Knowledge

Point particle

Source 📝

208: 31: 264: 96:. A point particle is an appropriate representation of any object whenever its size, shape, and structure are irrelevant in a given context. For example, from far enough away, any finite-size object will look and behave as a point-like object. Point masses and point charges, discussed below, are two common cases. When a point particle has an additive property, such as mass or charge, it is often represented mathematically by a 755: 342:
of the particle can be represented as a superposition of interactions of individual states which are localized. This is not true for a composite particle, which can never be represented as a superposition of exactly-localized quantum states. It is in this sense that physicists can discuss the
147:
and neutrons, whose internal structures are made up of quarks. Elementary particles are sometimes called "point particles" in reference to their lack of internal structure, but this is in a different sense than that discussed herein.
330:
Nevertheless, there is good reason that an elementary particle is often called a point particle. Even if an elementary particle has a delocalized wavepacket, the wavepacket can be represented as a
255:
associated with a classical point charge increases to infinity as the distance from the point charge decreases towards zero, which suggests that the model is no longer accurate in this limit.
343:
intrinsic "size" of a particle: The size of its internal structure, not the size of its wavepacket. The "size" of an elementary particle, in this sense, is exactly zero.
39: 716:
Jefimenko, Oleg D. (1994). "Direct calculation of the electric and magnetic fields of an electric point charge moving with constant velocity".
460: 431: 687: 625: 595: 315:, has an internal structure (see figure). However, neither elementary nor composite particles are spatially localized, because of the 667: 559: 504: 77: 496: 183:, extended objects can behave as point-like even in their immediate vicinity. For example, spherical objects interacting in 780: 775: 188: 718: 551: 452: 393: 759: 423: 351: 191:
behave, as long as they do not touch each other, in such a way as if all their matter were concentrated in their
89: 630: 600: 248: 100:. In classical mechanics there is usually no concept of rotation of point particles about their "center". 331: 316: 108: 244: 207: 171:) that has nonzero mass, and yet explicitly and specifically is (or is being thought of or modeled as) 727: 696: 346:
For example, for the electron, experimental evidence shows that the size of an electron is less than
97: 350:. This is consistent with the expected value of exactly zero. (This should not be confused with the 288: 184: 112: 327:: The electron is an elementary particle, but its quantum states form three-dimensional patterns. 292: 196: 140: 211:
Scalar potential of a point charge shortly after exiting a dipole magnet, moving left to right.
663: 555: 500: 456: 427: 284: 164: 104: 735: 704: 532: 375: 240: 216: 51: 30: 380: 307:, is a particle with no known internal structure. Whereas a composite particle, such as a 228: 731: 700: 659: 528: 387: 324: 263: 252: 236: 192: 116: 769: 708: 363: 335: 172: 124: 522: 575: 243:, which describes the electric force between two point charges. Another result, 639: 609: 320: 272: 247:, states that a collection of point charges cannot be maintained in a static 354:, which, despite the name, is unrelated to the actual size of an electron.) 47: 17: 131:. There is nevertheless a distinction between elementary particles such as 754: 685:
Cornish, F. H. J. (1965). "Classical radiation theory and point charges".
656:
Fundamental University Physics Volume III: Quantum and Statistical Physics
251:
configuration solely by the electrostatic interaction of the charges. The
115:, with no internal structure, occupies a nonzero volume. For example, the 296: 268: 232: 132: 120: 81: 50:
particles devoid of interactions (no collisions, gravitational force, or
43: 635: 605: 312: 180: 85: 308: 304: 176: 168: 144: 42:, point particles to measure distance between two charged particles, 739: 480:. §6.2 Gravitational Force between a Uniform Sphere and a Particle. 370: 300: 276: 262: 206: 136: 93: 548:
A Guided Tour of Mathematical Methods for the Physical Sciences
493:
The Principia: Mathematical Principles of Natural Philosophy
338:
wherein the particle is exactly localized. Moreover, the
107:, the concept of a point particle is complicated by the 195:. In fact, this is true for all fields described by an 46:(point mass attached to the end of a massless string), 323:always occupies a nonzero volume. For example, see 519:I. Newton, A. Motte, J. Machin (1729), p. 270–271. 524:The Mathematical Principles of Natural Philosophy 88:. Its defining feature is that it lacks spatial 576:"Precision pins down the electron's magnetism" 139:, which have no known internal structure, and 8: 92:; being dimensionless, it does not take up 495:. Translated by Cohen, I. B.; Whitman, A. 187:whose interactions are described by the 29: 27:Idealised model of a particle in physics 499:. p. 956 (Proposition 75, Theorem 35). 418:Ohanian, H. C.; Markert, J. T. (2007). 410: 527:. Translated by Motte, A.; Machin, J. 447:Udwadia, F. E.; Kalaba, R. E. (2007). 476:Fowles, Grant R; Cassiday, George L. 295:. An elementary particle, such as an 291:(also called "point particle") and a 40:Newton's law of universal gravitation 7: 420:Physics for Engineers and Scientists 287:, there is a distinction between an 175:(infinitely small) in its volume or 688:Proceedings of the Physical Society 449:Analytical Dynamics: A New Approach 227:, a point particle with a nonzero 167:, of a physical object (typically 25: 378:(general concept, not limited to 267:A proton is a combination of two 163:) is the concept, for example in 753: 317:Heisenberg uncertainty principle 109:Heisenberg uncertainty principle 36:(counterclockwise from top left) 654:M. Alonso; E. J. Finn (1968). 497:University of California Press 422:. Vol. 1 (3rd ed.). 1: 34:Examples of point particles: 215:Similar to point masses, in 719:American Journal of Physics 797: 709:10.1088/0370-1328/86/3/301 552:Cambridge University Press 453:Cambridge University Press 352:classical electron radius 631:Encyclopedia Americana 624:S. L. Glashow (2009). 601:Encyclopedia Americana 596:"Particle, Elementary" 280: 212: 127:occupies a volume of ~ 55: 394:Wave–particle duality 332:quantum superposition 266: 219:physicists discuss a 210: 189:Newtonian gravitation 33: 762:at Wikimedia Commons 554:. pp. 196–198. 546:Snieder, R. (2001). 478:Analytical Mechanics 400:Notes and references 259:In quantum mechanics 98:Dirac delta function 781:Classical mechanics 776:Concepts in physics 732:1994AmJPh..62...79J 701:1965PPS....86..427C 521:Newton, I. (1729). 491:Newton, I. (1999). 390:of particle physics 289:elementary particle 275:, held together by 185:3-dimensional space 179:. In the theory of 141:composite particles 113:elementary particle 70:point-like particle 293:composite particle 281: 245:Earnshaw's theorem 231:. The fundamental 213: 197:inverse square law 111:, because even an 74:pointlike particle 56: 54:between particles) 758:Media related to 594:C. Quigg (2009). 578:. 4 October 2006. 462:978-0-521-04833-0 433:978-0-393-93003-0 285:quantum mechanics 177:linear dimensions 165:classical physics 105:quantum mechanics 16:(Redirected from 788: 757: 743: 712: 673: 650: 648: 647: 638:. Archived from 620: 618: 617: 608:. Archived from 580: 579: 572: 566: 565: 543: 537: 536: 517: 511: 510: 488: 482: 481: 473: 467: 466: 444: 438: 437: 415: 376:Charge (physics) 349: 225: 224: 217:electromagnetism 130: 84:heavily used in 21: 796: 795: 791: 790: 789: 787: 786: 785: 766: 765: 750: 740:10.1119/1.17716 715: 684: 681: 679:Further reading 676: 670: 653: 645: 643: 623: 615: 613: 593: 589: 584: 583: 574: 573: 569: 562: 545: 544: 540: 520: 518: 514: 507: 490: 489: 485: 475: 474: 470: 463: 446: 445: 441: 434: 417: 416: 412: 407: 402: 381:electric charge 360: 347: 319:. The particle 261: 229:electric charge 222: 221: 205: 193:centers of mass 154: 128: 72:(often spelled 52:Coulomb's force 44:simple pendulum 38:point mass for 28: 23: 22: 15: 12: 11: 5: 794: 792: 784: 783: 778: 768: 767: 764: 763: 760:Point particle 749: 748:External links 746: 745: 744: 713: 695:(3): 427–442. 680: 677: 675: 674: 668: 660:Addison-Wesley 651: 636:Grolier Online 621: 606:Grolier Online 590: 588: 585: 582: 581: 567: 560: 538: 529:Benjamin Motte 512: 505: 483: 468: 461: 439: 432: 409: 408: 406: 403: 401: 398: 397: 396: 391: 388:Standard Model 385: 373: 368: 366: 359: 356: 336:quantum states 325:atomic orbital 260: 257: 253:electric field 237:electrostatics 204: 201: 161:pointlike mass 153: 150: 66:ideal particle 62:point particle 37: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 793: 782: 779: 777: 774: 773: 771: 761: 756: 752: 751: 747: 741: 737: 733: 729: 725: 721: 720: 714: 710: 706: 702: 698: 694: 690: 689: 683: 682: 678: 671: 669:0-201-00262-0 665: 661: 657: 652: 642:on 2013-04-01 641: 637: 633: 632: 627: 622: 612:on 2013-04-01 611: 607: 603: 602: 597: 592: 591: 586: 577: 571: 568: 563: 561:0-521-78751-3 557: 553: 549: 542: 539: 534: 530: 526: 525: 516: 513: 508: 506:0-520-08817-4 502: 498: 494: 487: 484: 479: 472: 469: 464: 458: 455:. p. 1. 454: 450: 443: 440: 435: 429: 426:. p. 3. 425: 421: 414: 411: 404: 399: 395: 392: 389: 386: 383: 382: 377: 374: 372: 369: 367: 365: 364:Test particle 362: 361: 357: 355: 353: 344: 341: 337: 333: 328: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 278: 274: 270: 265: 258: 256: 254: 250: 246: 242: 241:Coulomb's law 238: 234: 230: 226: 218: 209: 202: 200: 198: 194: 190: 186: 182: 178: 174: 173:infinitesimal 170: 166: 162: 158: 151: 149: 146: 142: 138: 134: 126: 125:hydrogen atom 122: 118: 114: 110: 106: 101: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 58: 53: 49: 45: 41: 35: 32: 19: 726:(1): 79–85. 723: 717: 692: 686: 655: 644:. Retrieved 640:the original 629: 614:. Retrieved 610:the original 599: 587:Bibliography 570: 547: 541: 523: 515: 492: 486: 477: 471: 448: 442: 419: 413: 379: 345: 340:interactions 339: 329: 282: 223:point charge 220: 214: 203:Point charge 160: 156: 155: 117:atomic orbit 102: 78:idealization 73: 69: 65: 61: 59: 57: 18:Point object 531:. pp.  249:equilibrium 770:Categories 646:2009-07-04 616:2009-07-04 321:wavepacket 273:down quark 157:Point mass 152:Point mass 348:10 m 269:up quarks 133:electrons 129:10 m 90:extension 82:particles 48:ideal gas 358:See also 297:electron 271:and one 233:equation 143:such as 121:electron 76:) is an 728:Bibcode 697:Bibcode 626:"Quark" 313:neutron 181:gravity 145:protons 123:in the 86:physics 666:  558:  503:  459:  430:  424:Norton 309:proton 305:photon 277:gluons 169:matter 137:quarks 119:of an 535:–271. 405:Notes 371:Brane 303:, or 301:quark 94:space 664:ISBN 556:ISBN 501:ISBN 457:ISBN 428:ISBN 736:doi 705:doi 533:270 334:of 311:or 283:In 239:is 235:of 135:or 103:In 80:of 68:or 772:: 734:. 724:62 722:. 703:. 693:86 691:. 662:. 658:. 634:. 628:. 604:. 598:. 550:. 451:. 299:, 199:. 64:, 60:A 742:. 738:: 730:: 711:. 707:: 699:: 672:. 649:. 619:. 564:. 509:. 465:. 436:. 384:) 279:. 159:( 20:)

Index

Point object

Newton's law of universal gravitation
simple pendulum
ideal gas
Coulomb's force
idealization
particles
physics
extension
space
Dirac delta function
quantum mechanics
Heisenberg uncertainty principle
elementary particle
atomic orbit
electron
hydrogen atom
electrons
quarks
composite particles
protons
classical physics
matter
infinitesimal
linear dimensions
gravity
3-dimensional space
Newtonian gravitation
centers of mass

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.