Knowledge

Phylogenetic invariants

Source 📝

372:
called the CS05 model, is a generalized non-homogeneous version of the HKY (Hasegawa-Kishino-Yano) model constrained to have equal distribution of the pairs of bases A,T and C,G at each node of the tree and no assumption regarding a stable base distribution. All models listed above are submodels of the general Markov model (GMM). The ability to perform tests using non-homogeneous models represents a major benefit of the invariants methods relative to the more commonly used maximum likelihood methods for phylogenetic model testing.
94:), which can be written as a vector. This site pattern frequency vector has 255 degrees of freedom because the frequencies must sum to one. However, any set of site pattern frequencies that resulted from some specific process of sequence evolution on a specific tree must obey many constraints. and therefore have many fewer degrees of freedom. Thus, there should be polynomials involving those frequencies that take on a value of zero if the DNA sequences were generated on a specific tree given a particular 910:(SVD) of matrices generated by "flattening" the nucleotides associated with each of the leaves (i.e., the site pattern frequency spectrum). Different flattening matrices are produced for each topology. However, comparisons of the original Eriksson SVD method (ErikSVD) to neighbor joining and the maximum likelihood approach implemented in the 894:
the correct tree). This inefficiency has caused most empiricists to abandon the use of Lake's invariants. Also, because Lake's invariants are based on the Kimura two-parameter model phylogenetic estimation using Lake's invariants may not yield the true tree when the model that generated the data strongly violates that model.
919:
project. The original ErikSVD method was improved by Fernández-Sánchez and Casanellas, who proposed a normalization they called Erik+2. The original ErikSVD method is statistically consistent (it converges on. the true tree. as the empirical distribution approaches the theoretical distribution); the
902:
The low efficiency of Lake's invariants reflects the fact that it used a limited set of generators for the phylogenetic invariants. Casanellas et al. introduced methods to derive a much larger set of set of generators for DNA data and this has led to the development of invariants methods that are as
893:
found that Lake's invariants converges on the true tree over all of the branch length space they examined when the underlying model of evolution is the Kimura two-parameter model. However, they also found that Lake's invariants are very inefficient (large amounts of data are necessary to converge on
371:
The asterisk after the JC69, K80, and K81 models is used to emphasize the non-homogeneous nature of the models that can be examined using invariants. These non-homogeneous models include the commonly used continuous-time JC69, K80, and K81 models as submodels. The SSM (strand-specific model), also
309:
Symmetry invariants are non-phylogenetic in nature; they take on the expected value of zero regardless of the tree topology. However, it is possible to determine whether a particular multiple sequence alignment fits the Jukes-Cantor model of evolution (i.e., by testing whether the site patterns of
51:
At this point the number of programs that allow empirical datasets to be analyzed using invariants is limited. However, phylogenetic invariants may provide solutions to other problems in phylogenetics and they represent an area of active research for that reason. Felsenstein stated it best when he
386:
Lake's invariants (which he called "evolutionary parsimony") provide an excellent example of phylogenetic invariants. Lake's invariants involve quartets, two of which (the incorrect topologies) yield values of zero and one of which yields a value greater than zero. This can be used to construct a
101:
Invariants are formulas in the expected pattern frequencies, not the observed pattern frequencies. When they are computed using the observed pattern frequencies, we will usually find that they are not precisely zero even when the model and tree topology are correct. By testing whether such
939:) represents another example of an invariants method hat has been implemented in software package that is practical to be used with empirical datasets. Squangles permit the choice among the three possible quartets assuming that DNA sequences have evolved under the general 310:
the appropriate types are present in equal numbers). More general tests for the best-fitting model using invariants are also possible. For example Kedzierska et al. 2012 used invariants to establish the best-fitting model out from a specific model set.
882:. Similar χ tests can be performed for Y and Z. If one of the three values is significantly different from zero the corresponding topology is the best estimate of phylogeny. The advantage of using Lake's invariants relative to maximum likelihood or 914:
program dnaml were mixed; ErikSVD underperformed the other two methods when used with simulated data but it appeared to perform better than dnaml when applied to an empirical mammalian dataset based on an early release of data from the
39:
analyses is that invariants can yield information about the tree without requiring the estimation of branch lengths of model parameters. The idea of using phylogenetic invariants was introduced independently by James Cavender and
378:, which are defined as the subset of invariants that take on a value of zero only when the sequences were (or were not) generated on a specific topology, are likely to be the most useful invariants for phylogenetic studies. 1748:
Reddy, Sushma; Kimball, Rebecca T.; Pandey, Akanksha; Hosner, Peter A.; Braun, Michael J.; Hackett, Shannon J.; Han, Kin-Lan; Harshman, John; Huddleston, Christopher J.; Kingston, Sarah; Marks, Ben D. (September 2017).
105:
Some invariants are straightforward consequences of symmetries in the model of nucleotide substitution and they will take on a value of zero regardless of the underlying tree topology. For example, if we assume the
1610:
Eriksson N. (2005) "Tree construction using singular value decomposition," in Algebraic statistics for computational biology, ed. Pachter L,  Sturmfels B., Cambridge University Press (Chapter 19, pp.
1412:
Casanellas M,  Sullivant S. (2005) "The strand symmetric model," in Algebraic statistics for computational biology, ed. Pachter L,  Sturmfels B., Cambridge University Press (Chapter 16, pp.
698: 625: 552: 1542:
Casanellas M,  Sullivant S. Pachter L,  Sturmfels B. (2005) Catalog of small trees, Algebraic statistics for computational biology. Chapter 15, Cambridge (UK) Cambridge University Press
453: 102:
polynomials for various trees are 'nearly zero' when evaluated on the observed frequencies of patterns in real data sequences one should be able infer which tree best explains the data.
1422:
Pachter L,  Sturmfels B. (2005) "Biology," in Algebraic statistics for computational biology, ed. Pachter L,  Sturmfels B., Cambridge University Press (Chapter 4, pp. 125-159)
872: 796: 746: 182:. The equation shown above is only one of a large number of symmetry invariants for the Jukes-Cantor model; in fact, there are a total of 241 symmetry invariants for that model. 174: 886:
of Kimura two-parameter distances is that the invariants should hold regardless of the model parameters, branch lengths, or patterns of among-sites rate heterogeneity.
387:
test based on following invariant relationship, which holds for the two incorrect trees when sites evolve under the Kimura two-parameter model of sequence evolution:
943:; the quartets can then be assembled using a supertree method. There are three squangles that are useful for differentiating among quartets, which can be denoted as 457:
The indices of these site pattern frequencies indicate the bases scored relative to the base in the first taxon (which we call taxon A). If base 1 is a
903:
efficient as maximum likelihood methods. Several of these methods have implementations that are practical for analyses of empirical datasets.
178:
This is a simple outgrowth of the fact that base frequencies are constrained to be equal under the Jukes-Cantor model. Thus, they are called
24: 1750: 1329: 1267: 920:
Erik+2 normalization improves the performance of the method given finite datasets. It has been implemented in the software package
52:
said, "invariants are worth attention, not for what they do for us now, but what they might lead to in the future." (p. 390)
36: 1751:"Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling" 1182:
are all zero on the star topology (a quartet with an internal branch length of zero). For practicality, Holland et al. used
631: 558: 485: 32: 392: 907: 27:, and they can be used to choose among phylogenetic tree topologies in an empirical setting. The primary advantage of 20: 805: 1505: 19:
invariants are polynomial relationships between the frequencies of various site patterns in an idealized DNA
1679:
Sumner J.G.. Entanglement, invariants, and phylogenetics, 2006 University of Tasmania. Available from: URL
465:. If base 1 is a pyrimidine, then base 2 is the other pyrimidine and. bases 3 and 4 are the purines.   314: 107: 1803: 755: 705: 115: 1623:"Invariant Versus Classical Quartet Inference When Evolution is Heterogeneous Across Sites and Lineages" 1553: 1357: 1190:
values. Empirical tests of the squangles method have been limited but they appear to be promising.
1634: 1565: 1469: 1248: 940: 879: 95: 41: 186:
Symmetry invariants for the Jukes-Cantor model of DNA evolution (adapted from Felsenstein 2004)
1486:
Barry, D., & Hartigan, J. A. (1987). Statistical analysis of hominoid molecular evolution.
1780: 1772: 1730: 1722: 1662: 1654: 1593: 1585: 1525: 1461: 1453: 1395: 1387: 1335: 1325: 1297: 1289: 1240: 1268:"A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony" 1762: 1712: 1644: 1575: 1517: 1445: 1377: 1369: 1279: 1232: 883: 875: 480:. We can calculate three values from the data to identify the best topology given the data: 1700: 1284: 66:
possible site patterns. For example, there are 256 possible site patterns for four taxa (
1554:"Performance of a New Invariants Method on Homogeneous and Nonhomogeneous Quartet Trees" 1797: 1252: 1183: 45: 16: 1473: 890: 1521: 1433: 1220: 462: 1776: 1726: 1658: 1589: 1529: 1457: 1434:"Dating of the human-ape splitting by a molecular clock of mitochondrial DNA" 1391: 1293: 1244: 964:(f) (f is a 256 element vector containing the site frequency spectrum). Each 906:
Eriksson proposed an invariants method for the general Markov model based on
1767: 1717: 1649: 1622: 1580: 1373: 1339: 1784: 1734: 1666: 1597: 1399: 1465: 1301: 1319: 1209:, ed. by O. Gascuel and M. Steel. Oxford University Press, 2007, 108--147 317:
that can be tested using the Kedzierska et al. (2012) invariants method
1699:
Holland, Barbara R.; Jarvis, Peter D.; Sumner, Jeremy G. (2013-01-01).
1449: 1358:"SPIn: Model Selection for Phylogenetic Mixtures via Linear Invariants" 1236: 1570: 1382: 1356:
Kedzierska, A. M.; Drton, M.; Guigo, R.; Casanellas, M. (2012-03-01).
1701:"Low-Parameter Phylogenetic Inference Under the General Markov Model" 1207:
Reconstructing Evolution: New Mathematical and Computational Advances
916: 911: 458: 1432:
Hasegawa, Masami; Kishino, Hirohisa; Yano, Taka-aki (October 1985).
1680: 1639: 921: 1221:"Invariants of phylogenies in a simple case with discrete states" 1205:
Allman, E. S. and. Rhodes, J. A., "Phylogenetic invariants,'' in
993:
values). Each possible quartet has different expected values for
968:
has 66,744 terms and together they satisfy the linear relation
802:) and suggests testing for deviation from zero by calculating 461:, then base 2 is the other purine and bases 3 and 4 are the 1621:
Fernández-Sánchez, Jesús; Casanellas, Marta (March 2016).
31:
relative to other methods of phylogenetic estimation like
702:
Lake broke these values up into a "parsimony-like term" (
1506:"Success of Phylogenetic Methods in the Four-Taxon Case" 23:. They have received substantial study in the field of 1219:
Cavender, James A.; Felsenstein, Joseph (March 1987).
989:= 0 (i.e., up to linear dependence there are only two 808: 758: 708: 693:{\displaystyle Z=N_{1331}-N_{1332}-N_{1341}+N_{1342}} 634: 620:{\displaystyle Y=N_{1313}-N_{1323}-N_{1314}+N_{1324}} 561: 547:{\displaystyle X=N_{1133}-N_{1233}-N_{1134}+N_{1234}} 488: 395: 118: 1552:
Casanellas, M; Fernández-Sánchez, J (January 2007).
448:{\displaystyle f_{1133}+f_{1234}=f_{1233}+f_{1134}} 866: 790: 740: 692: 619: 546: 447: 168: 55:If we consider a multiple sequence alignment with 1504:Huelsenbeck, J. P.; Hillis, D. M. (1993-09-01). 898:Modern approaches using phylogenetic invariants 8: 468:We will call three possible quartet trees T 59:taxa and no gaps or missing data (i.e., an 1766: 1716: 1648: 1638: 1579: 1569: 1381: 1324:. Sunderland, Mass.: Sinauer Associates. 1283: 924:as an option for the SVDquartets method. 867:{\displaystyle \chi ^{2}=(P-B)^{2}/(P+B)} 844: 838: 813: 807: 782: 769: 757: 732: 719: 707: 684: 671: 658: 645: 633: 611: 598: 585: 572: 560: 538: 525: 512: 499: 487: 439: 426: 413: 400: 394: 145: 123: 117: 1016: 889:A classic study by John Huelsenbeck and 312: 184: 108:Jukes-Cantor model of sequence evolution 1198: 1694: 1692: 1690: 1688: 1285:10.1093/oxfordjournals.molbev.a040433 61:idealized multiple sequence alignment 7: 1351: 1349: 1313: 1311: 1039:(adapted from Holland et al. 2013) 791:{\displaystyle B=N_{1233}+N_{1134}} 741:{\displaystyle P=N_{1133}+N_{1234}} 169:{\displaystyle f_{ACAT}-f_{CGCA}=0} 14: 381: 110:and a four-taxon tree we expect: 1681:http://eprints.utas.edu.au/709/ 1558:Molecular Biology and Evolution 1362:Molecular Biology and Evolution 1272:Molecular Biology and Evolution 1438:Journal of Molecular Evolution 861: 849: 835: 822: 1: 1318:Felsenstein, Joseph. (2004). 279:xyzw (e.g., ACGT, CGTA, ...) 262:xxyz (e.g., AACG, ACGA, ...) 245:xxyy (e.g., AACC, ACCA, ...) 228:xxxy (e.g., AAAC, AACA, ...) 211:xxxx (e.g., AAAA, CCCC, ...) 203:Total invariants that result 908:singular value decomposition 21:multiple sequence alignment 1820: 1266:Lake, J. A. (March 1987). 1225:Journal of Classification 752:) the "background term" ( 382:Lake's linear invariants 197:Number of pattern types 194:Example of site pattern 1522:10.1093/sysbio/42.3.247 376:Phylogenetic invariants 349:Kimura three-parameter 315:Models of DNA evolution 29:phylogenetic invariants 868: 792: 742: 694: 621: 548: 449: 357:Strand-specific model 191:Site pattern category 170: 1768:10.1093/sysbio/syx041 1718:10.1093/sysbio/sys072 1650:10.1093/sysbio/syv086 1581:10.1093/molbev/msl153 1374:10.1093/molbev/msr259 1321:Inferring phylogenies 869: 793: 743: 695: 622: 549: 450: 365:General Markov model 341:Kimura two-parameter 171: 1161:The expected values 1018:Expected values for 806: 756: 706: 632: 559: 486: 393: 116: 1488:Statistical Science 1040: 322:Model abbreviation 318: 200:Number of patterns 187: 180:symmetry invariants 1755:Systematic Biology 1705:Systematic Biology 1627:Systematic Biology 1510:Systematic Biology 1450:10.1007/BF02101694 1237:10.1007/BF01890075 1017: 864: 788: 738: 690: 617: 544: 445: 313: 185: 166: 96:substitution model 42:Joseph Felsenstein 33:maximum likelihood 1186:to solve for the 1159: 1158: 1141:AD|BC (or 14|23) 1119:AC|BD (or 13|24) 1097:AB|CD (or 12|34) 880:degree of freedom 874:and performing a 369: 368: 307: 306: 1811: 1789: 1788: 1770: 1745: 1739: 1738: 1720: 1696: 1683: 1677: 1671: 1670: 1652: 1642: 1618: 1612: 1608: 1602: 1601: 1583: 1573: 1549: 1543: 1540: 1534: 1533: 1501: 1495: 1484: 1478: 1477: 1429: 1423: 1420: 1414: 1410: 1404: 1403: 1385: 1353: 1344: 1343: 1315: 1306: 1305: 1287: 1263: 1257: 1256: 1216: 1210: 1203: 1046:(newick format) 1041: 884:neighbor joining 873: 871: 870: 865: 848: 843: 842: 818: 817: 797: 795: 794: 789: 787: 786: 774: 773: 747: 745: 744: 739: 737: 736: 724: 723: 699: 697: 696: 691: 689: 688: 676: 675: 663: 662: 650: 649: 626: 624: 623: 618: 616: 615: 603: 602: 590: 589: 577: 576: 553: 551: 550: 545: 543: 542: 530: 529: 517: 516: 504: 503: 454: 452: 451: 446: 444: 443: 431: 430: 418: 417: 405: 404: 325:Full model name 319: 188: 175: 173: 172: 167: 159: 158: 137: 136: 1819: 1818: 1814: 1813: 1812: 1810: 1809: 1808: 1794: 1793: 1792: 1747: 1746: 1742: 1698: 1697: 1686: 1678: 1674: 1620: 1619: 1615: 1609: 1605: 1551: 1550: 1546: 1541: 1537: 1503: 1502: 1498: 1485: 1481: 1431: 1430: 1426: 1421: 1417: 1411: 1407: 1355: 1354: 1347: 1332: 1317: 1316: 1309: 1265: 1264: 1260: 1218: 1217: 1213: 1204: 1200: 1196: 1181: 1174: 1167: 1138:((A,D),(B,C)); 1116:((A,C),(B,D)); 1094:((A,B),(C,D)); 1087: 1074: 1061: 1038: 1031: 1024: 1013: 1006: 999: 988: 981: 974: 963: 956: 949: 900: 834: 809: 804: 803: 801: 778: 765: 754: 753: 751: 728: 715: 704: 703: 680: 667: 654: 641: 630: 629: 607: 594: 581: 568: 557: 556: 534: 521: 508: 495: 484: 483: 479: 475: 471: 435: 422: 409: 396: 391: 390: 384: 276:1x, 1y, 1z, 1w 141: 119: 114: 113: 93: 86: 79: 72: 12: 11: 5: 1817: 1815: 1807: 1806: 1796: 1795: 1791: 1790: 1761:(5): 857–879. 1740: 1684: 1672: 1633:(2): 280–291. 1613: 1603: 1564:(1): 288–293. 1544: 1535: 1516:(3): 247–264. 1496: 1479: 1444:(2): 160–174. 1424: 1415: 1405: 1368:(3): 929–937. 1345: 1330: 1307: 1278:(2): 167–191. 1258: 1211: 1197: 1195: 1192: 1179: 1172: 1165: 1157: 1156: 1153: 1148: 1142: 1139: 1135: 1134: 1128: 1125: 1120: 1117: 1113: 1112: 1107: 1101: 1098: 1095: 1091: 1090: 1085: 1077: 1072: 1064: 1059: 1051: 1048: 1044:Tree topology 1036: 1029: 1022: 1011: 1004: 997: 986: 979: 972: 961: 954: 947: 899: 896: 863: 860: 857: 854: 851: 847: 841: 837: 833: 830: 827: 824: 821: 816: 812: 799: 785: 781: 777: 772: 768: 764: 761: 749: 735: 731: 727: 722: 718: 714: 711: 687: 683: 679: 674: 670: 666: 661: 657: 653: 648: 644: 640: 637: 614: 610: 606: 601: 597: 593: 588: 584: 580: 575: 571: 567: 564: 541: 537: 533: 528: 524: 520: 515: 511: 507: 502: 498: 494: 491: 477: 473: 469: 442: 438: 434: 429: 425: 421: 416: 412: 408: 403: 399: 383: 380: 367: 366: 363: 359: 358: 355: 351: 350: 347: 343: 342: 339: 335: 334: 331: 327: 326: 323: 305: 304: 301: 299: 296: 294: 290: 289: 286: 283: 280: 277: 273: 272: 269: 266: 263: 260: 256: 255: 252: 249: 246: 243: 239: 238: 235: 232: 229: 226: 222: 221: 218: 215: 212: 209: 205: 204: 201: 198: 195: 192: 165: 162: 157: 154: 151: 148: 144: 140: 135: 132: 129: 126: 122: 91: 84: 77: 70: 63:), there are 4 25:biomathematics 13: 10: 9: 6: 4: 3: 2: 1816: 1805: 1804:Phylogenetics 1802: 1801: 1799: 1786: 1782: 1778: 1774: 1769: 1764: 1760: 1756: 1752: 1744: 1741: 1736: 1732: 1728: 1724: 1719: 1714: 1710: 1706: 1702: 1695: 1693: 1691: 1689: 1685: 1682: 1676: 1673: 1668: 1664: 1660: 1656: 1651: 1646: 1641: 1636: 1632: 1628: 1624: 1617: 1614: 1607: 1604: 1599: 1595: 1591: 1587: 1582: 1577: 1572: 1571:q-bio/0610030 1567: 1563: 1559: 1555: 1548: 1545: 1539: 1536: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1500: 1497: 1494:(2), 191-207. 1493: 1489: 1483: 1480: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1428: 1425: 1419: 1416: 1409: 1406: 1401: 1397: 1393: 1389: 1384: 1379: 1375: 1371: 1367: 1363: 1359: 1352: 1350: 1346: 1341: 1337: 1333: 1331:0-87893-177-5 1327: 1323: 1322: 1314: 1312: 1308: 1303: 1299: 1295: 1291: 1286: 1281: 1277: 1273: 1269: 1262: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1212: 1208: 1202: 1199: 1193: 1191: 1189: 1185: 1184:least squares 1178: 1171: 1164: 1154: 1152: 1149: 1147: 1143: 1140: 1137: 1136: 1133: 1129: 1126: 1124: 1121: 1118: 1115: 1114: 1111: 1108: 1106: 1102: 1099: 1096: 1093: 1092: 1088: 1081: 1078: 1075: 1068: 1065: 1062: 1055: 1052: 1049: 1047: 1043: 1042: 1035: 1028: 1021: 1015: 1010: 1003: 996: 992: 985: 978: 971: 967: 960: 953: 946: 942: 938: 934: 930: 927:"Squangles" ( 925: 923: 918: 913: 909: 904: 897: 895: 892: 887: 885: 881: 877: 858: 855: 852: 845: 839: 831: 828: 825: 819: 814: 810: 783: 779: 775: 770: 766: 762: 759: 733: 729: 725: 720: 716: 712: 709: 700: 685: 681: 677: 672: 668: 664: 659: 655: 651: 646: 642: 638: 635: 627: 612: 608: 604: 599: 595: 591: 586: 582: 578: 573: 569: 565: 562: 554: 539: 535: 531: 526: 522: 518: 513: 509: 505: 500: 496: 492: 489: 481: 476:,  and T 466: 464: 460: 455: 440: 436: 432: 427: 423: 419: 414: 410: 406: 401: 397: 388: 379: 377: 373: 364: 361: 360: 356: 353: 352: 348: 345: 344: 340: 337: 336: 333:Jukes-Cantor 332: 329: 328: 324: 321: 320: 316: 311: 302: 300: 297: 295: 292: 291: 287: 284: 281: 278: 275: 274: 270: 267: 264: 261: 258: 257: 253: 250: 247: 244: 241: 240: 236: 233: 230: 227: 224: 223: 219: 216: 213: 210: 207: 206: 202: 199: 196: 193: 190: 189: 183: 181: 176: 163: 160: 155: 152: 149: 146: 142: 138: 133: 130: 127: 124: 120: 111: 109: 103: 99: 97: 90: 83: 76: 69: 65: 62: 58: 53: 49: 47: 46:James A. Lake 43: 38: 37:Bayesian MCMC 34: 30: 26: 22: 18: 1758: 1754: 1743: 1711:(1): 78–92. 1708: 1704: 1675: 1630: 1626: 1616: 1606: 1561: 1557: 1547: 1538: 1513: 1509: 1499: 1491: 1487: 1482: 1441: 1437: 1427: 1418: 1408: 1365: 1361: 1320: 1275: 1271: 1261: 1231:(1): 57–71. 1228: 1224: 1214: 1206: 1201: 1187: 1176: 1169: 1162: 1160: 1150: 1145: 1131: 1122: 1109: 1104: 1083: 1079: 1070: 1066: 1057: 1053: 1045: 1033: 1026: 1019: 1008: 1001: 994: 990: 983: 976: 969: 965: 958: 951: 944: 941:Markov model 936: 932: 928: 926: 905: 901: 891:David Hillis 888: 701: 628: 555: 482: 467: 456: 389: 385: 375: 374: 370: 308: 259:2x, 1y, 1z 179: 177: 112: 104: 100: 88: 81: 74: 67: 64: 60: 56: 54: 50: 28: 17:Phylogenetic 15: 463:pyrimidines 354:SSM (CS05) 1383:2117/14907 1194:References 931:tochastic 1777:1063-5157 1727:1076-836X 1659:1063-5157 1640:1405.6546 1590:1537-1719 1530:1063-5157 1458:0022-2844 1392:0737-4038 1294:1537-1719 1253:121832940 1245:0176-4268 957:(f), and 878:with one 829:− 811:χ 665:− 652:− 592:− 579:− 519:− 506:− 293:Totals = 139:− 48:in 1987. 1798:Category 1785:28369655 1735:22914976 1667:26559009 1611:347-358) 1598:17053050 1474:25554168 1413:305-321) 1400:22009060 1340:52127769 1050:Quartet 1466:3934395 1302:3447007 935:artet t 242:2x, 2y 225:3x, 1y 44:and by 1783:  1775:  1733:  1725:  1665:  1657:  1596:  1588:  1528:  1472:  1464:  1456:  1398:  1390:  1338:  1328:  1300:  1292:  1251:  1243:  1175:, and 1032:, and 1007:, and 937:angles 917:ENCODE 912:PHYLIP 876:χ test 459:purine 330:JC69* 1635:arXiv 1566:arXiv 1470:S2CID 1249:S2CID 950:(f), 922:PAUP* 798:for T 748:for T 346:K81* 338:K80* 1781:PMID 1773:ISSN 1731:PMID 1723:ISSN 1663:PMID 1655:ISSN 1594:PMID 1586:ISSN 1526:ISSN 1462:PMID 1454:ISSN 1396:PMID 1388:ISSN 1336:OCLC 1326:ISBN 1298:PMID 1290:ISSN 1241:ISSN 784:1134 771:1233 734:1234 721:1133 686:1342 673:1341 660:1332 647:1331 613:1324 600:1314 587:1323 574:1313 540:1234 527:1134 514:1233 501:1133 441:1134 428:1233 415:1234 402:1133 362:GMM 303:241 271:138 92:TTTT 87:, … 85:AAAG 78:AAAC 71:AAAA 1763:doi 1713:doi 1645:doi 1576:doi 1518:doi 1446:doi 1378:hdl 1370:doi 1280:doi 1233:doi 472:, T 298:15 288:23 285:24 268:24 254:33 251:12 237:44 234:12 208:4x 35:or 1800:: 1779:. 1771:. 1759:66 1757:. 1753:. 1729:. 1721:. 1709:62 1707:. 1703:. 1687:^ 1661:. 1653:. 1643:. 1631:65 1629:. 1625:. 1592:. 1584:. 1574:. 1562:24 1560:. 1556:. 1524:. 1514:42 1512:. 1508:. 1490:, 1468:. 1460:. 1452:. 1442:22 1440:. 1436:. 1394:. 1386:. 1376:. 1366:29 1364:. 1360:. 1348:^ 1334:. 1310:^ 1296:. 1288:. 1274:. 1270:. 1247:. 1239:. 1227:. 1223:. 1168:, 1155:0 1127:0 1100:0 1089:) 1076:) 1063:) 1025:, 1014:: 1000:, 982:+ 975:+ 933:qu 282:1 265:6 248:3 231:4 220:3 217:4 214:1 98:. 80:, 73:, 1787:. 1765:: 1737:. 1715:: 1669:. 1647:: 1637:: 1600:. 1578:: 1568:: 1532:. 1520:: 1492:2 1476:. 1448:: 1402:. 1380:: 1372:: 1342:. 1304:. 1282:: 1276:4 1255:. 1235:: 1229:4 1188:q 1180:3 1177:q 1173:2 1170:q 1166:1 1163:q 1151:w 1146:w 1144:- 1132:v 1130:- 1123:v 1110:u 1105:u 1103:- 1086:3 1084:q 1082:( 1080:E 1073:2 1071:q 1069:( 1067:E 1060:1 1058:q 1056:( 1054:E 1037:3 1034:q 1030:2 1027:q 1023:1 1020:q 1012:3 1009:q 1005:2 1002:q 998:1 995:q 991:q 987:3 984:q 980:2 977:q 973:1 970:q 966:q 962:3 959:q 955:2 952:q 948:1 945:q 929:s 862:) 859:B 856:+ 853:P 850:( 846:/ 840:2 836:) 832:B 826:P 823:( 820:= 815:2 800:X 780:N 776:+ 767:N 763:= 760:B 750:X 730:N 726:+ 717:N 713:= 710:P 682:N 678:+ 669:N 656:N 643:N 639:= 636:Z 609:N 605:+ 596:N 583:N 570:N 566:= 563:Y 536:N 532:+ 523:N 510:N 497:N 493:= 490:X 478:Z 474:Y 470:X 437:f 433:+ 424:f 420:= 411:f 407:+ 398:f 164:0 161:= 156:A 153:C 150:G 147:C 143:f 134:T 131:A 128:C 125:A 121:f 89:f 82:f 75:f 68:f 57:t

Index

Phylogenetic
multiple sequence alignment
biomathematics
maximum likelihood
Bayesian MCMC
Joseph Felsenstein
James A. Lake
substitution model
Jukes-Cantor model of sequence evolution
Models of DNA evolution
purine
pyrimidines
χ test
degree of freedom
neighbor joining
David Hillis
singular value decomposition
PHYLIP
ENCODE
PAUP*
Markov model
least squares
"Invariants of phylogenies in a simple case with discrete states"
doi
10.1007/BF01890075
ISSN
0176-4268
S2CID
121832940
"A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.