Knowledge

Polygenic score

Source 📝

657:
Moreover, the polygenic risk score may be informative across an individual's lifespan helping to quantify the genetic lifelong risk for certain diseases. For many diseases, having a strong genetic risk can results in an earlier onset of presentation (e.g. Familial Hypercholesterolemia). Recognizing an increased genetic burden earlier can allow clinicians to intervene earlier and avoid delayed diagnoses. Polygenic score can be combined with traditional risk factors to increase clinical utility. For example, polygenic risk scores may help improve diagnosis of diseases. This is especially evident in distinguishing Type 1 from Type 2 Diabetes. Likewise, a polygenic risk score based approach may reduce invasive diagnostic procedures as demonstrated in Celiac disease. Polygenic scores may also empower individuals to alter their lifestyles to reduce risk for diseases. While there is some evidence for behavior modification as a result of knowing one's genetic predisposition, more work is required to evaluate risk-modifying behaviors across a variety of different disease states. Population level screening is another use case for polygenic scores. The goal of population-level screening is to identify patients at high risk for a disease who would benefit from an existing treatment. Polygenic scores can identify a subset of the population at high risk that could benefit from screening. Several clinical studies are being done in breast cancer and heart disease is another area that could benefit from a polygenic score based screening program.
648:
genetics where, as of 2018, a majority of the studies to date have been done in Europeans. Other challenges that can arise include how precisely the polygenic risk score can be calculated and how precise it needs to be for clinical utility. Even if a polygenic score is accurately calculated and calibrated for a population, its interpretation must be approached with caution. First, it is important to realize that polygenic traits are different from monogenic traits; the latter stem from fewer genetic loci and can be detected more accurately. Genetic tests are often difficult to interpret and require genetic counseling. Currently, polygenic-score results are being shared with clinicians. Since monogenic genetic testing is far more mature than polygenic scores, we can look there for approximating the clinical impact of polygenic scores. While some studies have found negative effects of returning monogenic genetic results to patients, the majority of studies have that negative consequences are minor.
726:
GEBV is the same as a PGS: a linear function of genetic variants that are each weighted by the apparent effect of the variant. Despite this, polygenic prediction in livestock is useful for a fundamentally different reason than for humans. In humans, a PRS is used for the prediction of individual phenotype, while in livestock a GEBV is typically used to predict the offspring's average value of a phenotype of interest in terms of the genetic material it inherited from a parent. In this way, a GEBV can be understood as the average of the offspring of an individual or pair of individual animals. GEBVs are also typically communicated in the units of the trait of interest. For example, the expected increase in milk production of the offspring of a specific parent compared to the offspring from a reference population might be a typical way of using a GEBV in dairy cow breeding and selection.
531: 576: 722:, are all technically "related". In human genomic prediction, by contrast, unrelated individuals in large populations are selected to estimate the effects of common SNPs. Because of smaller effective population in livestock, the mean coefficient of relationship between any two individuals is likely high, and common SNPs will tag causal variants at greater physical distance than for humans; this is the major reason for lower SNP-based heritability estimates for humans compared to livestock. In both cases, however, sample size is key for maximizing the accuracy of genomic prediction. 714:, and humans alike. Although the same basic concepts underlie these areas of prediction, they face different challenges that require different methodologies. The ability to produce very large family size in nonhuman species, accompanied by deliberate selection, leads to a smaller effective population, higher degrees of linkage disequilibrium among individuals, and a higher average genetic relatedness among individuals within a population. For example, members of plant and animal breeds that humans have effectively created, such as modern 639:. The most frequently reported motivation for individuals to seek out PRS reports is general curiosity (98.2%), and the reactions are generally mixed with common misinterpretations. It is speculated that personal use of PRS could contribute to treatment choices, but that more data is needed. As of 2020 a more typical use was that clinicians face individuals with commercially derived disease-specific PRS in the expectation that the clinician will interpret them, something that may create extra burdens for the clinical care system. 201: 620:
comparable to those with rare genetic variants. This comparison is important because clinical practice can be influenced by knowing which individuals have this rare genetic cause of cardiovascular disease. Since this study, polygenic risk scores have shown promise for disease prediction across other traits. Polygenic risk scores have been studied heavily in obesity, coronary artery disease, diabetes, breast cancer, prostate cancer, Alzheimer's disease and psychiatric diseases.
490:
scores. A key advantage of quantifying polygenic contribution for each individual is that the genetic liability does not change over an individual's lifespan. However, while a disease may have strong genetic contributions, the risk arising from one's genetics has to be interpreted in the context of environmental factors. For example, even if an individual has a high genetic risk for alcoholism, that risk is lessened if that individual is never exposed to alcohol.
503:
type 2 diabetes in African populations as well as schizophrenia in Chinese populations. Other researchers recognize that polygenic under-prediction in non-European population should galvanize new GWAS that prioritize greater genetic diversity in order to maximize the potential health benefits brought about by predictive polygenic scores. Significant scientific efforts are being made to this end.
86: 273:, (see top graphic). The results from a GWAS estimate the strength of the association at each SNP, i.e., the effect size at the SNP, as well as a p-value for statistical significance. A typical score is then calculated by adding the number of risk-modifying alleles across a large number of SNPs, where the number of alleles for each SNP is multiplied by the weight for the SNP. 161:. The score reflects an individual's estimated genetic predisposition for a given trait and can be used as a predictor for that trait. It gives an estimate of how likely an individual is to have a given trait based only on genetics, without taking environmental factors into account; and it is typically calculated as a weighted sum of trait-associated 36: 192:(GWAS). They are an active area of research spanning topics such as learning algorithms for genomic prediction; new predictor training; validation testing of predictors; and clinical application of PRS. In 2018, the American Heart Association named polygenic risk scores as one of the major breakthroughs in research in heart disease and stroke. 232:
to the variations in nucleotide bases in human populations. Improvements in methodology and studies with large cohorts have enabled the mapping of many traits—some of which are diseases—to the human genome. Learning which variations influence which specific traits and how strongly they do so, are the
601:
With the use of these growing biobanks, data from many thousands of individuals are used to detect the relevant variants for a specific trait. Exactly how many are required depends very much on the trait in question. Typically, increasing levels of prediction are observed until a plateau phase where
489:
As the number of genome-wide association studies has exploded, along with rapid advances in methods for calculating polygenic scores, its most obvious application is in clinical settings for disease prediction or risk stratification. It is important not to over- or under-state the value of polygenic
647:
At a fundamental level, the use of polygenic scores in clinical context will have similar technical issues as existing tools. For example, if a tool is not validated in a diverse population, then it may exacerbate disparities with unequal efficacy across populations. This is especially important in
606:
of the specific trait. The sample size required to reach this performance level for a certain trait is determined by the complexity of the underlying genetic architecture and the distribution of genetic variance in the sampled population. This sample size dependence is illustrated in the figure for
579:
PGS predictor performance increases with the dataset sample size available for training. Here illustrated for hypertension, hypothyroidism and type 2 diabetes. The x-axis labels number of cases (i.e. individuals with the disease) present in the training data and uses a logarithmic scale. The entire
468:
can also be used to construct polygenic scores. From prior information penalized regression assigns probabilities on: 1) how many genetic variants are expected to affect a trait, and 2) the distribution of their effect sizes. These methods in effect "penalize" the large coefficients in a regression
725:
While modern genomic prediction scoring in humans is generally referred to as a "polygenic score" (PGS) or a "polygenic risk score" (PRS), in livestock the more common term is "genomic estimated breeding value", or GEBV (similar to the more familiar "EBV", but with genotypic data). Conceptually, a
669:
diseases, which are typically affected by many genetic variants that individually confer a small effect to overall risk. Additionally, a polygenic score can be used in several different ways: as a lower bound to test whether heritability estimates may be biased; as a measure of genetic overlap of
502:
Although issues such as poorer predictive performance in individuals of non-European ancestry limit widespread use, several authors have noted that some causal variants for some conditions, but not others, are shared between Europeans and other groups across different continents for (e.g.) BMI and
480:
More approaches for developing polygenic risk scores continue to be described. For example, by incorporating effect sizes from populations of different ancestry, the predictive ability of scores can be improved. Incorporating knowledge of the functional roles of specific genomic chunks can improve
216:
for life. Although polygenic risk scores from study in humans have gained the most attention, the basic idea was first introduced for selective plant and animal breeding. Similar to the latter-day approaches of constructing a polygenic risk score, an individual's—animal or plant—breeding value was
656:
Unlike many other clinical laboratory or imaging methods, an individual's germ-line genetic risk can be calculated at birth for a variety of diseases after sequencing their DNA once. Thus, polygenic scores may ultimately be a cost-effective measure that can be informative for clinical management.
565:
In 2020, AUC ≈ 0.71 for schizophrenia, using 90 cohorts including ~67,000 case subjects and ~94,000 controls with ~80% of European ancestry and ~20% of East Asian ancestry. Note that these results use purely genetic information as input; including additional information such as age and sex often
3576:
Adeyemo, Adebowale; Balaconis, Mary K.; Darnes, Deanna R.; Fatumo, Segun; Granados Moreno, Palmira; Hodonsky, Chani J.; Inouye, Michael; Kanai, Masahiro; Kato, Kazuto; Knoppers, Bartha M.; Lewis, Anna C. F.; Martin, Alicia R.; McCarthy, Mark I.; Meyer, Michelle N.; Okada, Yukinori; Richards, J.
204:
An early (2006) example of a genetic risk score applied to Type 2 Diabetes in humans. The authors of the study concluded that, individually, risk alleles only moderately identify increase-of-risk of disease; but identifiable risk is "multiplicatively increased" when information is combined from
172:
that are typically affected by many genetic variants, each of which confers a small effect on overall risk. In a polygenic risk predictor the lifetime (or age-range) risk for the disease is a numerical function captured by the score which depends on the states of thousands of individual genetic
619:
A landmark study examining the role of polygenic risk scores in cardiovascular disease invigorated interest the clinical potential of polygenic scores. This study demonstrated that an individual with the highest polygenic risk score (top 1%) had a lifetime cardiovascular risk >10% which was
522:
has been criticised due to alleged ethical and safety issues as well as limited practical utility. However, trait-specific evaluations claiming the contrary have been put forth and ethical arguments for PGS-based embryo selection have also been made. The topic continues to be an active area of
758:
Gregory, Gillian; Das Gupta, Kuheli; Meiser, Bettina; Barlow-Stewart, Kristine; Geelan-Small, Peter; Kaur, Rajneesh; Scheepers-Joynt, Maatje; McInerny, Simone; Taylor, Shelby; Antill, Yoland; Salmon, Lucinda; Smyth, Courtney; Young, Mary-Anne; James, Paul A; Yanes, Tatiane (February 2022).
498:
For humans, while most polygenic scores are not predictive enough to diagnose disease, they could be used in addition to other covariates (such as age, BMI, smoking status) to improve estimates of disease susceptibility. However, even if a polygenic score might not make reliable diagnostic
610:
Note again, that current methods to construct polygenic predictors are sensitive to the ancestries present in the data. As of 2021, most available data have been primarily of populations with European ancestry, which is the reason why PGS generally perform better within this ancestry. The
526:
As of 2019, polygenic scores from well over a hundred phenotypes have been developed from genome-wide association statistics. These include scores that can be categorized as anthropometric, behavioural, cardiovascular, non-cancer illness, psychiatric/neurological, and response to
236:
The methods were first considered for humans after the year 2000, and specifically by a proposal in 2007 that such scores could be used in human genetics to identify individuals at high risk for disease. The concept was successfully applied in 2009 by researchers who organized a
101:(individuals without the disease, (blue)). The y-axis (vertical axis) indicates how many in each group are assigned a certain score. + At the right panel, the same population is divided into three groups according to their predicted risk, i.e., their assigned score, as 593:
containing data for both genotypes and phenotypes of very many individuals. As of 2021, there exist several biobanks with hundreds of thousands samples, i.e., data entries with both genetic and trait information for each individual (see for instance the incomplete
499:
predictions across an entire population, it may still make very accurate predictions for outliers at extreme high or low risk. The clinical utility may therefore still be large even if average measures of prediction performance are moderate.
588:
The performance of a polygenic predictor is highly dependent on the size of the dataset that is available for analysis and ML training. Recent scientific progress in prediction power relies heavily on the creation and expansion of large
543:
When predicting disease risk, a PGS gives a continuous score that estimates the risk of having or getting the disease, within some pre-defined time span. A common metric for evaluating such continuous estimates of yes/no questions (see
462:, meaning they typically are inherited together and therefore don't provide independent predictive power. That's what's referred to as 'pruning'. The 'thresholding' refers to using only SNPs that meet a specific p-value threshold. 580:
range is from 1,000 cases up to over 100,000 cases. The numbers of controls (i.e. individuals without the disease) in the training data were much larger than the numbers of cases. These particular predictors were trained using the
4317:
Mbatchou, J; Barnard, L; Backman, J; Marcketta, A; Kosmicki, JA; Ziyatdinov, A; Benner, C; O'Dushlaine, C; Barber, M; Boutkov, B; Habegger, L; Ferreira, M; Baras, A; Reid, J; Abecasis, G; Maxwell, E; Marchini, J (July 2021).
3248:
Ripke S, Walters JT, O'Donovan MC, et al. (Schizophrenia Working Group of the Psychiatric Genomics Consortium) (2020-09-12). "Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia".
4536:
Francesca Forzano, Olga Antonova, Angus Clarke, Guido de Wert, Sabine Hentze, Yalda Jamshidi, Yves Moreau, Markus Perola, Inga Prokopenko, Andrew Read, Alexandre Reymond, Vigdis Stefansdottir, Carla van El (2022).
602:
the performance levels off and does not change much when increasing the sample size even further. This is the limit of how accurate a polygenic predictor that only uses genetic information can be and is set by the
517:
has increasingly become established over decades, whereas tests for polygenic diseases have begun to be employed more recently, having been first used in embryo selection in 2019. The use of polygenic scores for
3626:
Brockman DG, Petronio L, Dron JS, Kwon BC, Vosburg T, Nip L, et al. (January 2021). "Design and user experience testing of a polygenic score report: a qualitative study of prospective users". p. 238.
427: 3577:
Brent; Richter, Lucas; Ripatti, Samuli; Rotimi, Charles N.; Sanderson, Saskia C.; Sturm, Amy C.; Verdugo, Ricardo A.; Widen, Elisabeth; Willer, Cristen J.; Wojcik, Genevieve L.; Zhou, Alicia (November 2021).
473:, first proposed in 2001 that directly incorporate genetic features of a given trait as well as genomic features like linkage disequilibrium. (One Bayesian method uses "linkage disequilibrium prediction" or 205:
several known risk polymorphisms. Using such combined information allows for identifying subgroups of a population with odds for disease that are significantly greater than when using a single polymorphism.
3175:
Khera A, Chaggin M, Aragam KG, Emdin CA, Klarin D, Haas ME, Roselli C, Natarajan P, Kathiresan S (2017-11-15). "Genome-wide polygenic score to identify a monogenic risk-equivalent for coronary disease".
2657:"Validation of concurrent preimplantation genetic testing for polygenic and monogenic disorders, structural rearrangements, and whole and segmental chromosome aneuploidy with a single universal platform" 674:), which might indicate e.g. shared genetic bases for groups of mental disorders; as a means to assess group differences in a trait such as height, or to examine changes in a trait over time due to 623:
As of January 2021 providing PRS directly to individuals was undergoing research trials in health systems around the world, but is not yet offered as standard of care. Most use is therefore through
627:, where a number of private companies report PRS for a number of diseases and traits. Consumers download their genotype (genetic variant) data and upload them into online PRS calculators, e.g. 566:
greatly improves the predictions. The coronary disease predictor and the hypothyroidism predictor above achieve AUCs of ~ 0.80 and ~0.78, respectively, when also including age and sex.
4108:
Saya S, McIntosh JG, Winship IM, Clendenning M, Milton S, Oberoi J, et al. (2020). "A Genomic Test for Colorectal Cancer Risk: Is This Acceptable and Feasible in Primary Care?".
3485:
Millward M, Tiller J, Bogwitz M, Kincaid H, Taylor S, Trainer AH, Lacaze P (September 2020). "Impact of direct-to-consumer genetic testing on Australian clinical genetics services".
2697: 977:
Yanes T, Meiser B, Kaur R, Scheepers-Joynt M, McInerny S, Taylor S, et al. (March 2020). "Uptake of polygenic risk information among women at increased risk of breast cancer".
509:
is common with millions biopsied and tested each year worldwide. Genotyping methods have been developed so that the embryo genotype can be determined to high precision. Testing for
343: 1230: 698:. Polygenic scores also have useful statistical properties in (genomic) association testing, for instance to account for outcome-specific background effects and/or improve 665:
A variety of applications exists for polygenic scores. In humans, polygenic scores were originally computed in an effort to predict the prevalence and etiology of complex,
220:
Human DNA contains about 3 billion bases. The human genome can be broadly separated into coding and non-coding sequences, where the coding genome encodes instructions for
2712:
Aurea appears to be the first child born after a new type of DNA testing that gave her a "polygenic risk score." ... Her parents underwent fertility treatment in 2019 ...
3326:
Wray NR, Lin T, Austin J, McGrath JJ, Hickie IB, Murray GK, Visscher PM (January 2021). "From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer".
3270:
Wray NR, Lin T, Austin J, McGrath JJ, Hickie IB, Murray GK, Visscher PM (January 2021). "From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer".
690:
with relevant traits); to detect & control for the presence of genetic confounds in outcomes (e.g. the correlation of schizophrenia with poverty); or to investigate
611:
construction of more diverse biobanks with successful recruitment from all ancestries is required to rectify this skewed access to and benefits from PGS-based medicine.
303: 54: 455:
of the trait on each genetic variant. The included SNPs may be selected using an algorithm that attempts to ensure that each marker is approximately independent.
113:(blue). The y-axis shows the observed risk amounts, where the x-axis shows the groups separating in risk as they age—corresponding with the predicted risk scores. 1468: 4069:"The behavioral response to personalized genetic information: will genetic risk profiles motivate individuals and families to choose more healthful behaviors?" 682:(as e.g. for intelligence where the changes in frequency would be too small to detect on each individual hit but not on the overall polygenic score); in 740:
Preprint lists AUC for pure PRS while the published version of the paper only lists AUC for PGS combined with age, sex and genotyping array information.
2849:"Preimplantation Genetic Testing for Polygenic Disease Relative Risk Reduction: Evaluation of Genomic Index Performance in 11,883 Adult Sibling Pairs" 2707: 458:
Independence of each SNP is important for the score's predictive accuracy. SNPs that are physically close to each other are more likely to be in
3934:"Faculty Opinions recommendation of Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention" 1493: 4301: 3072: 443:
Methods for generating polygenic scores in humans are an active area of research. Two key considerations in developing polygenic scores are
552:(AUC). Some example results of PGS performance, as measured in AUC (0 ≤ AUC ≤ 1 where a larger number implies better prediction), include: 350: 3873: 549: 506: 72: 695: 691: 530: 451:
to include. The simplest, the so-called "pruning and thresholding" method, sets weights equal to the coefficient estimates from a
188:
due to their efficacy in improving livestock breeding and crops. In humans, polygenic scores are typically generated from data of
575: 217:
calculated to be the combined weight of several single-nucleotide polymorphisms (SNPs) by their individual effects on a trait.
174: 93:
on polygenic risk score with increasing age. + The left panel shows how risk—(the standardized PRS on the x-axis)—can separate
4604: 1521:
Raben TG, Lello L, Widen E, Hsu SD (2021-01-14). "From Genotype to Phenotype: polygenic prediction of complex human traits".
250: 2480: 4599: 262: 238: 168:
Recent progress in genetics has developed polygenic predictors of complex human traits, including risk for many important
4426:"Controlling for background genetic effects using polygenic scores improves the power of genome-wide association studies" 4020:"A single nucleotide polymorphism genetic risk score to aid diagnosis of coeliac disease: a pilot study in clinical care" 4589: 760: 4367:
Jurgens, SJ; Pirruccello, JP; Choi, SH; Morrill, VN; Chaffin, M; Lubitz, SA; Lunetta, KL; Ellinor, PT (23 March 2023).
2725: 3430:"Why do people seek out polygenic risk scores for complex disorders, and how do they understand and react to results?" 559:
In 2019, AUC ≈ 0.63 for breast cancer, developed from ~95,000 case subjects and ~75,000 controls of European ancestry.
1142:
Torkamani A, Wineinger NE, Topol EJ (September 2018). "The personal and clinical utility of polygenic risk scores".
4200:
Singh Y (November 2016). "Effectiveness of Screening Programmes for Detection of Major Congenital Heart Diseases".
3126:"An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome" 930:"Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations" 4594: 3971:"A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults" 3051:
Savulescu J (October 2001). Francis L (ed.). "Procreative beneficence: why we should select the best children".
2424:"Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations" 469:
model and shrink them conservatively. One popular tool for this approach is "PRS-CS". Another is to use certain
431:
This idea can be generalized to the study of any trait, and is an example of the more general mathematical term
4579: 3889:
Nadir MA, Struthers AD (April 2011). "Family history of premature coronary heart disease and risk prediction".
3112:
An open database of polygenic scores and the relevant metadata required for accurate application and evaluation
4486:"Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction" 200: 3650:"Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults" 1265:"Genomic Prediction of 16 Complex Disease Risks Including Heart Attack, Diabetes, Breast and Prostate Cancer" 4584: 4554: 683: 562:
In 2019, AUC ≈ 0.71 for hypothyroidism for ~24,000 case subjects and ~463,00 controls of European ancestry.
3379:"Design and user experience testing of a polygenic score report: a qualitative study of prospective users" 2800:"Screening embryos for polygenic conditions and traits: ethical considerations for an emerging technology" 459: 312: 4539:"The use of polygenic risk scores in pre-implantation genetic testing: an unproven, unethical practice." 1376:"Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models" 545: 514: 481:
the utility of scores. Studies have examined the performances of these methods on standardized dataset.
2318:"A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts" 245:
with the objective of constructing scores of risk propensity. That study was the first to use the term
4437: 3628: 3250: 3177: 2435: 2378: 2270: 2066: 1902: 1788: 1680: 1276: 679: 89:
The two graphics illustrate sampling distributions of polygenic scores and the predictive ability of
4369:"Adjusting for common variant polygenic scores improves yield in rare variant association analyses" 3699:"On What We Have Learned and Still Need to Learn about the Psychosocial Impacts of Genetic Testing" 671: 470: 452: 432: 90: 3805:
Ganna A, Magnusson PK, Pedersen NL, de Faire U, Reilly M, Arnlöv J, et al. (September 2013).
2900:"Utility and First Clinical Application of Screening Embryos for Polygenic Disease Risk Reduction" 2749:
Karavani E, Zuk O, Zeevi D, Barzilai N, Stefanis NC, Hatzimanolis A, et al. (November 2019).
1569:"Combining information from common type 2 diabetes risk polymorphisms improves disease prediction" 4406: 4349: 4266: 4213: 4133: 4049: 3951: 3914: 3836: 3736: 3608: 3467: 3359: 3303: 2637: 2511: 1871: 1542: 1522: 1374:
Spiliopoulou A, Nagy R, Bermingham ML, Huffman JE, Hayward C, Vitart V, et al. (July 2015).
1167: 1033:
Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. (October 2015).
1012: 798: 581: 1889:
Wand H, Lambert SA, Tamburro C, Iacocca MA, O'Sullivan JW, Sillari C, et al. (March 2021).
279: 265:(GWAS). In a GWAS, single-nucleotide polymorphisms (SNPs) are tested for an association between 2606:
Zeevi DA, Backenroth D, Hakam-Spector E, Renbaum P, Mann T, Zahdeh F, et al. (July 2021).
761:"Polygenic risk in familial breast cancer: Changing the dynamics of communicating genetic risk" 129:) is a number that summarizes the estimated effect of many genetic variants on an individual's 4515: 4463: 4398: 4341: 4297: 4258: 4182: 4125: 4090: 4041: 4000: 3906: 3869: 3828: 3787: 3728: 3679: 3633: 3600: 3551: 3502: 3459: 3410: 3351: 3343: 3295: 3287: 3255: 3230: 3157: 3078: 3068: 3033: 2982: 2931: 2880: 2829: 2780: 2678: 2629: 2563: 2503: 2461: 2404: 2347: 2298: 2239: 2190: 2141: 2092: 2035: 1984: 1928: 1863: 1814: 1775:
Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P (August 2009).
1757: 1708: 1649: 1600: 1567:
Weedon MN, McCarthy MI, Hitman G, Walker M, Groves CJ, Zeggini E, et al. (October 2006).
1450: 1405: 1353: 1304: 1211: 1159: 1115: 1064: 1004: 959: 903: 852: 790: 699: 675: 4085: 4068: 2608:"Expanded clinical validation of Haploseek for comprehensive preimplantation genetic testing" 4505: 4497: 4453: 4445: 4388: 4380: 4331: 4289: 4248: 4240: 4209: 4172: 4164: 4117: 4080: 4031: 3990: 3982: 3941: 3898: 3859: 3818: 3777: 3767: 3718: 3710: 3669: 3661: 3590: 3579:"Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps" 3541: 3533: 3494: 3449: 3441: 3400: 3390: 3335: 3279: 3220: 3210: 3147: 3137: 3064: 3060: 3023: 3013: 2972: 2962: 2921: 2911: 2870: 2860: 2819: 2811: 2770: 2762: 2668: 2619: 2553: 2545: 2495: 2451: 2443: 2394: 2386: 2337: 2329: 2288: 2278: 2229: 2221: 2180: 2172: 2131: 2123: 2082: 2074: 2025: 2015: 1974: 1964: 1918: 1910: 1853: 1845: 1804: 1796: 1747: 1739: 1698: 1688: 1669:"Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants" 1639: 1631: 1590: 1580: 1440: 1395: 1387: 1343: 1335: 1294: 1284: 1201: 1151: 1105: 1095: 1054: 1046: 994: 986: 949: 941: 893: 883: 842: 832: 780: 772: 595: 519: 169: 4284:
Farooq V, Serruys PW (July 2018). "Risk stratification and risk scores". In Wijns W (ed.).
4018:
Sharp SA, Jones SE, Kimmitt RA, Weedon MN, Halpin AM, Wood AR, et al. (October 2020).
1231:"23andMe thinks polygenic risk scores are ready for the masses, but experts aren't so sure" 928:
Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. (September 2018).
3197:
Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. (January 2019).
2481:"Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia" 711: 710:
The benefit of polygenic scores is that they can be used to predict the future for crops,
624: 181: 4293: 3377:
Brockman DG, Petronio L, Dron JS, Kwon BC, Vosburg T, Nip L, et al. (October 2021).
2259:"Leveraging functional annotations in genetic risk prediction for human complex diseases" 2257:
Hu Y, Lu Q, Powles R, Yao X, Yang C, Fang F, et al. (June 2017). Rigoutsos I (ed.).
1429:"When more is better: how data sharing would accelerate genomic selection of crop plants" 4441: 4393: 4368: 3856:
Coronary heart disease in the Netherlands : incidence, etiology and risk prediction
2581: 2439: 2382: 2274: 2070: 1906: 1792: 1684: 1280: 821:"The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics" 4510: 4485: 4458: 4425: 4253: 4228: 4177: 4152: 3995: 3970: 3782: 3755: 3723: 3698: 3674: 3649: 3546: 3521: 3454: 3429: 3405: 3378: 3225: 3198: 3152: 3125: 3028: 3001: 2977: 2950: 2926: 2899: 2875: 2848: 2824: 2799: 2775: 2750: 2702: 2558: 2533: 2456: 2423: 2399: 2366: 2342: 2317: 2293: 2258: 2234: 2209: 2185: 2160: 2136: 2111: 2087: 2054: 2030: 2003: 1979: 1952: 1923: 1890: 1858: 1833: 1809: 1776: 1752: 1728:"Prediction of individual genetic risk to disease from genome-wide association studies" 1727: 1703: 1668: 1644: 1619: 1595: 1568: 1400: 1375: 1348: 1323: 1299: 1264: 1110: 1083: 1059: 1034: 954: 929: 898: 871: 847: 820: 636: 628: 185: 27:
Numerical score aimed at predicting a trait based on variation in multiple genetic loci
4320:"Computationally efficient whole-genome regression for quantitative and binary traits" 2365:
Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. (July 2019).
2176: 1777:"Common polygenic variation contributes to risk of schizophrenia and bipolar disorder" 4573: 4538: 4410: 4353: 4137: 4053: 3969:
Oram RA, Patel K, Hill A, Shields B, McDonald TJ, Jones A, et al. (March 2016).
3955: 3740: 3612: 3471: 3363: 3339: 3307: 3283: 2655:
Treff NR, Zimmerman R, Bechor E, Hsu J, Rana B, Jensen J, et al. (August 2019).
2641: 2515: 2367:"Analysis of polygenic risk score usage and performance in diverse human populations" 1875: 1424: 1016: 802: 242: 3918: 2898:
Treff NR, Eccles J, Lello L, Bechor E, Hsu J, Plunkett K, et al. (2019-12-04).
2847:
Treff NR, Eccles J, Marin D, Messick E, Lello L, Gerber J, et al. (June 2020).
1171: 523:
research not only within genomics but also within clinical applications and ethics.
17: 4270: 4153:"Learning one's genetic risk changes physiology independent of actual genetic risk" 3665: 2333: 1322:
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (July 2017).
603: 213: 3946: 3933: 3840: 3199:"Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes" 2967: 2210:"Multiethnic polygenic risk scores improve risk prediction in diverse populations" 2127: 1635: 2534:"Clinical use of current polygenic risk scores may exacerbate health disparities" 2283: 1585: 1100: 785: 4501: 4449: 4384: 4336: 4319: 4229:"The WISDOM Study: breaking the deadlock in the breast cancer screening debate" 3823: 3806: 3595: 3578: 3537: 3498: 3445: 3395: 3215: 3018: 2815: 2766: 2673: 2656: 2624: 2607: 2447: 2390: 2078: 1969: 1914: 1891:"Improving reporting standards for polygenic scores in risk prediction studies" 1673:
Proceedings of the National Academy of Sciences of the United States of America
1339: 1289: 1050: 253:(SNP) genotypes—which was able to explain 3% of the variance in schizophrenia. 85: 4244: 4168: 2549: 2055:"Polygenic prediction via Bayesian regression and continuous shrinkage priors" 1849: 1155: 945: 888: 687: 510: 3772: 3347: 3291: 2916: 1035:"Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores" 309:
number of SNPs with risk-increasing alleles weighted by their weights, i.e.,
4424:
Bennett, D; O'Shea, D; Ferguson, J; Morris, D; Seoighe, C (1 October 2021).
4151:
Turnwald BP, Goyer JP, Boles DZ, Silder A, Delp SL, Crum AJ (January 2019).
3902: 3864: 2316:
Ni G, Zeng J, Revez JA, Wang Y, Zheng Z, Ge T, et al. (November 2021).
1693: 666: 632: 556:
In 2018, AUC ≈ 0.64 for coronary disease using ~120,000 British individuals.
229: 130: 4519: 4467: 4402: 4345: 4262: 4186: 4129: 4094: 4045: 4004: 3910: 3832: 3791: 3732: 3683: 3604: 3555: 3506: 3463: 3414: 3355: 3299: 3234: 3161: 3082: 3037: 2986: 2935: 2884: 2833: 2784: 2682: 2633: 2567: 2507: 2465: 2408: 2351: 2302: 2243: 2194: 2145: 2096: 2039: 2020: 1988: 1932: 1867: 1818: 1761: 1712: 1653: 1604: 1454: 1409: 1357: 1308: 1215: 1163: 1119: 1068: 1008: 963: 907: 856: 794: 2865: 837: 4559: 2532:
Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ (April 2019).
1391: 1206: 1189: 118: 3142: 1800: 999: 2225: 2112:"Prediction of total genetic value using genome-wide dense marker maps" 1743: 1620:"Prediction of total genetic value using genome-wide dense marker maps" 590: 225: 4121: 4036: 4019: 3986: 3807:"Multilocus genetic risk scores for coronary heart disease prediction" 3714: 2479:
Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. (November 2017).
1543:"Big picture genetic scoring approach reliably predicts heart disease" 1469:"Modern genetics will improve health and usher in "designer" children" 1445: 1428: 990: 776: 2951:"Three models for the regulation of polygenic scores in reproduction" 1183: 1181: 1137: 1135: 1133: 1131: 1129: 719: 162: 4484:
Wray NR, Kemper KE, Hayes BJ, Goddard ME, Visscher PM (April 2019).
2499: 1953:"Polygenic risk scores: from research tools to clinical instruments" 261:
A PRS is constructed from the estimated effect sizes derived from a
3182: 1527: 189: 2751:"Screening Human Embryos for Polygenic Traits Has Limited Utility" 715: 529: 422:{\displaystyle {\hat {S}}=\sum _{j=1}^{m}X_{j}{\hat {\beta }}_{j}} 3124:
Richardson TG, Harrison S, Hemani G, Davey Smith G (March 2019).
4067:
McBride CM, Koehly LM, Sanderson SC, Kaphingst KA (2010-03-01).
2004:"Applying compressed sensing to genome-wide association studies" 1324:"10 Years of GWAS Discovery: Biology, Function, and Translation" 221: 3648:
Lineweaver TT, Bondi MW, Galasko D, Salmon DP (February 2014).
3002:"Subsidizing PGD: The Moral Case for Funding Genetic Selection" 2422:
Wang Y, Guo J, Ni G, Yang J, Visscher PM, Yengo L (July 2020).
1834:"Tutorial: a guide to performing polygenic risk score analyses" 1263:
Lello L, Raben TG, Yong SY, Tellier LC, Hsu SD (October 2019).
1494:"Test could predict risk of future heart disease for just £40" 209: 29: 2698:"Picking Embryos With Best Health Odds Sparks New DNA Debate" 4564: 3096: 97:(i.e., individuals with a certain disease, (red)) from the 2798:
Lázaro-Muñoz G, Pereira S, Carmi S, Lencz T (March 2021).
233:
key targets for constructing polygenic scores in humans.
1084:"Power and predictive accuracy of polygenic risk scores" 2053:
Ge T, Chen CY, Ni Y, Feng YA, Smoller JW (April 2019).
2002:
Vattikuti S, Lee JJ, Chang CC, Hsu SD, Chow CC (2014).
872:"Prospects for using risk scores in polygenic medicine" 534:
Predicted vs actual height using a polygenic risk score
50: 353: 315: 282: 3428:
Peck L, Borle K, Folkersen L, Austin J (July 2021).
3000:
Kemper JM, Gyngell C, Savulescu J (September 2019).
1028: 1026: 276:
In mathematical form, the estimated polygenic score
249:
for a prediction drawn from a linear combination of
2726:"Why using genetic risk scores on embryos is wrong" 2159:Privé F, Arbel J, Vilhjálmsson BJ (December 2020). 1190:"Towards clinical utility of polygenic risk scores" 45:
may be too technical for most readers to understand
3811:Arteriosclerosis, Thrombosis, and Vascular Biology 2208:Márquez-Luna C, Loh PR, Price AL (December 2017). 607:hypothyroidism, hypertension and type 2 diabetes. 421: 337: 297: 3520:Sirugo G, Williams SM, Tishkoff SA (March 2019). 2110:Meuwissen TH, Hayes BJ, Goddard ME (April 2001). 1726:Wray NR, Goddard ME, Visscher PM (October 2007). 1618:Meuwissen TH, Hayes BJ, Goddard ME (April 2001). 1188:Lambert SA, Abraham G, Inouye M (November 2019). 228:. Genome-wide association studies enable mapping 145:; in the context of disease risk, it is called a 3522:"The Missing Diversity in Human Genetic Studies" 224:, including some of the sequence that codes for 4288:. Oxford University Press. pp. 1371–1384. 3321: 3319: 3317: 1946: 1944: 1942: 1832:Choi SW, Mak TS, O'Reilly PF (September 2020). 3571: 3569: 3567: 3565: 923: 921: 919: 917: 814: 812: 257:Calculation with genome-wide association study 3938:Journal of the American College of Cardiology 2527: 2525: 8: 4479: 4477: 4214:10.26226/morressier.57d034ced462b80292382f40 1516: 1514: 1258: 1256: 1254: 1252: 1250: 4024:Alimentary Pharmacology & Therapeutics 539:Examples of disease prediction performance 4509: 4457: 4392: 4335: 4252: 4176: 4084: 4035: 3994: 3945: 3863: 3822: 3781: 3771: 3756:"Familial hypercholesterolemia: A review" 3722: 3673: 3632: 3594: 3545: 3453: 3404: 3394: 3254: 3224: 3214: 3181: 3151: 3141: 3027: 3017: 2976: 2966: 2925: 2915: 2874: 2864: 2823: 2774: 2672: 2623: 2557: 2455: 2398: 2341: 2292: 2282: 2233: 2184: 2135: 2086: 2029: 2019: 1978: 1968: 1922: 1857: 1808: 1751: 1702: 1692: 1643: 1594: 1584: 1526: 1444: 1399: 1347: 1298: 1288: 1205: 1109: 1099: 1058: 998: 953: 897: 887: 846: 836: 784: 643:Challenges and risks in clinical contexts 413: 402: 401: 394: 384: 373: 355: 354: 352: 329: 318: 317: 314: 284: 283: 281: 73:Learn how and when to remove this message 57:, without removing the technical details. 4086:10.1146/annurev.publhealth.012809.103532 574: 199: 84: 750: 2949:Munday S, Savulescu J (January 2021). 3065:10.1093/oxfordhb/9780199981878.013.26 1369: 1367: 212:in living organisms is the molecular 55:make it understandable to non-experts 7: 3858:(Thesis). University of Maastricht. 3487:European Journal of Medical Genetics 2661:European Journal of Medical Genetics 1667:Crouch DJ, Bodmer WF (August 2020). 870:Lewis CM, Vassos E (November 2017). 180:Polygenic scores are widely used in 3697:Parens E, Appelbaum PS (May 2019). 3097:"The Polygenic Score (PGS) Catalog" 2161:"LDpred2: better, faster, stronger" 338:{\displaystyle {\hat {\beta }}_{j}} 4294:10.1093/med/9780198784906.003.0335 3654:The American Journal of Psychiatry 3434:European Journal of Human Genetics 3203:American Journal of Human Genetics 1328:American Journal of Human Genetics 1039:American Journal of Human Genetics 615:Clinical utility and current usage 25: 819:de Vlaming R, Groenen PJ (2015). 706:Applications in non-human species 3340:10.1001/jamapsychiatry.2020.3049 3284:10.1001/jamapsychiatry.2020.3049 2586:All of Us Research Program | NIH 494:Predictive performance in humans 34: 2177:10.1093/bioinformatics/btaa1029 1951:Lewis CM, Vassos E (May 2020). 175:single-nucleotide polymorphisms 4202:European Journal of Pediatrics 4073:Annual Review of Public Health 3760:Annals of Pediatric Cardiology 3666:10.1176/appi.ajp.2013.12121590 2334:10.1016/j.biopsych.2021.04.018 407: 360: 323: 305:is obtained as the sum across 289: 251:single-nucleotide polymorphism 1: 4565:Polygenic Score (PGS) Catalog 3947:10.3410/f.734171897.793567857 3101:Polygenic Score (PGS) Catalog 3006:Journal of Bioethical Inquiry 2968:10.1136/medethics-2020-106588 2724:Birney E (11 November 2019). 2696:Carey Goldberg (2021-09-17). 825:BioMed Research International 765:Journal of Genetic Counseling 692:gene–environment interactions 263:genome-wide association study 239:genome-wide association study 190:genome-wide association study 133:. The PGS is also called the 3897:(8): 684, author reply 684. 2284:10.1371/journal.pcbi.1005589 1586:10.1371/journal.pmed.0030374 1101:10.1371/journal.pgen.1003348 4502:10.1534/genetics.119.301859 3634:10.1101/2021.04.14.21255397 3256:10.1101/2020.09.12.20192922 2128:10.1093/genetics/157.4.1819 1636:10.1093/genetics/157.4.1819 1229:Regalado A (8 March 2019). 661:Non-predictive applications 4621: 4450:10.1038/s41598-021-99031-3 4385:10.1038/s41588-023-01342-w 4337:10.1038/s41588-021-00870-7 4227:Esserman LJ (2017-09-13). 3824:10.1161/atvbaha.113.301218 3703:The Hastings Center Report 3596:10.1038/s41591-021-01549-6 3538:10.1016/j.cell.2019.02.048 3499:10.1016/j.ejmg.2020.103968 3446:10.1038/s41431-021-00929-3 3396:10.1186/s12920-021-01056-0 3216:10.1016/j.ajhg.2018.11.002 3019:10.1007/s11673-019-09932-2 2904:Frontiers in Endocrinology 2816:10.1038/s41436-020-01019-3 2767:10.1016/j.cell.2019.10.033 2674:10.1016/j.ejmg.2019.04.004 2625:10.1038/s41436-021-01145-6 2448:10.1038/s41467-020-17719-y 2391:10.1038/s41467-019-11112-0 2263:PLOS Computational Biology 2079:10.1038/s41467-019-09718-5 1970:10.1186/s13073-020-00742-5 1915:10.1038/s41586-021-03243-6 1340:10.1016/j.ajhg.2017.06.005 1290:10.1038/s41598-019-51258-x 1082:Dudbridge F (March 2013). 1051:10.1016/j.ajhg.2015.09.001 298:{\displaystyle {\hat {S}}} 4245:10.1038/s41523-017-0035-5 4169:10.1038/s41562-018-0483-4 2955:Journal of Medical Ethics 2582:"Diversity and Inclusion" 2550:10.1038/s41588-019-0379-x 1850:10.1038/s41596-020-0353-1 1156:10.1038/s41576-018-0018-x 946:10.1038/s41588-018-0183-z 889:10.1186/s13073-017-0489-y 571:Importance of sample size 3773:10.4103/0974-2069.132478 3754:Varghese MJ (May 2014). 2917:10.3389/fendo.2019.00845 1380:Human Molecular Genetics 1194:Human Molecular Genetics 1144:Nature Reviews. Genetics 625:consumer genetic testing 550:area under the ROC curve 507:Embryo genetic screening 3903:10.1136/hrt.2011.222265 3865:10.26481/dis.20101210am 1694:10.1073/pnas.2005634117 684:Mendelian randomization 4157:Nature Human Behaviour 4110:Public Health Genomics 3932:Neale B (2019-11-26). 2021:10.1186/2047-217X-3-10 585: 535: 527:treatment/medication. 460:linkage disequilibrium 423: 389: 339: 299: 206: 114: 4605:Personalized medicine 4560:Polygenic Score Atlas 4555:Polygenic Risk Scores 2866:10.3390/genes11060648 2428:Nature Communications 2371:Nature Communications 2322:Biological Psychiatry 2059:Nature Communications 1235:MIT Technology Review 786:1959.4/unsworks_78566 578: 546:Binary classification 533: 485:Application to humans 424: 369: 340: 300: 203: 88: 4600:Statistical genetics 3383:BMC Medical Genomics 2804:Genetics in Medicine 2612:Genetics in Medicine 2214:Genetic Epidemiology 2171:(22–23): 5424–5431. 680:soft selective sweep 515:monogenetic diseases 466:Penalized regression 351: 313: 280: 147:polygenic risk score 18:Polygenic risk score 4590:Regression analysis 4442:2021NatSR..1119571B 3143:10.7554/eLife.43657 2761:(6): 1424–1435.e8. 2440:2020NatCo..11.3865W 2383:2019NatCo..10.3328D 2275:2017PLSCB..13E5589H 2071:2019NatCo..10.1776G 1907:2021Natur.591..211W 1801:10.1038/nature08185 1793:2009Natur.460..748P 1685:2020PNAS..11718924C 1679:(32): 18924–18933. 1433:The New Phytologist 1281:2019NatSR...915286L 838:10.1155/2015/143712 672:genetic correlation 433:regression analysis 91:stratified sampling 4544:30, pages 493–495. 4430:Scientific Reports 3709:(Suppl 1): S2–S9. 2226:10.1002/gepi.22083 1744:10.1101/gr.6665407 1392:10.1093/hmg/ddv145 1269:Scientific Reports 1207:10.1093/hmg/ddz187 652:Benefits in humans 586: 536: 449:the number of SNPs 439:Key considerations 419: 335: 295: 207: 159:genetic risk score 115: 4303:978-0-19-878490-6 4233:npj Breast Cancer 4122:10.1159/000508963 4037:10.1111/apt.15826 3987:10.2337/dc15-1111 3854:Merry AH (2010). 3715:10.1002/hast.1011 3589:(11): 1876–1884. 3074:978-0-19-998187-8 2494:(11): 1576–1583. 1901:(7849): 211–219. 1787:(7256): 748–752. 1738:(10): 1520–1528. 1446:10.1111/nph.14174 1427:(December 2016). 1386:(14): 4167–4182. 1200:(R2): R133–R142. 991:10.1111/cge.13687 979:Clinical Genetics 777:10.1002/jgc4.1458 700:statistical power 676:natural selection 410: 363: 326: 292: 241:(GWAS) regarding 143:genome-wide score 83: 82: 75: 16:(Redirected from 4612: 4595:Genetics studies 4524: 4523: 4513: 4496:(4): 1131–1141. 4481: 4472: 4471: 4461: 4421: 4415: 4414: 4396: 4364: 4358: 4357: 4339: 4330:(7): 1097–1103. 4314: 4308: 4307: 4281: 4275: 4274: 4256: 4224: 4218: 4217: 4197: 4191: 4190: 4180: 4148: 4142: 4141: 4116:(3–4): 110–121. 4105: 4099: 4098: 4088: 4064: 4058: 4057: 4039: 4030:(7): 1165–1173. 4015: 4009: 4008: 3998: 3966: 3960: 3959: 3949: 3929: 3923: 3922: 3886: 3880: 3879: 3867: 3851: 3845: 3844: 3826: 3817:(9): 2267–2272. 3802: 3796: 3795: 3785: 3775: 3751: 3745: 3744: 3726: 3694: 3688: 3687: 3677: 3645: 3639: 3638: 3636: 3623: 3617: 3616: 3598: 3573: 3560: 3559: 3549: 3517: 3511: 3510: 3482: 3476: 3475: 3457: 3425: 3419: 3418: 3408: 3398: 3374: 3368: 3367: 3323: 3312: 3311: 3267: 3261: 3260: 3258: 3245: 3239: 3238: 3228: 3218: 3194: 3188: 3187: 3185: 3172: 3166: 3165: 3155: 3145: 3121: 3115: 3114: 3109: 3107: 3093: 3087: 3086: 3059:(5–6): 413–426. 3048: 3042: 3041: 3031: 3021: 2997: 2991: 2990: 2980: 2970: 2946: 2940: 2939: 2929: 2919: 2895: 2889: 2888: 2878: 2868: 2844: 2838: 2837: 2827: 2795: 2789: 2788: 2778: 2746: 2740: 2739: 2737: 2736: 2721: 2715: 2714: 2706:. Archived from 2693: 2687: 2686: 2676: 2652: 2646: 2645: 2627: 2618:(7): 1334–1340. 2603: 2597: 2596: 2594: 2593: 2578: 2572: 2571: 2561: 2529: 2520: 2519: 2485: 2476: 2470: 2469: 2459: 2419: 2413: 2412: 2402: 2362: 2356: 2355: 2345: 2313: 2307: 2306: 2296: 2286: 2254: 2248: 2247: 2237: 2205: 2199: 2198: 2188: 2156: 2150: 2149: 2139: 2122:(4): 1819–1829. 2107: 2101: 2100: 2090: 2050: 2044: 2043: 2033: 2023: 1999: 1993: 1992: 1982: 1972: 1948: 1937: 1936: 1926: 1886: 1880: 1879: 1861: 1844:(9): 2759–2772. 1838:Nature Protocols 1829: 1823: 1822: 1812: 1772: 1766: 1765: 1755: 1723: 1717: 1716: 1706: 1696: 1664: 1658: 1657: 1647: 1630:(4): 1819–1829. 1615: 1609: 1608: 1598: 1588: 1564: 1558: 1557: 1555: 1554: 1539: 1533: 1532: 1530: 1518: 1509: 1508: 1506: 1505: 1490: 1484: 1483: 1481: 1480: 1465: 1459: 1458: 1448: 1420: 1414: 1413: 1403: 1371: 1362: 1361: 1351: 1319: 1313: 1312: 1302: 1292: 1260: 1245: 1244: 1242: 1241: 1226: 1220: 1219: 1209: 1185: 1176: 1175: 1139: 1124: 1123: 1113: 1103: 1079: 1073: 1072: 1062: 1030: 1021: 1020: 1002: 974: 968: 967: 957: 940:(9): 1219–1224. 925: 912: 911: 901: 891: 867: 861: 860: 850: 840: 816: 807: 806: 788: 755: 739: 678:indicative of a 596:list of biobanks 520:embryo selection 471:Bayesian methods 428: 426: 425: 420: 418: 417: 412: 411: 403: 399: 398: 388: 383: 365: 364: 356: 344: 342: 341: 336: 334: 333: 328: 327: 319: 304: 302: 301: 296: 294: 293: 285: 173:variants (i.e., 170:complex diseases 78: 71: 67: 64: 58: 38: 37: 30: 21: 4620: 4619: 4615: 4614: 4613: 4611: 4610: 4609: 4580:Animal breeding 4570: 4569: 4551: 4533: 4531:Further reading 4528: 4527: 4483: 4482: 4475: 4423: 4422: 4418: 4373:Nature Genetics 4366: 4365: 4361: 4324:Nature Genetics 4316: 4315: 4311: 4304: 4283: 4282: 4278: 4226: 4225: 4221: 4199: 4198: 4194: 4150: 4149: 4145: 4107: 4106: 4102: 4066: 4065: 4061: 4017: 4016: 4012: 3968: 3967: 3963: 3931: 3930: 3926: 3888: 3887: 3883: 3876: 3853: 3852: 3848: 3804: 3803: 3799: 3753: 3752: 3748: 3696: 3695: 3691: 3647: 3646: 3642: 3625: 3624: 3620: 3583:Nature Medicine 3575: 3574: 3563: 3519: 3518: 3514: 3484: 3483: 3479: 3427: 3426: 3422: 3376: 3375: 3371: 3328:JAMA Psychiatry 3325: 3324: 3315: 3272:JAMA Psychiatry 3269: 3268: 3264: 3247: 3246: 3242: 3196: 3195: 3191: 3174: 3173: 3169: 3123: 3122: 3118: 3105: 3103: 3095: 3094: 3090: 3075: 3050: 3049: 3045: 2999: 2998: 2994: 2948: 2947: 2943: 2897: 2896: 2892: 2846: 2845: 2841: 2797: 2796: 2792: 2748: 2747: 2743: 2734: 2732: 2723: 2722: 2718: 2710:on 2021-09-17. 2695: 2694: 2690: 2654: 2653: 2649: 2605: 2604: 2600: 2591: 2589: 2580: 2579: 2575: 2538:Nature Genetics 2531: 2530: 2523: 2500:10.1038/ng.3973 2488:Nature Genetics 2483: 2478: 2477: 2473: 2421: 2420: 2416: 2364: 2363: 2359: 2315: 2314: 2310: 2269:(6): e1005589. 2256: 2255: 2251: 2207: 2206: 2202: 2158: 2157: 2153: 2109: 2108: 2104: 2052: 2051: 2047: 2001: 2000: 1996: 1957:Genome Medicine 1950: 1949: 1940: 1888: 1887: 1883: 1831: 1830: 1826: 1774: 1773: 1769: 1732:Genome Research 1725: 1724: 1720: 1666: 1665: 1661: 1617: 1616: 1612: 1566: 1565: 1561: 1552: 1550: 1541: 1540: 1536: 1520: 1519: 1512: 1503: 1501: 1492: 1491: 1487: 1478: 1476: 1467: 1466: 1462: 1422: 1421: 1417: 1373: 1372: 1365: 1321: 1320: 1316: 1262: 1261: 1248: 1239: 1237: 1228: 1227: 1223: 1187: 1186: 1179: 1141: 1140: 1127: 1094:(3): e1003348. 1081: 1080: 1076: 1032: 1031: 1024: 976: 975: 971: 934:Nature Genetics 927: 926: 915: 876:Genome Medicine 869: 868: 864: 818: 817: 810: 757: 756: 752: 747: 736: 732: 712:animal breeding 708: 663: 654: 645: 617: 573: 541: 496: 487: 441: 400: 390: 349: 348: 316: 311: 310: 278: 277: 259: 247:polygenic score 198: 182:animal breeding 135:polygenic index 123:polygenic score 79: 68: 62: 59: 51:help improve it 48: 39: 35: 28: 23: 22: 15: 12: 11: 5: 4618: 4616: 4608: 4607: 4602: 4597: 4592: 4587: 4585:Plant breeding 4582: 4572: 4571: 4568: 4567: 4562: 4557: 4550: 4549:External links 4547: 4546: 4545: 4532: 4529: 4526: 4525: 4473: 4416: 4379:(4): 544–548. 4359: 4309: 4302: 4276: 4219: 4192: 4143: 4100: 4059: 4010: 3981:(3): 337–344. 3961: 3924: 3881: 3874: 3846: 3797: 3766:(2): 107–117. 3746: 3689: 3660:(2): 201–208. 3640: 3618: 3561: 3512: 3477: 3420: 3369: 3334:(1): 101–109. 3313: 3278:(1): 101–109. 3262: 3240: 3189: 3183:10.1101/218388 3167: 3116: 3088: 3073: 3043: 3012:(3): 405–414. 2992: 2941: 2890: 2839: 2810:(3): 432–434. 2790: 2741: 2730:ewanbirney.com 2716: 2703:Bloomberg News 2688: 2647: 2598: 2573: 2544:(4): 584–591. 2521: 2471: 2414: 2357: 2328:(9): 611–620. 2308: 2249: 2220:(8): 811–823. 2200: 2165:Bioinformatics 2151: 2102: 2045: 1994: 1938: 1881: 1824: 1767: 1718: 1659: 1610: 1559: 1534: 1510: 1485: 1460: 1439:(4): 814–826. 1415: 1363: 1314: 1246: 1221: 1177: 1150:(9): 581–590. 1125: 1074: 1045:(4): 576–592. 1022: 985:(3): 492–501. 969: 913: 862: 808: 771:(1): 120–129. 749: 748: 746: 743: 742: 741: 731: 728: 707: 704: 662: 659: 653: 650: 644: 641: 637:Color Genomics 629:Scripps Health 616: 613: 572: 569: 568: 567: 563: 560: 557: 540: 537: 495: 492: 486: 483: 440: 437: 416: 409: 406: 397: 393: 387: 382: 379: 376: 372: 368: 362: 359: 332: 325: 322: 291: 288: 258: 255: 197: 194: 186:plant breeding 81: 80: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4617: 4606: 4603: 4601: 4598: 4596: 4593: 4591: 4588: 4586: 4583: 4581: 4578: 4577: 4575: 4566: 4563: 4561: 4558: 4556: 4553: 4552: 4548: 4543: 4540: 4535: 4534: 4530: 4521: 4517: 4512: 4507: 4503: 4499: 4495: 4491: 4487: 4480: 4478: 4474: 4469: 4465: 4460: 4455: 4451: 4447: 4443: 4439: 4435: 4431: 4427: 4420: 4417: 4412: 4408: 4404: 4400: 4395: 4390: 4386: 4382: 4378: 4374: 4370: 4363: 4360: 4355: 4351: 4347: 4343: 4338: 4333: 4329: 4325: 4321: 4313: 4310: 4305: 4299: 4295: 4291: 4287: 4286:ESC CardioMed 4280: 4277: 4272: 4268: 4264: 4260: 4255: 4250: 4246: 4242: 4238: 4234: 4230: 4223: 4220: 4215: 4211: 4207: 4203: 4196: 4193: 4188: 4184: 4179: 4174: 4170: 4166: 4162: 4158: 4154: 4147: 4144: 4139: 4135: 4131: 4127: 4123: 4119: 4115: 4111: 4104: 4101: 4096: 4092: 4087: 4082: 4079:(1): 89–103. 4078: 4074: 4070: 4063: 4060: 4055: 4051: 4047: 4043: 4038: 4033: 4029: 4025: 4021: 4014: 4011: 4006: 4002: 3997: 3992: 3988: 3984: 3980: 3976: 3975:Diabetes Care 3972: 3965: 3962: 3957: 3953: 3948: 3943: 3939: 3935: 3928: 3925: 3920: 3916: 3912: 3908: 3904: 3900: 3896: 3892: 3885: 3882: 3877: 3875:9789052789873 3871: 3866: 3861: 3857: 3850: 3847: 3842: 3838: 3834: 3830: 3825: 3820: 3816: 3812: 3808: 3801: 3798: 3793: 3789: 3784: 3779: 3774: 3769: 3765: 3761: 3757: 3750: 3747: 3742: 3738: 3734: 3730: 3725: 3720: 3716: 3712: 3708: 3704: 3700: 3693: 3690: 3685: 3681: 3676: 3671: 3667: 3663: 3659: 3655: 3651: 3644: 3641: 3635: 3630: 3622: 3619: 3614: 3610: 3606: 3602: 3597: 3592: 3588: 3584: 3580: 3572: 3570: 3568: 3566: 3562: 3557: 3553: 3548: 3543: 3539: 3535: 3531: 3527: 3523: 3516: 3513: 3508: 3504: 3500: 3496: 3493:(9): 103968. 3492: 3488: 3481: 3478: 3473: 3469: 3465: 3461: 3456: 3451: 3447: 3443: 3439: 3435: 3431: 3424: 3421: 3416: 3412: 3407: 3402: 3397: 3392: 3388: 3384: 3380: 3373: 3370: 3365: 3361: 3357: 3353: 3349: 3345: 3341: 3337: 3333: 3329: 3322: 3320: 3318: 3314: 3309: 3305: 3301: 3297: 3293: 3289: 3285: 3281: 3277: 3273: 3266: 3263: 3257: 3252: 3244: 3241: 3236: 3232: 3227: 3222: 3217: 3212: 3208: 3204: 3200: 3193: 3190: 3184: 3179: 3171: 3168: 3163: 3159: 3154: 3149: 3144: 3139: 3135: 3131: 3127: 3120: 3117: 3113: 3102: 3098: 3092: 3089: 3084: 3080: 3076: 3070: 3066: 3062: 3058: 3054: 3047: 3044: 3039: 3035: 3030: 3025: 3020: 3015: 3011: 3007: 3003: 2996: 2993: 2988: 2984: 2979: 2974: 2969: 2964: 2960: 2956: 2952: 2945: 2942: 2937: 2933: 2928: 2923: 2918: 2913: 2909: 2905: 2901: 2894: 2891: 2886: 2882: 2877: 2872: 2867: 2862: 2858: 2854: 2850: 2843: 2840: 2835: 2831: 2826: 2821: 2817: 2813: 2809: 2805: 2801: 2794: 2791: 2786: 2782: 2777: 2772: 2768: 2764: 2760: 2756: 2752: 2745: 2742: 2731: 2727: 2720: 2717: 2713: 2709: 2705: 2704: 2699: 2692: 2689: 2684: 2680: 2675: 2670: 2667:(8): 103647. 2666: 2662: 2658: 2651: 2648: 2643: 2639: 2635: 2631: 2626: 2621: 2617: 2613: 2609: 2602: 2599: 2587: 2583: 2577: 2574: 2569: 2565: 2560: 2555: 2551: 2547: 2543: 2539: 2535: 2528: 2526: 2522: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2482: 2475: 2472: 2467: 2463: 2458: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2418: 2415: 2410: 2406: 2401: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2361: 2358: 2353: 2349: 2344: 2339: 2335: 2331: 2327: 2323: 2319: 2312: 2309: 2304: 2300: 2295: 2290: 2285: 2280: 2276: 2272: 2268: 2264: 2260: 2253: 2250: 2245: 2241: 2236: 2231: 2227: 2223: 2219: 2215: 2211: 2204: 2201: 2196: 2192: 2187: 2182: 2178: 2174: 2170: 2166: 2162: 2155: 2152: 2147: 2143: 2138: 2133: 2129: 2125: 2121: 2117: 2113: 2106: 2103: 2098: 2094: 2089: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2049: 2046: 2041: 2037: 2032: 2027: 2022: 2017: 2013: 2009: 2005: 1998: 1995: 1990: 1986: 1981: 1976: 1971: 1966: 1962: 1958: 1954: 1947: 1945: 1943: 1939: 1934: 1930: 1925: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1885: 1882: 1877: 1873: 1869: 1865: 1860: 1855: 1851: 1847: 1843: 1839: 1835: 1828: 1825: 1820: 1816: 1811: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1771: 1768: 1763: 1759: 1754: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1719: 1714: 1710: 1705: 1700: 1695: 1690: 1686: 1682: 1678: 1674: 1670: 1663: 1660: 1655: 1651: 1646: 1641: 1637: 1633: 1629: 1625: 1621: 1614: 1611: 1606: 1602: 1597: 1592: 1587: 1582: 1578: 1574: 1573:PLOS Medicine 1570: 1563: 1560: 1548: 1547:Science Daily 1544: 1538: 1535: 1529: 1524: 1517: 1515: 1511: 1499: 1495: 1489: 1486: 1474: 1473:The Economist 1470: 1464: 1461: 1456: 1452: 1447: 1442: 1438: 1434: 1430: 1426: 1419: 1416: 1411: 1407: 1402: 1397: 1393: 1389: 1385: 1381: 1377: 1370: 1368: 1364: 1359: 1355: 1350: 1345: 1341: 1337: 1333: 1329: 1325: 1318: 1315: 1310: 1306: 1301: 1296: 1291: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1257: 1255: 1253: 1251: 1247: 1236: 1232: 1225: 1222: 1217: 1213: 1208: 1203: 1199: 1195: 1191: 1184: 1182: 1178: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1138: 1136: 1134: 1132: 1130: 1126: 1121: 1117: 1112: 1107: 1102: 1097: 1093: 1089: 1088:PLOS Genetics 1085: 1078: 1075: 1070: 1066: 1061: 1056: 1052: 1048: 1044: 1040: 1036: 1029: 1027: 1023: 1018: 1014: 1010: 1006: 1001: 996: 992: 988: 984: 980: 973: 970: 965: 961: 956: 951: 947: 943: 939: 935: 931: 924: 922: 920: 918: 914: 909: 905: 900: 895: 890: 885: 881: 877: 873: 866: 863: 858: 854: 849: 844: 839: 834: 830: 826: 822: 815: 813: 809: 804: 800: 796: 792: 787: 782: 778: 774: 770: 766: 762: 754: 751: 744: 738: 734: 733: 729: 727: 723: 721: 717: 713: 705: 703: 701: 697: 693: 689: 686:(assuming no 685: 681: 677: 673: 668: 660: 658: 651: 649: 642: 640: 638: 634: 630: 626: 621: 614: 612: 608: 605: 599: 597: 592: 583: 577: 570: 564: 561: 558: 555: 554: 553: 551: 547: 538: 532: 528: 524: 521: 516: 512: 508: 504: 500: 493: 491: 484: 482: 478: 476: 472: 467: 463: 461: 456: 454: 450: 446: 438: 436: 434: 429: 414: 404: 395: 391: 385: 380: 377: 374: 370: 366: 357: 346: 330: 320: 308: 286: 274: 272: 268: 264: 256: 254: 252: 248: 244: 243:schizophrenia 240: 234: 231: 227: 223: 218: 215: 211: 202: 195: 193: 191: 187: 183: 178: 176: 171: 166: 164: 160: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 112: 108: 104: 100: 96: 92: 87: 77: 74: 66: 56: 52: 46: 43:This article 41: 32: 31: 19: 4541: 4493: 4489: 4436:(1): 19571. 4433: 4429: 4419: 4376: 4372: 4362: 4327: 4323: 4312: 4285: 4279: 4236: 4232: 4222: 4208:(11): 1582. 4205: 4201: 4195: 4163:(1): 48–56. 4160: 4156: 4146: 4113: 4109: 4103: 4076: 4072: 4062: 4027: 4023: 4013: 3978: 3974: 3964: 3937: 3927: 3894: 3890: 3884: 3855: 3849: 3814: 3810: 3800: 3763: 3759: 3749: 3706: 3702: 3692: 3657: 3653: 3643: 3621: 3586: 3582: 3532:(1): 26–31. 3529: 3525: 3515: 3490: 3486: 3480: 3440:(1): 81–87. 3437: 3433: 3423: 3386: 3382: 3372: 3331: 3327: 3275: 3271: 3265: 3243: 3209:(1): 21–34. 3206: 3202: 3192: 3170: 3133: 3129: 3119: 3111: 3104:. Retrieved 3100: 3091: 3056: 3052: 3046: 3009: 3005: 2995: 2958: 2954: 2944: 2910:(845): 845. 2907: 2903: 2893: 2856: 2852: 2842: 2807: 2803: 2793: 2758: 2754: 2744: 2733:. Retrieved 2729: 2719: 2711: 2708:the original 2701: 2691: 2664: 2660: 2650: 2615: 2611: 2601: 2590:. Retrieved 2588:. 2020-06-24 2585: 2576: 2541: 2537: 2491: 2487: 2474: 2431: 2427: 2417: 2374: 2370: 2360: 2325: 2321: 2311: 2266: 2262: 2252: 2217: 2213: 2203: 2168: 2164: 2154: 2119: 2115: 2105: 2062: 2058: 2048: 2011: 2007: 1997: 1960: 1956: 1898: 1894: 1884: 1841: 1837: 1827: 1784: 1780: 1770: 1735: 1731: 1721: 1676: 1672: 1662: 1627: 1623: 1613: 1579:(10): e374. 1576: 1572: 1562: 1551:. Retrieved 1549:. 2019-06-11 1546: 1537: 1502:. Retrieved 1500:. 2018-10-08 1498:The Guardian 1497: 1488: 1477:. Retrieved 1475:. 2019-11-09 1472: 1463: 1436: 1432: 1423:Spindel JE, 1418: 1383: 1379: 1331: 1327: 1317: 1275:(1): 15286. 1272: 1268: 1238:. Retrieved 1234: 1224: 1197: 1193: 1147: 1143: 1091: 1087: 1077: 1042: 1038: 1000:11343/286783 982: 978: 972: 937: 933: 879: 875: 865: 828: 824: 768: 764: 753: 737: 724: 718:or domestic 709: 696:correlations 664: 655: 646: 622: 618: 609: 604:heritability 600: 587: 542: 525: 505: 501: 497: 488: 479: 474: 465: 464: 457: 448: 444: 442: 430: 347: 306: 275: 270: 266: 260: 246: 235: 219: 214:genetic code 208: 179: 177:, or SNPs). 167: 158: 154: 150: 146: 142: 138: 134: 126: 122: 116: 110: 106: 102: 98: 94: 69: 63:October 2021 60: 44: 2961:(12): e91. 2434:(1): 3865. 2377:(1): 3328. 2065:(1): 1776. 2008:GigaScience 1334:(1): 5–22. 109:(gray), or 99:'controls' 4574:Categories 3389:(1): 238. 3136:: e43657. 2859:(6): 648. 2735:2020-12-16 2592:2023-05-24 1553:2021-04-12 1528:2101.05870 1504:2021-04-12 1479:2021-04-12 1425:McCouch SR 1240:2020-08-14 831:: 143712. 745:References 688:pleiotropy 584:algorithm. 511:aneuploidy 453:regression 445:which SNPs 230:phenotypes 196:Background 4411:239054376 4354:220044465 4239:(1): 34. 4138:220669421 4054:221127365 3956:212766426 3741:195786850 3613:244131258 3472:236090477 3364:222169651 3348:2168-622X 3308:222169651 3292:2168-622X 3053:Bioethics 2642:232377300 2516:205355668 2014:(1): 10. 1963:(1): 44. 1876:220732490 1017:209342044 882:(1): 96. 803:235732957 667:heritable 633:Impute.me 548:) is the 408:^ 405:β 371:∑ 361:^ 324:^ 321:β 290:^ 131:phenotype 4520:30967442 4490:Genetics 4468:34599249 4403:36959364 4394:11078202 4346:34017140 4263:28944288 4187:30932047 4130:32688362 4095:20070198 4046:32790217 4005:26577414 3919:36394971 3911:21367743 3833:23685553 3792:24987256 3733:31268574 3684:24170170 3605:34782789 3556:30901543 3507:32502649 3464:34276054 3415:34598685 3356:32997097 3300:32997097 3235:30554720 3162:30835202 3106:29 April 3083:12058767 3038:31418161 2987:33462079 2936:31920964 2885:32545548 2834:33106616 2785:31761530 2683:31026593 2634:33772222 2568:30926966 2508:28991256 2466:32737319 2409:31346163 2352:34304866 2303:28594818 2244:29110330 2195:33326037 2146:11290733 2116:Genetics 2097:30992449 2040:25002967 1989:32423490 1933:33692554 1868:32709988 1819:19571811 1762:17785532 1713:32753378 1654:11290733 1624:Genetics 1605:17020404 1455:27716975 1410:25918167 1358:28686856 1309:31653892 1216:31363735 1172:46893131 1164:29789686 1120:23555274 1069:26430803 1009:31833054 964:30104762 908:29132412 857:26273586 795:34223688 670:traits ( 591:biobanks 271:controls 226:proteins 155:PR score 119:genetics 95:'cases' 4511:6456317 4459:8486788 4438:Bibcode 4271:3313995 4254:5597574 4178:6874306 3996:5642867 3783:4070199 3724:6640636 3675:4037144 3629:medRxiv 3547:7380073 3455:8738734 3406:8485114 3251:medRxiv 3226:6323553 3178:bioRxiv 3153:6400585 3029:6831526 2978:8639919 2927:6915076 2876:7349610 2825:7936952 2776:6957074 2559:6563838 2457:7395791 2436:Bibcode 2400:6658471 2379:Bibcode 2343:8500913 2294:5481142 2271:Bibcode 2235:5726434 2186:8016455 2137:1461589 2088:6467998 2067:Bibcode 2031:4078394 1980:7236300 1924:8609771 1903:Bibcode 1859:7612115 1810:3912837 1789:Bibcode 1753:1987352 1704:7431089 1681:Bibcode 1645:1461589 1596:1584415 1401:4476450 1349:5501872 1300:6814833 1277:Bibcode 1111:3605113 1060:4596916 955:6128408 899:5683372 848:4529984 163:alleles 105:(red), 49:Please 4542:Nature 4518:  4508:  4466:  4456:  4409:  4401:  4391:  4352:  4344:  4300:  4269:  4261:  4251:  4185:  4175:  4136:  4128:  4093:  4052:  4044:  4003:  3993:  3954:  3917:  3909:  3872:  3841:182105 3839:  3831:  3790:  3780:  3739:  3731:  3721:  3682:  3672:  3631:  3611:  3603:  3554:  3544:  3505:  3470:  3462:  3452:  3413:  3403:  3362:  3354:  3346:  3306:  3298:  3290:  3253:  3233:  3223:  3180:  3160:  3150:  3081:  3071:  3036:  3026:  2985:  2975:  2934:  2924:  2883:  2873:  2832:  2822:  2783:  2773:  2681:  2640:  2632:  2566:  2556:  2514:  2506:  2464:  2454:  2407:  2397:  2350:  2340:  2301:  2291:  2242:  2232:  2193:  2183:  2144:  2134:  2095:  2085:  2038:  2028:  1987:  1977:  1931:  1921:  1895:Nature 1874:  1866:  1856:  1817:  1807:  1781:Nature 1760:  1750:  1711:  1701:  1652:  1642:  1603:  1593:  1453:  1408:  1398:  1356:  1346:  1307:  1297:  1214:  1170:  1162:  1118:  1108:  1067:  1057:  1015:  1007:  962:  952:  906:  896:  855:  845:  801:  793:  720:cattle 475:LDpred 107:middle 4407:S2CID 4350:S2CID 4267:S2CID 4134:S2CID 4050:S2CID 3952:S2CID 3915:S2CID 3891:Heart 3837:S2CID 3737:S2CID 3609:S2CID 3468:S2CID 3360:S2CID 3304:S2CID 3130:eLife 2853:Genes 2638:S2CID 2512:S2CID 2484:(PDF) 1872:S2CID 1523:arXiv 1168:S2CID 1013:S2CID 799:S2CID 730:Notes 716:maize 582:LASSO 267:cases 222:genes 157:) or 141:) or 4516:PMID 4464:PMID 4399:PMID 4342:PMID 4298:ISBN 4259:PMID 4183:PMID 4126:PMID 4091:PMID 4042:PMID 4001:PMID 3907:PMID 3870:ISBN 3829:PMID 3788:PMID 3729:PMID 3680:PMID 3601:PMID 3552:PMID 3526:Cell 3503:PMID 3460:PMID 3411:PMID 3352:PMID 3344:ISSN 3296:PMID 3288:ISSN 3231:PMID 3158:PMID 3108:2020 3079:PMID 3069:ISBN 3034:PMID 2983:PMID 2932:PMID 2881:PMID 2830:PMID 2781:PMID 2755:Cell 2679:PMID 2630:PMID 2564:PMID 2504:PMID 2462:PMID 2405:PMID 2348:PMID 2299:PMID 2240:PMID 2191:PMID 2142:PMID 2093:PMID 2036:PMID 1985:PMID 1929:PMID 1864:PMID 1815:PMID 1758:PMID 1709:PMID 1650:PMID 1601:PMID 1451:PMID 1406:PMID 1354:PMID 1305:PMID 1212:PMID 1160:PMID 1116:PMID 1065:PMID 1005:PMID 960:PMID 904:PMID 853:PMID 829:2015 791:PMID 694:and 513:and 447:and 269:and 184:and 121:, a 103:high 4506:PMC 4498:doi 4494:211 4454:PMC 4446:doi 4389:PMC 4381:doi 4332:doi 4290:doi 4249:PMC 4241:doi 4210:doi 4206:175 4173:PMC 4165:doi 4118:doi 4081:doi 4032:doi 3991:PMC 3983:doi 3942:doi 3899:doi 3860:doi 3819:doi 3778:PMC 3768:doi 3719:PMC 3711:doi 3670:PMC 3662:doi 3658:171 3591:doi 3542:PMC 3534:doi 3530:177 3495:doi 3450:PMC 3442:doi 3401:PMC 3391:doi 3336:doi 3280:doi 3221:PMC 3211:doi 3207:104 3148:PMC 3138:doi 3061:doi 3024:PMC 3014:doi 2973:PMC 2963:doi 2922:PMC 2912:doi 2871:PMC 2861:doi 2820:PMC 2812:doi 2771:PMC 2763:doi 2759:179 2669:doi 2620:doi 2554:PMC 2546:doi 2496:doi 2452:PMC 2444:doi 2395:PMC 2387:doi 2338:PMC 2330:doi 2289:PMC 2279:doi 2230:PMC 2222:doi 2181:PMC 2173:doi 2132:PMC 2124:doi 2120:157 2083:PMC 2075:doi 2026:PMC 2016:doi 1975:PMC 1965:doi 1919:PMC 1911:doi 1899:591 1854:PMC 1846:doi 1805:PMC 1797:doi 1785:460 1748:PMC 1740:doi 1699:PMC 1689:doi 1677:117 1640:PMC 1632:doi 1628:157 1591:PMC 1581:doi 1441:doi 1437:212 1396:PMC 1388:doi 1344:PMC 1336:doi 1332:101 1295:PMC 1285:doi 1202:doi 1152:doi 1106:PMC 1096:doi 1055:PMC 1047:doi 995:hdl 987:doi 950:PMC 942:doi 894:PMC 884:doi 843:PMC 833:doi 781:hdl 773:doi 735:A. 635:or 598:). 477:.) 210:DNA 153:or 151:PRS 139:PGI 127:PGS 117:In 111:low 53:to 4576:: 4514:. 4504:. 4492:. 4488:. 4476:^ 4462:. 4452:. 4444:. 4434:11 4432:. 4428:. 4405:. 4397:. 4387:. 4377:55 4375:. 4371:. 4348:. 4340:. 4328:53 4326:. 4322:. 4296:. 4265:. 4257:. 4247:. 4235:. 4231:. 4204:. 4181:. 4171:. 4159:. 4155:. 4132:. 4124:. 4114:23 4112:. 4089:. 4077:31 4075:. 4071:. 4048:. 4040:. 4028:52 4026:. 4022:. 3999:. 3989:. 3979:39 3977:. 3973:. 3950:. 3940:. 3936:. 3913:. 3905:. 3895:97 3893:. 3868:. 3835:. 3827:. 3815:33 3813:. 3809:. 3786:. 3776:. 3762:. 3758:. 3735:. 3727:. 3717:. 3707:49 3705:. 3701:. 3678:. 3668:. 3656:. 3652:. 3607:. 3599:. 3587:27 3585:. 3581:. 3564:^ 3550:. 3540:. 3528:. 3524:. 3501:. 3491:63 3489:. 3466:. 3458:. 3448:. 3438:30 3436:. 3432:. 3409:. 3399:. 3387:14 3385:. 3381:. 3358:. 3350:. 3342:. 3332:78 3330:. 3316:^ 3302:. 3294:. 3286:. 3276:78 3274:. 3229:. 3219:. 3205:. 3201:. 3156:. 3146:. 3132:. 3128:. 3110:. 3099:. 3077:. 3067:. 3057:15 3055:. 3032:. 3022:. 3010:16 3008:. 3004:. 2981:. 2971:. 2959:47 2957:. 2953:. 2930:. 2920:. 2908:10 2906:. 2902:. 2879:. 2869:. 2857:11 2855:. 2851:. 2828:. 2818:. 2808:23 2806:. 2802:. 2779:. 2769:. 2757:. 2753:. 2728:. 2700:. 2677:. 2665:62 2663:. 2659:. 2636:. 2628:. 2616:23 2614:. 2610:. 2584:. 2562:. 2552:. 2542:51 2540:. 2536:. 2524:^ 2510:. 2502:. 2492:49 2490:. 2486:. 2460:. 2450:. 2442:. 2432:11 2430:. 2426:. 2403:. 2393:. 2385:. 2375:10 2373:. 2369:. 2346:. 2336:. 2326:90 2324:. 2320:. 2297:. 2287:. 2277:. 2267:13 2265:. 2261:. 2238:. 2228:. 2218:41 2216:. 2212:. 2189:. 2179:. 2169:36 2167:. 2163:. 2140:. 2130:. 2118:. 2114:. 2091:. 2081:. 2073:. 2063:10 2061:. 2057:. 2034:. 2024:. 2010:. 2006:. 1983:. 1973:. 1961:12 1959:. 1955:. 1941:^ 1927:. 1917:. 1909:. 1897:. 1893:. 1870:. 1862:. 1852:. 1842:15 1840:. 1836:. 1813:. 1803:. 1795:. 1783:. 1779:. 1756:. 1746:. 1736:17 1734:. 1730:. 1707:. 1697:. 1687:. 1675:. 1671:. 1648:. 1638:. 1626:. 1622:. 1599:. 1589:. 1575:. 1571:. 1545:. 1513:^ 1496:. 1471:. 1449:. 1435:. 1431:. 1404:. 1394:. 1384:24 1382:. 1378:. 1366:^ 1352:. 1342:. 1330:. 1326:. 1303:. 1293:. 1283:. 1271:. 1267:. 1249:^ 1233:. 1210:. 1198:28 1196:. 1192:. 1180:^ 1166:. 1158:. 1148:19 1146:. 1128:^ 1114:. 1104:. 1090:. 1086:. 1063:. 1053:. 1043:97 1041:. 1037:. 1025:^ 1011:. 1003:. 993:. 983:97 981:. 958:. 948:. 938:50 936:. 932:. 916:^ 902:. 892:. 878:. 874:. 851:. 841:. 827:. 823:. 811:^ 797:. 789:. 779:. 769:31 767:. 763:. 702:. 631:, 435:. 345:. 165:. 4522:. 4500:: 4470:. 4448:: 4440:: 4413:. 4383:: 4356:. 4334:: 4306:. 4292:: 4273:. 4243:: 4237:3 4216:. 4212:: 4189:. 4167:: 4161:3 4140:. 4120:: 4097:. 4083:: 4056:. 4034:: 4007:. 3985:: 3958:. 3944:: 3921:. 3901:: 3878:. 3862:: 3843:. 3821:: 3794:. 3770:: 3764:7 3743:. 3713:: 3686:. 3664:: 3637:. 3615:. 3593:: 3558:. 3536:: 3509:. 3497:: 3474:. 3444:: 3417:. 3393:: 3366:. 3338:: 3310:. 3282:: 3259:. 3237:. 3213:: 3186:. 3164:. 3140:: 3134:8 3085:. 3063:: 3040:. 3016:: 2989:. 2965:: 2938:. 2914:: 2887:. 2863:: 2836:. 2814:: 2787:. 2765:: 2738:. 2685:. 2671:: 2644:. 2622:: 2595:. 2570:. 2548:: 2518:. 2498:: 2468:. 2446:: 2438:: 2411:. 2389:: 2381:: 2354:. 2332:: 2305:. 2281:: 2273:: 2246:. 2224:: 2197:. 2175:: 2148:. 2126:: 2099:. 2077:: 2069:: 2042:. 2018:: 2012:3 1991:. 1967:: 1935:. 1913:: 1905:: 1878:. 1848:: 1821:. 1799:: 1791:: 1764:. 1742:: 1715:. 1691:: 1683:: 1656:. 1634:: 1607:. 1583:: 1577:3 1556:. 1531:. 1525:: 1507:. 1482:. 1457:. 1443:: 1412:. 1390:: 1360:. 1338:: 1311:. 1287:: 1279:: 1273:9 1243:. 1218:. 1204:: 1174:. 1154:: 1122:. 1098:: 1092:9 1071:. 1049:: 1019:. 997:: 989:: 966:. 944:: 910:. 886:: 880:9 859:. 835:: 805:. 783:: 775:: 415:j 396:j 392:X 386:m 381:1 378:= 375:j 367:= 358:S 331:j 307:m 287:S 149:( 137:( 125:( 76:) 70:( 65:) 61:( 47:. 20:)

Index

Polygenic risk score
help improve it
make it understandable to non-experts
Learn how and when to remove this message

stratified sampling
genetics
phenotype
alleles
complex diseases
single-nucleotide polymorphisms
animal breeding
plant breeding
genome-wide association study

DNA
genetic code
genes
proteins
phenotypes
genome-wide association study
schizophrenia
single-nucleotide polymorphism
genome-wide association study
regression analysis
regression
linkage disequilibrium
Bayesian methods
Embryo genetic screening
aneuploidy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.