Knowledge

Polysuccinimide

Source đź“ť

351: 413: 268: 481: 324:(preferably hydrochloric acid) and mixed with phosphoric acid as condensing agent. The resulting homogeneous solution is evaporated at 120 Â°C and the resulting glassy mass is then polycondensed at 180 Â°C to 200 Â°C for at least one hour. The phosphoric acid is washed out and the dried polysuccinimide is converted by mild alkaline hydrolysis into water-soluble polyaspartic acid; the molar mass of which can be determined by 24: 409:), hydrolysis takes place in α- and β-position of the succinimide (2,5-pyrrolidinedione) ring structures and racemization follows at the chiral center of the aspartic acid, yielding the water-soluble sodium salt of the poly(α, β)-DL-aspartic acid. The α form is formed to approx. 30%, the β form to approx. 70% in random arrangement along the polymer chain. 956: 858: 975: 880: 441:
under the brand name Baypure® DSP with an average molecular weight of 4,400 g/mol is partially hydrolyzed even at slightly elevated pH values and is thus swellable in highly crosslinked form or water-soluble in linear form. The copoly-(succinimide-aspartic acid) formed by partial hydrolysis and
323:
A recent patent describes the simple preparation of high molecular weight, virtually colorless and linear, unbranched polysuccinimide. For this purpose, aspartic acid, which is present as crystalline zwitterion and practically water-insoluble, is firstly dissolved with an aqueous, volatile acid
1149: 937: 279:
upon water elimination. This is generally the case in the absence of strong acids, which suppress the thermal decomposition of free amino end groups and thus chain interruption reactions. The formation of the polyimide polysuccinimide can be followed by the intensive absorption band in the
918: 303:
in a thin layer is heated to 200 Â°C for 2 to 4 hours, polysuccinimide is produced with molar masses in the range of 30,000 g/mol and cream white shade. The implementation of the polycondensation in several steps (precondensation, comminution, postcondensation), with other
899: 424:
in the polymer chain are attacked upon degradation of the molar mass. The presence of amide bonds makes the polyaspartic acid obtained in the hydrolysis relatively biodegradable (about 70% in wastewater), even of initially highly crosslinked polysuccinimides.
1130: 1088:
Eberhard W. Neuse, Axel G. Perlwitz, Siegfried Schmitt (1991-11-01), "Water-soluble polyamides as potential drug carriers. III. Relative main-chain stabilities of side chain-functionalized aspartamide polymers on aqueous-phase dialysis",
584:
M. Tomida, T. Nakato, M. Kuramochi, M. Shibata, S. Matsunami, T. Kakuchi (1996), "Novel method of synthesizig poly(succinimide) and its copolymeric derivatives by acid-catalysed polycondensation of L-aspartic acid",
263:
as early as 1897. When dry aspartic acid was heated for about 20 hours at 190 Â°C to 200 Â°C, a colorless product was obtained. Above 200 Â°C, a weak yellowing occurs, the yield was almost quantitative.
320:) provides higher molecular weight products with molar masses in the range of 10,000 to 200,000 g/mol. However, the patent literature does not address the polymer morphology, in particular the degree of branching. 450:, and as a setting retarder for cement in the construction industry. Patent literature mentions polysuccinimide applications as chelating agents, inhibitors against scale formation, dispersant, humectants, and 723:
Kenneth Doll, Randal Shogren, Ronald Holser, J. Willett, Graham Swift (2005-12-01), "Polymerization of L-Aspartic Acid to Polysuccinimide and Copoly(Succinimide-Aspartate) in Supercritical Carbon Dioxide",
477:
with good biocompatibility and biodegradability, high water solubility at low manufacturing costs and was investigated more intensive as a potential drug carrier) in medical applications.
284:
at 1714 cm. Many process variants described in the patent literature yield besides a relatively low degree of polymerization often branched and yellow to brown discolored products.
954:, L.P. Koskan, A.R.Y. Meah, "Production of polysuccinimide and polyaspartic acid acid from maleic anhydride and ammonia", issued 1994-03-22, assigned to Donlar Corp. 339:
or based on the intermediately formed maleic acid monoamide achieved only low molar masses of a few 1,000 g/mol and yielded colored products. The same was the case for "
1111: 839: 792: 746: 609: 570: 856:, J. Knebel, K. Lehmann, "Method for increasing the molecular weight in the manufacture of polysuccinimide", issued 1992-08-25, assigned to Röhm GmbH 973:, M. B. Freeman et al., "Production of polysuccinimide by thermal polymerization of maleamic acid", issued 1995-02-28, assigned to Rohm and Haas Co. 878:, M. Uenaka et al., "Process for producing polysuccinimide and use of said compound", issued 1997-8-27, assigned to Mitsubishi Chemical Corp. 100: 291:
and achieving a linear chain structure while avoiding decomposition reactions. With a simple "oven process" in which a mixture or paste of crystalline
643:"Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications" 370:
Polysuccinimide is produced as an odourless, non-hygroscopic, cream-white to brown powder which is soluble in aprotic dipolar solvents such as
1147:, Y. Irizato et al., "Production process of cross-linked polyaspartic acid", issued 2000-06-06, assigned to Mitsui Chemicals 1067: 1001: 777: 555: 492:, has been extensively tested for its suitability as a biodegradable superabsorbent compared to the non-biodegradable standard cross-linked 809:
Paolo Neri, Guido Antoni, Franco Benvenuti, Francesco Cocola, Guido Gazzei (1973-08-01), "Synthesis of α, β-poly , a new plasma expander",
496:. The results obtained have not yet led to the use of crosslinked polyaspartic acid in large-volume applications for superabsorbents (e.g. 935:, T. Groth et al., "Process for preparing polysuccinimide and polyaspartic acid", issued 1994-08-31, assigned to Bayer AG 442:
especially polyaspartic acid (trade name Baypure® DS 100) produced by partial hydrolysis is suitable as a long-lasting inhibitor against
350: 358:
Due to the lower cost of maleic anhydride and ammonia, starting materials produced from fossil raw materials, no L-aspartic acid (of
412: 916:, C.S. Sikes, "Preparation of high molecular weight polysuccinimides", issued 2006-05-30, assigned to Aquero Co. 548:
Ullmann's Polymers and Plastics, Products and Processes, Volume 1, Part 2: Organic Polymers, Polyaspartates and Polysuccinimide
267: 897:, G.Y. Mazo et al., "Catalytically polymerizing aspartic acid", issued 1998-05-26, assigned to Donlar Corp. 480: 516:
E. Jalalvandi, A. Shavandi (2018), "Polysuccinimide and its derivatives: Degradable and water soluble polymers (review)",
325: 344: 86: 205: 488:
Cross-linked poly(α, β)-DL aspartic acid sodium salt, which is the commercially most interesting polysuccinimide
406: 275:
In the experiments by Hugo Schiff, oligomers and low-molecular polymers were formed in a solid state reaction by
240:. Its reactive nature makes polysuccinimide a versatile starting material for functional polymers made from 184:
soluble in Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidone, und Mesitylen+Sulfolan
587: 489: 383: 1128:, Y. Chou, "Forming superabsorbent polymer", issued 1999-01-19, assigned to Solutia Inc. 451: 1173: 237: 36: 1144: 1125: 970: 951: 932: 913: 894: 875: 853: 625: 188: 305: 493: 317: 313: 300: 52: 1060:
Biologically-responsive hybrid biomaterials: a reference for material scientists and bioengineers.
680: 529: 390: 379: 359: 241: 641:
Adelnia, Hossein; Tran, Huong D.N.; Little, Peter J.; Blakey, Idriss; Ta, Hang T. (2021-06-14).
1005: 1168: 1105: 1063: 997: 833: 822: 786: 773: 760:
Thomas Klein, Ralf-Johann Moritz, René Graupner (2008), "Polyaspartates and Polysuccinimide",
740: 672: 603: 564: 551: 375: 371: 281: 362:
origin) is used in the production of the commercial product Baypure® polysuccinimide either.
1094: 1071: 1056:
Design and synthesis of endosomolytic conjugated polyaspartamide for cytosolic drug delivery
1022: 814: 765: 729: 703: 662: 654: 592: 521: 332: 276: 175: 123: 328:. The process provides reproducible polysuccinimide with molar masses above 100,000 g/mol. 62: 474: 447: 340: 296: 199: 1162: 684: 596: 533: 421: 292: 248: 229: 658: 525: 497: 470: 642: 1026: 1098: 260: 158: 1075: 733: 458: 438: 402: 394: 331:
Synthetic routes for polysuccinimides based on maleic acid monoammonium salt,
288: 152: 1043:
Baypure®, An innovate product family for household and technical applications
769: 707: 466: 443: 398: 233: 676: 457:
The opening of the pyrrolidinedione ring structures in polysuccinimide via
826: 23: 469:
poly-(α, β)-DL-aspartylhydrazide (PAHy) and with functional amines, e.g.
434: 818: 667: 336: 309: 198:
Except where otherwise noted, data are given for materials in their
473:
poly-(α), β)-DL-2-hydroxyethylaspartate (PHEA). PHEA can be used a
85: 75: 405:
in water only very slowly. In diluted alkaline media (e.g. 1M
236:. Polysuccinimide is insoluble in water, but soluble in some 479: 411: 349: 266: 702:(in German), vol. 30, no. 3, pp. 2449–2459, 420:
In more basic solutions or with longer reaction times, the
698:
Hugo Schiff (1897-09-01), "Ueber Polyaspartsäuren",
446:in water treatment and applications in the oil and 228:, is formed during the thermal polycondensation of 1021:. 2nd ed. Springer Netherlands, 2002, S. 379–412, 718: 716: 259:The production of polysuccinimide was reported by 1045:. 5th Green Chemistry Conference 2003, Barcelona. 591:, vol. 37, no. 16, pp. 4435–4437, 1062:World Scientific Publishing Co., Singapur 2010, 347:and while avoiding mineral acids as catalysts. 61: 990:6. Commercial Poly(aspartic acid) and Its Uses 813:, vol. 16, no. 8, pp. 893–897, 762:Ullmann's Encyclopedia of Industrial Chemistry 700:Berichte der Deutschen Chemischen Gesellschaft 316:) or in the presence of solvents (for example 1093:, vol. 192, no. 1, pp. 35–50, 1058:. In: E. Jabbari, A. Khademhosseini (Hrsg.): 728:, vol. 2, no. 8, pp. 687–689, 621: 619: 465:OH) produces poly-(α, β)-DL-asparagine, with 8: 1110:: CS1 maint: multiple names: authors list ( 994:Hydrophilic Polymers, Advances in Chemistry. 838:: CS1 maint: multiple names: authors list ( 791:: CS1 maint: multiple names: authors list ( 745:: CS1 maint: multiple names: authors list ( 608:: CS1 maint: multiple names: authors list ( 569:: CS1 maint: multiple names: authors list ( 546:T. Klein, R.-J. Moritz, R. Graupner (2016), 1037: 1035: 647:ACS Biomaterials Science & Engineering 287:Recent work has focused on increasing the 15: 870: 868: 804: 802: 666: 550:, Weinheim: Wiley-VCH, pp. 742–743, 764:, Wiley-VCH Verlag GmbH & Co. KGaA, 508: 105: 1103: 831: 784: 738: 601: 562: 251:, the structurally related succinate. 187:30 to 35 at 20 Â°C in g·100 ml in 1091:Die Angewandte Makromolekulare Chemie 247:The name is derived from the salt of 7: 636: 634: 626:Baypure® General Product Information 40:Poly(2,5-dioxopyrrolidine-1,3-diyl) 14: 520:, vol. 109, pp. 43–54, 461:with ammonia water (containgin NH 433:The polysuccinimide developed by 271:polysuccinimide-Polykondensation 22: 659:10.1021/acsbiomaterials.1c00150 526:10.1016/j.eurpolymj.2018.08.056 484:polysuccinimide Derivatisierung 202:(at 25 Â°C , 100 kPa). 1006:doi:10.1021/ba-1996-0248.ch006 811:Journal of Medicinal Chemistry 1: 326:gel permeation chromatography 1027:10.1007/978-94-017-1217-0_11 726:Letters in Organic Chemistry 597:10.1016/0032-3861(96)00267-4 345:supercritical carbon dioxide 1099:10.1002/apmc.1991.051920103 354:PSI via Maleinsäureanhydrid 1190: 1076:10.1142/9789814295680_0009 734:10.2174/157017805774717553 401:mixtures. Polysuccinimide 416:PSI zu Polyasparaginsäure 407:sodium hydroxide solution 196: 116: 96: 45: 35: 30: 21: 770:10.1002/14356007.l21_l01 708:10.1002/cber.18970300316 238:aprotic dipolar solvents 222:polyanhydroaspartic acid 485: 417: 355: 343:" process variants in 306:dehydrating substances 272: 483: 415: 353: 270: 220:(PSI), also known as 181:* insoluble in water 452:fertilizer additives 444:limescale deposition 232:and is the simplest 1019:Degradable Polymers 819:10.1021/jm00266a006 494:sodium polyacrylate 318:propylene carbonate 314:triphenyl phosphite 301:polyphosphoric acid 242:renewable resources 176:Solubility in water 18: 992:. In: J.E. Glass: 486: 418: 391:triethylene glycol 387:-methylpyrrolidone 356: 273: 206:Infobox references 16: 1068:978-981-4295-67-3 1002:978-0-8412-3133-7 988:K.C. Low et al.: 779:978-3-527-30673-2 557:978-3-527-33823-8 448:mining industries 380:dimethylsulfoxide 376:dimethylacetamide 372:dimethylformamide 295:and concentrated 282:infrared spectrum 214:Chemical compound 212: 211: 108:*C1CC(=O)N(C1=O)* 87:Interactive image 1181: 1154: 1153: 1152: 1148: 1141: 1135: 1134: 1133: 1129: 1122: 1116: 1115: 1109: 1101: 1085: 1079: 1054:K. Seo, D. Kim: 1052: 1046: 1039: 1030: 1015: 1009: 986: 980: 979: 978: 974: 967: 961: 960: 959: 955: 948: 942: 941: 940: 936: 929: 923: 922: 921: 917: 910: 904: 903: 902: 898: 891: 885: 884: 883: 879: 872: 863: 862: 861: 857: 850: 844: 843: 837: 829: 806: 797: 796: 790: 782: 757: 751: 750: 744: 736: 720: 711: 710: 695: 689: 688: 670: 653:(6): 2083–2105. 638: 629: 628:(PDF) Lanxess AG 623: 614: 613: 607: 599: 581: 575: 574: 568: 560: 543: 537: 536: 513: 437:and marketed by 333:maleic anhydride 277:polycondensation 189:Triethylenglycol 124:Chemical formula 89: 65: 26: 19: 17:Polysuccinimide 1189: 1188: 1184: 1183: 1182: 1180: 1179: 1178: 1159: 1158: 1157: 1150: 1143: 1142: 1138: 1131: 1124: 1123: 1119: 1102: 1087: 1086: 1082: 1053: 1049: 1040: 1033: 1016: 1012: 987: 983: 976: 969: 968: 964: 957: 950: 949: 945: 938: 931: 930: 926: 919: 912: 911: 907: 900: 893: 892: 888: 881: 874: 873: 866: 859: 852: 851: 847: 830: 808: 807: 800: 783: 780: 759: 758: 754: 737: 722: 721: 714: 697: 696: 692: 640: 639: 632: 624: 617: 600: 583: 582: 578: 561: 558: 545: 544: 540: 515: 514: 510: 506: 475:plasma expander 464: 431: 368: 297:phosphoric acid 257: 226:polyaspartimide 218:Polysuccinimide 215: 208: 203: 178: 146: 140: 136: 132: 126: 112: 109: 104: 103: 92: 79: 68: 55: 41: 12: 11: 5: 1187: 1185: 1177: 1176: 1171: 1161: 1160: 1156: 1155: 1136: 1117: 1080: 1070:, S. 191–212, 1047: 1031: 1010: 981: 962: 943: 924: 905: 886: 864: 845: 798: 778: 752: 712: 690: 630: 615: 576: 556: 538: 518:Eur. Polym. J. 507: 505: 502: 462: 430: 427: 422:amide linkages 367: 364: 256: 253: 213: 210: 209: 204: 200:standard state 197: 194: 193: 192: 191: 185: 179: 174: 171: 170: 167: 163: 162: 161: 155: 149: 148: 142: 138: 134: 130: 127: 122: 119: 118: 114: 113: 111: 110: 107: 99: 98: 97: 94: 93: 91: 90: 82: 80: 73: 70: 69: 67: 66: 58: 56: 51: 48: 47: 43: 42: 39: 33: 32: 28: 27: 13: 10: 9: 6: 4: 3: 2: 1186: 1175: 1172: 1170: 1167: 1166: 1164: 1146: 1140: 1137: 1127: 1121: 1118: 1113: 1107: 1100: 1096: 1092: 1084: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1051: 1048: 1044: 1038: 1036: 1032: 1028: 1024: 1020: 1014: 1011: 1007: 1004:, S. 99–111, 1003: 999: 995: 991: 985: 982: 972: 966: 963: 953: 947: 944: 934: 928: 925: 915: 909: 906: 896: 890: 887: 877: 871: 869: 865: 855: 849: 846: 841: 835: 828: 824: 820: 816: 812: 805: 803: 799: 794: 788: 781: 775: 771: 767: 763: 756: 753: 748: 742: 735: 731: 727: 719: 717: 713: 709: 705: 701: 694: 691: 686: 682: 678: 674: 669: 664: 660: 656: 652: 648: 644: 637: 635: 631: 627: 622: 620: 616: 611: 605: 598: 594: 590: 589: 580: 577: 572: 566: 559: 553: 549: 542: 539: 535: 531: 527: 523: 519: 512: 509: 503: 501: 499: 495: 491: 482: 478: 476: 472: 468: 460: 455: 453: 449: 445: 440: 436: 428: 426: 423: 414: 410: 408: 404: 400: 396: 392: 388: 386: 381: 377: 373: 365: 363: 361: 352: 348: 346: 342: 338: 334: 329: 327: 321: 319: 315: 311: 308:(for example 307: 302: 298: 294: 293:aspartic acid 290: 285: 283: 278: 269: 265: 262: 254: 252: 250: 249:succinic acid 245: 243: 239: 235: 231: 230:aspartic acid 227: 223: 219: 207: 201: 195: 190: 186: 183: 182: 180: 177: 173: 172: 168: 165: 164: 160: 157:97.07 g· 156: 154: 151: 150: 145: 128: 125: 121: 120: 115: 106: 102: 95: 88: 84: 83: 81: 77: 72: 71: 64: 60: 59: 57: 54: 50: 49: 44: 38: 34: 29: 25: 20: 1174:Succinimides 1139: 1120: 1090: 1083: 1059: 1055: 1050: 1042: 1018: 1013: 993: 989: 984: 965: 946: 927: 908: 889: 848: 810: 761: 755: 725: 699: 693: 668:10072/404497 650: 646: 586: 579: 547: 541: 517: 511: 498:baby diapers 487: 471:ethanolamine 456: 432: 419: 384: 369: 357: 330: 322: 286: 274: 258: 246: 225: 221: 217: 216: 143: 46:Identifiers 996:248, 1996, 261:Hugo Schiff 166:Appearance 117:Properties 1163:Categories 1145:US 6072024 1126:US 5859179 1041:T. Klein: 1017:G. Swift: 971:US 5393868 952:US 5296578 933:EU 0612784 914:US 7053170 895:US 5756595 876:EU 0791616 854:US 5142062 504:References 490:derivative 459:aminolysis 439:Lanxess AG 403:hydrolyses 395:mesitylene 366:Properties 289:molar mass 255:Production 153:Molar mass 74:3D model ( 63:31586-29-5 53:CAS Number 37:IUPAC name 685:232761877 534:106107591 467:hydrazine 399:sulfolane 234:polyimide 1169:Polymers 1106:citation 834:citation 787:citation 741:citation 677:33797239 604:citation 565:citation 435:Bayer AG 360:biogenic 310:zeolites 827:4745831 588:Polymer 337:ammonia 147: 1151:  1132:  1066:  1000:  977:  958:  939:  920:  901:  882:  860:  825:  776:  683:  675:  554:  532:  169:solid 101:SMILES 31:Names 681:S2CID 530:S2CID 341:green 76:JSmol 1112:link 1064:ISBN 998:ISBN 840:link 823:PMID 793:link 774:ISBN 747:link 673:PMID 610:link 571:link 552:ISBN 335:and 159:mole 1095:doi 1072:doi 1023:doi 815:doi 766:doi 730:doi 704:doi 663:hdl 655:doi 593:doi 522:doi 500:). 429:Use 393:or 299:or 224:or 1165:: 1108:}} 1104:{{ 1034:^ 867:^ 836:}} 832:{{ 821:, 801:^ 789:}} 785:{{ 772:, 743:}} 739:{{ 715:^ 679:. 671:. 661:. 649:. 645:. 633:^ 618:^ 606:}} 602:{{ 567:}} 563:{{ 528:, 454:. 389:, 382:, 378:, 374:, 312:, 244:. 137:NO 129:(C 1114:) 1097:: 1078:. 1074:: 1029:. 1025:: 1008:. 842:) 817:: 795:) 768:: 749:) 732:: 706:: 687:. 665:: 657:: 651:7 612:) 595:: 573:) 524:: 463:4 397:/ 385:N 144:n 141:) 139:2 135:3 133:H 131:4 78:)

Index


IUPAC name
CAS Number
31586-29-5
JSmol
Interactive image
SMILES
Chemical formula
Molar mass
mole
Solubility in water
Triethylenglycol
standard state
Infobox references
aspartic acid
polyimide
aprotic dipolar solvents
renewable resources
succinic acid
Hugo Schiff
polysuccinimide-Polykondensation
polycondensation
infrared spectrum
molar mass
aspartic acid
phosphoric acid
polyphosphoric acid
dehydrating substances
zeolites
triphenyl phosphite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑