1495: 1485: 1483: 1474: 1473: 1469: 1423: 1422: 1418: 1413: 1409: 1404: 1400: 1392: 1388: 1383: 1379: 1371: 1367: 1362: 1358: 1352: 1348: 1343: 1339: 1334: 1330: 1321: 1320: 1316: 1309: 1305: 1300: 1251: 1243:map projections 1212: 1202: 1164: 1150: 1148: 1123: 1117: 1111: 1083: 1077: 1071: 1052: 1015: 1006: 987: 975: 966: 960: 954: 941: 923: 917: 911: 883: 877: 871: 836: 835: 833: 812: 811: 807: 802: 797: 790: 775: 769: 731: 720: 718: 705: 701: 700: 691: 687: 686: 677: 673: 672: 668: 657: 653: 644: 609: 608: 602: 580:(SVG animation) 578: 571: 565: 523: 511:gravimetrically 455:or the varying 435: 388: 382: 379: 372:needs expansion 357: 351: 278:magnetic fields 227: 216: 210: 207: 196: 184: 173: 167: 151:geodetic datums 147:planetary datum 28: 23: 22: 15: 12: 11: 5: 1843: 1841: 1833: 1832: 1827: 1822: 1817: 1812: 1807: 1802: 1797: 1787: 1786: 1782: 1781: 1769: 1757: 1745: 1733: 1721: 1699: 1698: 1682: 1670: 1610: 1603: 1581: 1538: 1531: 1505: 1493: 1467: 1432:(2): 101–135. 1416: 1407: 1398: 1386: 1377: 1365: 1356: 1346: 1337: 1328: 1314: 1302: 1301: 1299: 1296: 1295: 1294: 1288: 1283: 1278: 1273: 1268: 1263: 1257: 1250: 1247: 1201: 1198: 1163: 1160: 1143: 1142: 1139: 1136: 1133: 1130: 1127: 1121: 1115: 1109: 1103: 1102: 1099: 1096: 1093: 1090: 1087: 1081: 1075: 1069: 1063: 1062: 1059: 1056: 1050: 1047: 1044: 1041: 1038: 1035: 1029: 1028: 1025: 1022: 1019: 1013: 1010: 1004: 1001: 998: 992: 991: 985: 982: 979: 973: 970: 964: 958: 952: 946: 945: 939: 936: 933: 930: 927: 921: 915: 909: 903: 902: 899: 896: 893: 890: 887: 881: 875: 869: 863: 862: 859: 855: 854: 843: 830: 819: 809: 804: 799: 792: 787: 786:Diameter (km) 784: 768: 765: 737:published the 730: 727: 649: 648: 638: 637: 621: 618: 606: 564: 561: 522: 519: 480:(the geoid of 442:vertical datum 434: 431: 390: 389: 369: 367: 350: 347: 334:Tidally-locked 270:orbital period 229: 228: 187: 185: 178: 166: 163: 137:, the largest 127:Galilean moons 65:planetocentric 53:planetographic 36:prime meridian 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1842: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1792: 1790: 1780: 1770: 1768: 1758: 1756: 1746: 1744: 1739: 1734: 1732: 1722: 1720: 1715: 1710: 1706: 1696: 1692: 1689:Isaac Newton: 1686: 1683: 1679: 1674: 1671: 1666: 1662: 1657: 1652: 1647: 1642: 1638: 1634: 1630: 1626: 1622: 1614: 1611: 1606: 1604:9789401123068 1600: 1596: 1593:. Dordrecht: 1592: 1585: 1582: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1539: 1534: 1532:9780444527486 1528: 1524: 1520: 1516: 1509: 1506: 1502: 1497: 1494: 1481: 1477: 1471: 1468: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1420: 1417: 1411: 1408: 1402: 1399: 1395: 1390: 1387: 1381: 1378: 1374: 1369: 1366: 1360: 1357: 1350: 1347: 1341: 1338: 1332: 1329: 1324: 1318: 1315: 1312: 1307: 1304: 1297: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1261: 1258: 1256: 1253: 1252: 1248: 1246: 1244: 1240: 1236: 1232: 1227: 1225: 1221: 1217: 1211: 1207: 1199: 1197: 1194: 1192: 1187: 1183: 1179: 1175: 1171: 1170: 1161: 1159: 1157: 1140: 1137: 1134: 1131: 1128: 1122: 1116: 1110: 1108: 1105: 1104: 1100: 1097: 1094: 1091: 1088: 1082: 1076: 1070: 1068: 1065: 1064: 1060: 1057: 1051: 1048: 1045: 1042: 1039: 1036: 1034: 1031: 1030: 1026: 1023: 1020: 1014: 1011: 1005: 1002: 999: 997: 994: 993: 986: 983: 980: 974: 971: 965: 959: 953: 951: 948: 947: 940: 937: 934: 931: 928: 922: 916: 910: 908: 905: 904: 900: 897: 894: 891: 888: 882: 876: 870: 868: 865: 864: 860: 857: 856: 841: 817: 796: 781: 774: 766: 764: 762: 758: 754: 750: 746: 742: 741: 736: 728: 726: 716: 712: 698: 684: 665: 663: 643: 642: 641: 619: 616: 607: 601: 600: 599: 597: 593: 589: 581: 575: 570: 562: 560: 558: 554: 549: 547: 541: 539: 535: 531: 527: 520: 518: 516: 512: 508: 504: 503: 497: 495: 491: 487: 483: 479: 478: 472: 470: 466: 462: 458: 454: 450: 447: 446:topographical 443: 439: 432: 430: 428: 424: 420: 416: 412: 408: 404: 400: 396: 386: 377: 373: 370:This section 368: 365: 361: 360: 356: 348: 346: 344: 340: 335: 331: 329: 325: 321: 317: 313: 309: 304: 301: 297: 292: 290: 285: 283: 279: 275: 274:giant planets 271: 267: 263: 262:orbital plane 258: 256: 252: 248: 244: 240: 236: 225: 222: 214: 204: 200: 194: 193: 188:This section 186: 182: 177: 176: 172: 164: 162: 160: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 95: 90: 86: 82: 79: 75: 71: 67: 66: 61: 60: 55: 54: 49: 41: 37: 32: 19: 1690: 1685: 1673: 1628: 1624: 1613: 1590: 1584: 1551: 1547: 1541: 1514: 1508: 1496: 1484:. Retrieved 1480:the original 1470: 1429: 1425: 1419: 1410: 1401: 1389: 1380: 1368: 1359: 1349: 1340: 1331: 1317: 1306: 1291:Selenography 1228: 1213: 1190: 1167: 1165: 1146: 738: 735:Isaac Newton 732: 666: 650: 639: 598:values are 595: 585: 550: 542: 524: 500: 498: 475: 473: 436: 398: 394: 393: 380: 376:adding to it 371: 332: 314:crater. For 305: 299: 295: 293: 288: 286: 259: 232: 217: 211:January 2020 208: 197:Please help 192:verification 189: 146: 113:, including 103:Solar System 92: 64: 63: 59:planetodetic 58: 57: 52: 51: 47: 45: 1825:Cartography 1767:Outer space 1755:Spaceflight 1719:Mathematics 1554:(1): 1–13. 1486:October 22, 858:Equatorial 803:period (h) 791:bulge (km) 320:retrogrades 125:, the four 1830:Navigation 1815:Astrometry 1789:Categories 1298:References 1260:Areography 1220:non-convex 1204:See also: 795:Flattening 789:Equatorial 656:pix by 300 569:Flattening 563:Flattening 546:egg shaped 423:ellipsoids 353:See also: 324:perihelion 255:retrograde 239:north pole 169:See also: 155:Mars datum 78:geocentric 76:, and the 70:geographic 1810:Astronomy 1779:Geography 1731:Astronomy 1691:Principia 1680:page 3-1. 1665:2169-9097 1576:119952798 1568:0167-9295 1462:189842666 1454:0923-2958 961:000  955:000  924:00 0 884:00 0 832:Deviation 745:ellipsoid 740:Principia 733:In 1687, 717:is about 486:Mariner 9 465:elevation 339:libration 294:However, 165:Longitude 1249:See also 1153: km 1124:00  880:12,713.6 874:12,756.2 801:Rotation 749:spheroid 709:for the 596:defining 586:For the 502:selenoid 461:altitude 433:Altitude 403:latitude 383:May 2021 349:Latitude 343:analemma 251:prograde 247:ecliptic 97:for the 74:geodetic 1820:Geodesy 1705:Portals 1633:Bibcode 1434:Bibcode 1191:Cassini 1186:Daphnis 1174:Iapetus 1107:Neptune 1040:108,728 1037:120,536 1003:133,708 1000:142,984 996:Jupiter 920:6,752.4 914:6,792.4 808:(kg/m) 806:Density 753:density 704:⁄ 690:⁄ 683:Jupiter 676:⁄ 553:Jupiter 513:by the 494:Tharsis 407:Equator 405:plane ( 328:Hun Kal 316:Mercury 266:Mercury 143:Neptune 131:Jupiter 115:Mercury 109:of the 85:planets 1663:  1601:  1574:  1566:  1529:  1460:  1452:  1184:, and 1156:Saturn 1120:48,682 1114:49,528 1080:49,946 1074:51,118 1067:Uranus 1043:11,808 1033:Saturn 932:24.632 892:23.936 861:Polar 798:ratio 699:, and 697:Saturn 667:Other 658:  654:  594:, the 490:Viking 477:areoid 421:) are 312:Airy-0 237:. The 235:crater 135:Triton 133:, and 1743:Stars 1572:S2CID 1458:S2CID 1354:1992. 1235:Mimas 1193:probe 1178:Atlas 1141:−47% 1132:16.11 1101:−36% 1092:17.24 1086:1,172 1061:−45% 1049:10.56 1027:−38% 1018:9.925 1009:9,276 978:9.074 963:891.8 957:964.3 950:Ceres 901:−23% 867:Earth 834:from 783:Body 592:Earth 588:WGS84 515:GRAIL 469:geoid 119:Venus 62:, or 1661:ISSN 1599:ISBN 1564:ISSN 1527:ISBN 1488:2009 1450:ISSN 1224:Eros 1208:and 1135:1638 1095:1270 1021:1326 990:−2% 981:2162 969:72.5 944:+3% 935:3933 907:Mars 895:5515 886:42.6 759:and 711:Moon 695:for 681:for 538:Mars 536:and 534:Moon 507:Moon 499:The 488:and 482:Mars 474:The 419:Mars 397:and 300:East 287:For 145:. A 139:moon 123:Mars 99:Moon 83:for 1651:hdl 1641:doi 1629:118 1556:doi 1552:106 1519:doi 1442:doi 1430:109 1182:Pan 1151:808 1126:846 1055:687 967:000 715:Sun 706:900 652:300 557:bar 471:). 378:. 282:Sun 201:by 141:of 129:of 1791:: 1659:. 1649:. 1639:. 1627:. 1623:. 1570:. 1562:. 1550:. 1525:. 1456:. 1448:. 1440:. 1428:. 1233:, 1231:Io 1216:Io 1180:, 1149:11 926:40 918:00 912:00 763:. 725:. 723:10 692:10 685:, 678:16 429:. 345:. 330:. 264:; 257:. 121:, 117:, 72:, 56:, 46:A 1707:: 1667:. 1653:: 1643:: 1635:: 1607:. 1578:. 1558:: 1535:. 1521:: 1490:. 1464:. 1444:: 1436:: 1325:. 1118:0 1112:0 1084:0 1078:0 1072:0 1053:0 1016:0 1007:0 988:0 976:0 942:0 878:0 872:0 842:f 818:f 721:× 719:9 702:1 688:1 674:1 669:f 645:b 620:f 617:1 603:a 463:/ 413:( 385:) 381:( 224:) 218:( 213:) 209:( 195:. 42:. 20:)

Index

Longitude (planets)

prime meridian
near side of the Moon
geographic
geodetic
geocentric
coordinate systems
planets
celestial bodies
selenographic coordinates
Moon
Solar System
Merton E. Davies
Rand Corporation
Mercury
Venus
Mars
Galilean moons
Jupiter
Triton
moon
Neptune
geodetic datums
Mars datum
equigeopotential
Prime meridian (planets)

verification
improve this article

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.