Knowledge (XXG)

Quantum dot solar cell

Source 📝

141:). It is possible to improve on a single-junction cell by vertically stacking cells with different bandgaps – termed a "tandem" or "multi-junction" approach. The same analysis shows that a two layer cell should have one layer tuned to 1.64 eV and the other to 0.94 eV, providing a theoretical performance of 44%. A three-layer cell should be tuned to 1.83, 1.16 and 0.71 eV, with an efficiency of 48%. An "infinity-layer" cell would have a theoretical efficiency of 86%, with other thermodynamic loss mechanisms accounting for the rest. 20: 2652: 476: 490: 2664: 180:(PbS) colloidal quantum dots (CQD) have bandgaps that can be tuned into the far infrared, frequencies that are typically difficult to achieve with traditional solar cells. Half of the solar energy reaching the Earth is in the infrared, most in the near infrared region. A quantum dot solar cell makes infrared energy as accessible as any other. 360:
to be generated per incoming high energy photon. In traditional photovoltaics, this excess energy is lost to the bulk material as lattice vibrations (electron-phonon coupling). MEG occurs when this excess energy is transferred to excite additional electrons across the band gap, where they can contribute to the short-circuit current density.
148:, which due to a relaxed requirement in crystal momentum preservation can achieve direct bandgaps and intermixing of carbon, can tune the bandgap, but other issues have prevented these from matching the performance of traditional cells. Most tandem-cell structures are based on higher performance semiconductors, notably 940:
Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H. (2012).
429:
QD Solar takes advantage of the tunable band gap of quantum dots to create multi-junction solar cells. By combining efficient silicon solar cells with infrared solar cells made from quantum dots, QD Solar aims to harvest more of the solar spectrum. QD Solar's inorganic quantum dots are processed with
359:
The Shockley-Queisser limit, which sets the maximum efficiency of a single-layer photovoltaic cell to be 33.7%, assumes that only one electron-hole pair (exciton) can be generated per incoming photon. Multiple exciton generation (MEG) is an exciton relaxation pathway which allows two or more excitons
175:
The ability to tune the bandgap makes quantum dots desirable for solar cells. For the sun's photon distribution spectrum, the Shockley-Queisser limit indicates that the maximum solar conversion efficiency occurs in a material with a band gap of 1.34 eV. However, materials with lower band gaps will be
433:
UbiQD is developing photovoltaic windows using quantum dots as fluorophores. They have designed a luminescent solar concentrator (LSC) using near-infrared quantum dots which are cheaper and less toxic than traditional alternatives. UbiQD hopes to provide semi-transparent windows that convert passive
183:
Moreover, CQD offer easy synthesis and preparation. While suspended in a colloidal liquid form they can be easily handled throughout production, with a fumehood as the most complex equipment needed. CQD are typically synthesized in small batches, but can be mass-produced. The dots can be distributed
402:
In 2014 a University of Toronto group manufactured and demonstrated a type of CQD n-type cell using PbS with special treatment so that it doesn't bind with oxygen. The cell achieved 8% efficiency, just shy of the current QD efficiency record. Such cells create the possibility of uncoated "spray-on"
363:
Within quantum dots, quantum confinement increases coulombic interactions which drives the MEG process. This phenomenon also decreases the rate of electron-phonon coupling, which is the dominant method of exciton relaxation in bulk semiconductors. The phonon bottleneck slows the rate of hot carrier
290:
However, the use of multiple materials makes multi-junction solar cells too expensive for many commercial uses. Because the band gap of quantum dots can be tuned by adjusting the particle radius, multi-junction cells can be manufactured by incorporating quantum dot semiconductors of different sizes
286:
Traditionally, multi-junction solar cells are made with a collection of multiple semiconductor materials. Because each material has a different band gap, each material's p-n junction will be optimized for a different incoming wavelength of light. Using multiple materials enables the absorbance of a
171:
considerations, the electron energies that can exist within them become finite, much alike energies in an atom. Quantum dots have been referred to as "artificial atoms". These energy levels are tuneable by changing their size, which in turn defines the bandgap. The dots can be grown over a range of
425:
Quantum Materials Corp. (QMC) and subsidiary Solterra Renewable Technologies are developing and manufacturing quantum dots and nanomaterials for use in solar energy and lighting applications. With their patented continuous flow production process for perovskite quantum dots, QMC hopes to lower the
1455:
Ning, Z.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J.; Kemp, K. W.; Dong, H.; Rollny, L.; Labelle, A.; Carey, G.; Sutherland, B.; Hill, I.; Amassian, A.; Liu, H.; Tang, J.; Bakr, O. M.; Sargent, E. H. (2014). "Air-stable n-type colloidal
200:
processes. However, the lattice mismatch results in accumulation of strain and thus generation of defects, restricting the number of stacked layers. Droplet epitaxy growth technique shows its advantages on the fabrication of strain-free QDs. Alternatively, less expensive fabrication methods were
336:
Another way to improve efficiency is to capture the extra energy in the electron when emitted from a single-bandgap material. In traditional materials like silicon, the distance from the emission site to the electrode where they are harvested is too far to allow this to occur; the electron will
211:
To create a solid, these solutions are cast down and the long stabilizing ligands are replaced with short-chain crosslinkers. Chemically engineering the nanocrystal surface can better passivate the nanocrystals and reduce detrimental trap states that would curtail device performance by means of
406:
Also in 2014, another research group at MIT demonstrated air-stable ZnO/PbS solar cells that were fabricated in air and achieved a certified 8.55% record efficiency (9.2% in lab) because they absorbed light well, while also transporting charge to collectors at the cell's edge. These cells show
420:
Although quantum dot solar cells have yet to be commercially viable on the mass scale, several small commercial providers have begun marketing quantum dot photovoltaic products. Investors and financial analysts have identified quantum dot photovoltaics as a key future technology for the solar
215:
A more recent study uses different ligands for different functions by tuning their relative band alignment to improve the performance to 8.6%. The cells were solution-processed in air at room-temperature and exhibited air-stability for more than 150 days without encapsulation.
82:
exceeds 18.1%. Quantum dot solar cells have the potential to increase the maximum attainable thermodynamic conversion efficiency of solar photon conversion up to about 66% by utilizing hot photogenerated carriers to produce higher photovoltages or higher photocurrents.
371:
reported spectroscopic evidence that several excitons could be efficiently generated upon absorption of a single, energetic photon in a quantum dot. Capturing them would catch more of the energy in sunlight. In this approach, known as "carrier multiplication" (CM) or
364:
cooling, which allows excitons to pursue other pathways of relaxation; this allows MEG to dominate in quantum dot solar cells. The rate of MEG can be optimized by tailoring quantum dot ligand chemistry, as well as by changing the quantum dot material and geometry.
265:
Using quantum dots as an alternative to molecular dyes was considered from the earliest days of DSSC research. The ability to tune the bandgap allowed the designer to select a wider variety of materials for other portions of the cell. Collaborating groups from the
1199:
Kerestes, C., Polly, S., Forbes, D., Bailey, C., Podell, A., Spann, J., . . . Hubbard, S. (2013). Fabrication and analysis of multijunction solar cells with a quantum dot (In)GaAs junction. Progress in Photovoltaics: Research and Applications,22 (11), 1172-1179.
782:
Wu, Jiang; Yu, Peng; Susha, Andrei S.; Sablon, Kimberly A.; Chen, Haiyuan; Zhou, Zhihua; Li, Handong; Ji, Haining; Niu, Xiaobin (2015-04-01). "Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars".
231:
The idea of using quantum dots as a path to high efficiency was first noted by Burnham and Duggan in 1989. At the time, the science of quantum dots, or "wells" as they were known, was in its infancy and early examples were just becoming available.
459:
nanocrystals have been explored due to their safety and abundance; exploration with solar cells based with these materials have demonstrated comparable conversion efficiencies (> 9%) and short-circuit current densities (> 27 mA/cm). UbiQD's
172:
sizes, allowing them to express a variety of bandgaps without changing the underlying material or construction techniques. In typical wet chemistry preparations, the tuning is accomplished by varying the synthesis duration or temperature.
120:
of the material. Effectively, photons with energies lower than the bandgap do not get absorbed, while those that are higher can quickly (within about 10 s) thermalize to the band edges, reducing output. The former limitation reduces
301:. These cells did not use quantum dots, but shared features with them, such as spin-casting and the use of a thin film conductor. At low production scales quantum dots are more expensive than mass-produced nanocrystals, but 1587:
Bernechea, M., Miller, N. C., Xercavins, G., So, D., Stavrinadis, A., & Konstantatos, G. (2016). Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nature Photonics,10( 8), 521-525.
454:
Many heavy-metal quantum dot (lead/cadmium chalcogenides such as PbSe, CdSe) semiconductors can be cytotoxic and must be encapsulated in a stable polymer shell to prevent exposure. Non-toxic quantum dot materials such as
291:(and therefore different band gaps). Using the same material lowers manufacturing costs, and the enhanced absorption spectrum of quantum dots can be used to increase the short-circuit current and overall cell efficiency. 376:" (MEG), the quantum dot is tuned to release multiple electron-hole pairs at a lower energy instead of one pair at high energy. This increases efficiency through increased photocurrent. LANL's dots were made from 1597:
Wang, Y., Kavanagh, S.R., Burgués-Ceballos, I. et al. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photon. 16, 235–241 (2022).
341:
thin-film silicon was tried as an alternative, but the defects inherent to these materials overwhelmed their potential advantage. Modern thin-film cells remain generally less efficient than traditional silicon.
136:
The band gap (1.34 eV) of an ideal single-junction cell is close to that of silicon (1.1 eV), one of the many reasons that silicon dominates the market. However, silicon's efficiency is limited to about 30%
345:
Nanostructured donors can be cast as uniform films that avoid the problems with defects. These would be subject to other issues inherent to quantum dots, notably resistivity issues and heat retention.
67:
that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for
1241:
Goodwin, H., Jellicoe, T. C., Davis, N. J., & Böhm, M. L. (2018). Multiple exciton generation in quantum dot-based solar cells. Nanophotonics,7 (1), 111-126. doi:10.1515/nanoph-2017-0034
223:
as a ligand that does not bond to oxygen was introduced. This maintains stable n- and p-type layers, boosting the absorption efficiency, which produced power conversion efficiency up to 8%.
155:
However, the QDSCs suffer from weak absorption and the contribution of the light absorption at room temperature is marginal. This can be addressed by utilizing multibranched Au nanostars.
320:-sensitive electron donor to produce then record-efficiency IR solar cells. Spin-casting may allow the construction of "tandem" cells at greatly reduced cost. The original cells used a 23:
Spin-cast quantum dot solar cell built by the Sargent Group at the University of Toronto. The metal disks on the front surface are the electrical connections to the layers below.
387:
demonstrated similar performance using DCCS cells. Lead-sulfur (PbS) dots demonstrated two-electron ejection when the incoming photons had about three times the bandgap energy.
1190:
Semonin, O. E., Luther, J. M., & Beard, M. C. (2012). Quantum dots for next-generation photovoltaics. Materials Today,15 (11), 508-515. doi:10.1016/s1369-7021(12)70220-1
1379: 297:(CdTe) is used for cells that absorb multiple frequencies. A colloidal suspension of these crystals is spin-cast onto a substrate such as a thin glass slide, potted in a 271: 112:
one part of the semiconductor interface with atoms that act as electron donors (n-type doping) and another with electron acceptors (p-type doping) that results in a
129:. As a result, semiconductor cells suffer a trade-off between voltage and current (which can be in part alleviated by using multiple junction implementations). The 1250:
Beard, M. C. (2011). Multiple Exciton Generation in Semiconductor Quantum Dots. The Journal of Physical Chemistry Letters,2 (11), 1282-1288. doi:10.1021/jz200166y
188:, either by hand or in an automated process. Large-scale production could use spray-on or roll-printing systems, dramatically reducing module construction costs. 2557: 2234: 394:
demonstrated MEG in quantum dots, producing three electrons per photon and a theoretical efficiency of 65%. In 2007, they achieved a similar result in silicon.
1212: 2039: 1315: 1912: 1314:
Ellingson, Randy J.; Beard, Matthew C.; Johnson, Justin C.; Yu, Pingrong; Micic, Olga I.; Nozik, Arthur J.; Shabaev, Andrew; Efros, Alexander L. (2005).
52: 262:-polypyridine, which injects electrons into the titanium dioxide upon photoexcitation. This dye is relatively expensive, and ruthenium is a rare metal. 2374: 743: 2341: 2336: 1670: 201:
later developed. These use wet chemistry (for CQD) and subsequent solution processing. Concentrated nanoparticle solutions are stabilized by long
274:
developed a design based on a rear electrode directly in contact with a film of quantum dots, eliminating the electrolyte and forming a depleted
742:
Uni-Solar holds the record using a three-layer a-Si cell, with 14.9% initial production, but falling to 13% over a short time. See Yang et al.,
258:
as the semiconductor valve as well as a mechanical support structure. During construction, the sponge is filled with an organic dye, typically
144:
Traditional (crystalline) silicon preparation methods do not lend themselves to this approach due to lack of bandgap tunability. Thin-films of
1175: 1260:
Schaller, R.; Klimov, V. (2004). "High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion".
407:
unprecedented air-stability for quantum dot solar cells that the performance remained unchanged for more than 150 days of storage in air.
152:(InGaAs). Three-layer InGaAs/GaAs/InGaP cells (bandgaps 0.94/1.42/1.89 eV) hold the efficiency record of 42.3% for experimental examples. 2379: 1546: 2395: 1747: 503: 2523: 2458: 2400: 1897: 438: 278:. These cells reached 7.0% efficiency, better than the best solid-state DSSC devices, but below those based on liquid electrolytes. 1567: 1521: 1532:
Johnson, T. (n.d.). "This Company's 'Tiny Dots' Promise to Turn the ENTIRE Renewable Energy Industry on its Head". Retrieved from
108:) and the resulting flow of electrons and holes creates an electric current. The internal electrochemical potential is created by 2528: 2291: 1772: 1055: 2542: 2049: 1907: 1788: 133:
shows that this efficiency can not exceed 33% if one uses a single material with an ideal bandgap of 1.34 eV for a solar cell.
68: 60: 1396: 2493: 2019: 1813: 1762: 368: 48: 2326: 1366: 176:
better suited to generate electricity from lower-energy photons (and vice versa). Single junction implementations using
2700: 2613: 2593: 1973: 1732: 1635: 138: 130: 2503: 1978: 1663: 1533: 373: 354: 1520:
Chatsko, M. (2018, July 19). 3 Wild Solar Power Technologies That Could Secure the Industry's Future. Retrieved from
2513: 2366: 2355: 2229: 2076: 2034: 2014: 1209: 426:
cost of quantum dot solar cell production in addition to applying their nanomaterials to other emerging industries.
1927: 1902: 1742: 673:
Shockley, William; Queisser, Hans J. (1961). "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells".
518: 430:
high-throughput and cost-effective technologies and are more light- and air- stable than polymeric nanomaterials.
241: 744:"Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies" 2667: 2428: 2410: 2301: 2147: 2134: 2129: 2029: 1117:
B. O’Regan and M. Gratzel (1991). "A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO
904: 708:
Brown, A; Green, M (2002). "Detailed balance limit for the series constrained two terminal tandem solar cell".
1625: 2518: 2438: 2316: 2286: 2044: 2024: 1953: 1839: 1834: 1803: 1798: 508: 481: 149: 2656: 2498: 2468: 2433: 2420: 2306: 2081: 1872: 1767: 1656: 1420: 1338: 958: 197: 109: 19: 2695: 2473: 2463: 2443: 2296: 2119: 1922: 1725: 1720: 442: 384: 306: 267: 122: 79: 1500: 337:
undergo many interactions with the crystal materials and lattice, giving up this extra energy as heat.
627: 2690: 2508: 2488: 2483: 2478: 2453: 2448: 1963: 1892: 1737: 1705: 1465: 1330: 1279: 1130: 1089: 1010: 950: 869: 827: 818:
Baskoutas, Sotirios; Terzis, Andreas F. (2006). "Size-dependent band gap of colloidal quantum dots".
717: 682: 639: 71:, where a variety of materials are used to improve efficiency by harvesting multiple portions of the 1343: 963: 434:
buildings into energy generation units, while simultaneously reducing the heat gain of the building.
403:
cells. However, these air-stable n-type CQD were actually fabricated in an oxygen-free environment.
2162: 2142: 2109: 1917: 1853: 1793: 1752: 999:"Improved performance and stability in quantum dot solar cells through band alignment engineering" 2198: 2157: 2104: 1877: 1757: 1642: 1303: 1269: 1146: 885: 800: 544:"Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells" 523: 298: 1522:
https://www.fool.com/investing/2018/07/19/3-wild-solar-power-technologies-that-could-secure.aspx
2203: 163:
Quantum dots are semiconducting particles that have been reduced below the size of the Exciton
104:. This pair is separated by an internal electrochemical potential (present in p-n junctions or 2224: 2219: 2152: 1948: 1887: 1818: 1808: 1481: 1356: 1295: 1171: 1036: 976: 655: 583: 565: 377: 294: 168: 145: 56: 2281: 2249: 2239: 1710: 1473: 1348: 1287: 1138: 1097: 1026: 1018: 968: 919: 877: 835: 792: 725: 690: 647: 573: 555: 245: 177: 854: 287:
broader range of wavelengths, which increases the cell's electrical conversion efficiency.
2193: 2124: 1621: 1216: 1615: 1469: 1334: 1283: 1134: 1093: 1014: 954: 873: 831: 721: 686: 643: 578: 543: 100:, producing an electron-hole (e-h) pair; the pair may be bound and is referred to as an 43:
as the captivating photovoltaic material. It attempts to replace bulk materials such as
2603: 2578: 2244: 2096: 1998: 1988: 1958: 1715: 1031: 998: 275: 105: 72: 1434: 997:
Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir; Bawendi, Moungi G. (2014).
729: 651: 542:
Shishodia, Shubham; Chouchene, Bilel; Gries, Thomas; Schneider, Raphaël (2023-10-31).
2684: 2265: 2188: 2178: 2091: 1983: 1700: 1679: 1316:"Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots" 889: 495: 445:
intends to start volume production of its QuantumGlass product between 2020 and 2021.
97: 804: 116:. The generation of an e-h pair requires that the photons have energy exceeding the 2633: 2588: 2321: 1993: 1631: 1534:
https://www.stockgumshoe.com/reviews/cutting-edge-the/this-companys-tiny-dots-promi
1400: 1307: 1150: 513: 313: 185: 113: 1291: 1636:
Berkeley Lab Air-stable Inorganic Nanocrystal Solar Cells Processed from Solution
1165: 923: 796: 2628: 2598: 2573: 2331: 1968: 1943: 475: 202: 164: 40: 1232:, Workshop on Nanoscience for Solar Energy Conversion, 27–29 October 2008, p. 8 601: 464:
quantum dot material is another example of a non-toxic semiconductor compound.
2114: 2086: 1864: 1616:
Quantum-Dots Leap: Tapping tiny crystals' inexplicable light-harvesting talent
1229: 471: 36: 1599: 659: 569: 2405: 2311: 2183: 489: 338: 259: 1485: 1360: 1299: 1040: 980: 972: 881: 587: 2618: 2608: 2583: 1274: 1230:"Quantum Dot Solar Cells: Semiconductor Nanocrystals As Light Harvesters" 560: 317: 903:
Yu, Peng; Wu, Jiang; Gao, Lei; Liu, Huiyun; Wang, Zhiming (2017-03-01).
2623: 302: 126: 117: 101: 64: 44: 1352: 839: 694: 1477: 1142: 1102: 1077: 1022: 325: 220: 212:
carrier recombination. This approach produces an efficiency of 7.0%.
205: 1547:"ML System zawarła z firmą Servitech umowę wartą 26,7 mln zł netto" 1435:"Quantum dot breakthrough could lead to cheap spray-on solar cells" 905:"InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy" 18: 1648: 1367:"Quantum Dot Materials Can Reduce Heat, Boost Electrical Output" 391: 321: 1652: 1568:"Kolejny krok milowy ML System w ramach projektu Quantum Glass" 1056:"New nanoparticles bring cheaper, lighter solar cells outdoors" 761: 1078:"A new approach to high-efficiency multi-band-gap solar cells" 1536:
se-to-turn-the-entire-renewable-energy-industry-on-its-head/
309:
are rare and highly toxic metals subject to price swings.
1397:"Quantum Dots May Boost Photovoltaic Efficiency To 65%" 1167:
Nature's Building Blocks: An A-Z Guide to the Elements
1501:"New record efficiency for quantum-dot photovoltaics" 1421:"Unique Quantum Effect Found in Silicon Nanocrystals" 632:
Physica E: Low-dimensional Systems and Nanostructures
1380:"Work light twice as hard to make cheap solar cells" 96:
In a conventional solar cell light is absorbed by a
2566: 2550: 2541: 2419: 2388: 2365: 2354: 2274: 2258: 2212: 2171: 2069: 2062: 2007: 1936: 1863: 1852: 1827: 1781: 1693: 1686: 992: 990: 941:"Hybrid passivated colloidal quantum dot solids". 208:that keep the nanocrystals suspended in solution. 1210:"New Inexpensive Solar Cell Design is Pioneered" 16:Type of solar cell based on quantum dot devices 1626:Nanocrystal Discovery Has Solar Cell Potential 2558:List of countries by photovoltaics production 2235:Solar-Powered Aircraft Developments Solar One 1664: 1170:. Oxford University Press. pp. 368–370. 8: 244:, or DSSC. DSSCs use a sponge-like layer of 2040:Photovoltaic thermal hybrid solar collector 2547: 2362: 2066: 1913:Copper indium gallium selenide solar cells 1860: 1690: 1671: 1657: 1649: 1600:https://doi.org/10.1038/s41566-021-00950-4 1342: 1273: 1101: 1030: 962: 935: 933: 762:"Spire pushes solar cell record to 42.3%" 577: 559: 2375:Grid-connected photovoltaic power system 1643:Sunny Future For Nanocrystal Solar Cells 272:École Polytechnique Fédérale de Lausanne 2342:Victorian Model Solar Vehicle Challenge 2337:Hunt-Winston School Solar Car Challenge 534: 125:, while the thermalization reduces the 1219:, University of Toronto, 3 August 2010 1076:Barnham, K. W. J.; Duggan, G. (1990). 912:Solar Energy Materials and Solar Cells 602:"Best Research Cell Efficiency Chart" 7: 2663: 606:National Renewable Energy Laboratory 324:substrate as an electrode, although 2380:List of photovoltaic power stations 2396:Rooftop photovoltaic power station 1799:Polycrystalline silicon (multi-Si) 1748:Third-generation photovoltaic cell 1423:, NREL Press Release, 24 July 2007 504:Third-generation photovoltaic cell 240:Another modern cell design is the 14: 2401:Building-integrated photovoltaics 1898:Carbon nanotubes in photovoltaics 1804:Monocrystalline silicon (mono-Si) 1369:, NREL Press Release, 23 May 2005 2662: 2651: 2650: 1773:Polarizing organic photovoltaics 488: 474: 1908:Cadmium telluride photovoltaics 1789:List of semiconductor materials 1499:Jeffrey, Colin (May 27, 2014). 1164:Emsley, John (25 August 2011). 2020:Incremental conductance method 1814:Copper indium gallium selenide 1763:Thermodynamic efficiency limit 1433:Borghino, Dario (2014-06-10). 1054:Mitchell, Marit (2014-06-09). 369:Los Alamos National Laboratory 49:copper indium gallium selenide 1: 2327:South African Solar Challenge 1292:10.1103/PhysRevLett.92.186601 730:10.1016/S1386-9477(02)00364-8 652:10.1016/S1386-9477(02)00374-0 1974:Photovoltaic mounting system 1588:doi:10.1038/nphoton.2016.108 924:10.1016/j.solmat.2016.12.024 797:10.1016/j.nanoen.2015.02.012 131:detailed balance calculation 1979:Maximum power point tracker 374:multiple exciton generation 355:multiple exciton generation 196:Early examples used costly 2717: 2230:Solar panels on spacecraft 2077:Solar-powered refrigerator 2035:Concentrated photovoltaics 2015:Perturb and observe method 1794:Crystalline silicon (c-Si) 1082:Journal of Applied Physics 820:Journal of Applied Physics 675:Journal of Applied Physics 626:Nozik, A. J (2002-04-01). 352: 69:multi-junction solar cells 2646: 1928:Heterojunction solar cell 1903:Dye-sensitized solar cell 1743:Multi-junction solar cell 1733:Nominal power (Watt-peak) 1215:January 28, 2011, at the 628:"Quantum dot solar cells" 519:Photoelectrochemical cell 242:dye-sensitized solar cell 2411:Strasskirchen Solar Park 2302:American Solar Challenge 2148:Solar-powered flashlight 2135:Solar-powered calculator 2130:Solar cell phone charger 1819:Amorphous silicon (a-Si) 2317:Frisian Solar Challenge 2287:List of solar car teams 2045:Space-based solar power 2025:Constant voltage method 1954:Solar charge controller 1840:Timeline of solar cells 1835:Growth of photovoltaics 1570:(in Polish). 2019-11-05 1549:(in Polish). 2019-10-30 1262:Physical Review Letters 855:"Infrared Quantum Dots" 853:H. Sargent, E. (2005). 748:Applied Physics Letters 509:Nanocrystalline silicon 482:Renewable energy portal 312:The Sargent Group used 150:indium gallium arsenide 139:Shockley–Queisser limit 2307:Formula Sun Grand Prix 2139:Solar-powered fountain 2082:Solar air conditioning 1883:Quantum dot solar cell 1873:Nanocrystal solar cell 1768:Sun-free photovoltaics 973:10.1038/nnano.2012.127 882:10.1002/adma.200401552 826:(1): 013708–013708–4. 198:molecular beam epitaxy 29:quantum dot solar cell 24: 2297:World Solar Challenge 2120:Photovoltaic keyboard 2050:PV system performance 1923:Perovskite solar cell 1721:Solar cell efficiency 1614:Science News Online, 1456:quantum dot solids". 943:Nature Nanotechnology 443:Warsaw Stock Exchange 385:University of Wyoming 268:University of Toronto 63:). Quantum dots have 22: 2567:Individual producers 2275:Solar vehicle racing 1964:Solar micro-inverter 1893:Plasmonic solar cell 1738:Thin-film solar cell 1706:Photoelectric effect 1200:doi:10.1002/pip.2378 561:10.3390/nano13212889 416:Commercial Providers 328:works just as well. 2701:Quantum electronics 2163:Solar traffic light 2143:Solar-powered radio 2110:Solar-powered watch 1918:Printed solar panel 1753:Solar cell research 1645:, October 23, 2005. 1470:2014NatMa..13..822N 1335:2005NanoL...5..865E 1284:2004PhRvL..92r6601S 1135:1991Natur.353..737O 1094:1990JAP....67.3490B 1015:2014NatMa..13..796C 955:2012NatNa...7..577I 874:2005AdM....17..515H 832:2006JAP....99a3708B 722:2002PhyE...14...96B 687:1961JAP....32..510S 644:2002PhyE...14..115N 441:producer listed on 411:Market Introduction 332:Hot-carrier capture 219:In 2014 the use of 92:Solar cell concepts 2199:The Quiet Achiever 2158:Solar street light 2105:Solar-powered pump 1878:Organic solar cell 1758:Thermophotovoltaic 1726:Quantum efficiency 1628:, January 6, 2006. 862:Advanced Materials 524:Organic solar cell 437:ML System S.A., a 299:conductive polymer 184:on a substrate by 25: 2678: 2677: 2642: 2641: 2537: 2536: 2350: 2349: 2225:Mauro Solar Riser 2220:Electric aircraft 2153:Solar-powered fan 2058: 2057: 1949:Balance of system 1937:System components 1888:Hybrid solar cell 1848: 1847: 1809:Cadmium telluride 1353:10.1021/nl0502672 1177:978-0-19-960563-7 1129:(6346): 737–740. 840:10.1063/1.2158502 760:SPIE Europe Ltd. 695:10.1063/1.1736034 349:Multiple excitons 295:Cadmium telluride 169:quantum mechanics 146:amorphous silicon 57:cadmium telluride 39:design that uses 2708: 2666: 2665: 2654: 2653: 2548: 2389:Building-mounted 2367:PV power station 2363: 2292:Solar challenges 2282:Solar car racing 2250:Solar Challenger 2240:Gossamer Penguin 2067: 1861: 1711:Solar irradiance 1691: 1673: 1666: 1659: 1650: 1603: 1595: 1589: 1585: 1579: 1578: 1576: 1575: 1564: 1558: 1557: 1555: 1554: 1543: 1537: 1530: 1524: 1518: 1512: 1511: 1509: 1508: 1496: 1490: 1489: 1478:10.1038/nmat4007 1458:Nature Materials 1452: 1446: 1445: 1443: 1442: 1430: 1424: 1418: 1412: 1411: 1409: 1408: 1399:. Archived from 1393: 1387: 1386:, 1 October 2010 1376: 1370: 1364: 1346: 1320: 1311: 1277: 1275:cond-mat/0404368 1257: 1251: 1248: 1242: 1239: 1233: 1228:Prashant Kamat, 1226: 1220: 1207: 1201: 1197: 1191: 1188: 1182: 1181: 1161: 1155: 1154: 1143:10.1038/353737a0 1114: 1108: 1107: 1105: 1103:10.1063/1.345339 1073: 1067: 1066: 1064: 1063: 1051: 1045: 1044: 1034: 1023:10.1038/nmat3984 1003:Nature Materials 994: 985: 984: 966: 937: 928: 927: 909: 900: 894: 893: 859: 850: 844: 843: 815: 809: 808: 779: 773: 772: 770: 769: 757: 751: 740: 734: 733: 705: 699: 698: 670: 664: 663: 623: 617: 616: 614: 612: 598: 592: 591: 581: 563: 539: 498: 493: 492: 484: 479: 478: 256: 255: 254: 2716: 2715: 2711: 2710: 2709: 2707: 2706: 2705: 2681: 2680: 2679: 2674: 2638: 2562: 2533: 2415: 2384: 2357: 2346: 2270: 2259:Water transport 2254: 2208: 2194:Solar golf cart 2167: 2125:Solar road stud 2054: 2008:System concepts 2003: 1932: 1855: 1844: 1823: 1777: 1682: 1677: 1622:InformationWeek 1618:, June 3, 2006. 1611: 1606: 1596: 1592: 1586: 1582: 1573: 1571: 1566: 1565: 1561: 1552: 1550: 1545: 1544: 1540: 1531: 1527: 1519: 1515: 1506: 1504: 1498: 1497: 1493: 1454: 1453: 1449: 1440: 1438: 1432: 1431: 1427: 1419: 1415: 1406: 1404: 1395: 1394: 1390: 1377: 1373: 1365: 1344:10.1.1.453.4612 1318: 1313: 1312: 1259: 1258: 1254: 1249: 1245: 1240: 1236: 1227: 1223: 1217:Wayback Machine 1208: 1204: 1198: 1194: 1189: 1185: 1178: 1163: 1162: 1158: 1120: 1116: 1115: 1111: 1075: 1074: 1070: 1061: 1059: 1053: 1052: 1048: 996: 995: 988: 964:10.1.1.259.9381 939: 938: 931: 907: 902: 901: 897: 857: 852: 851: 847: 817: 816: 812: 781: 780: 776: 767: 765: 759: 758: 754: 741: 737: 716:(1–2): 96–100. 707: 706: 702: 672: 671: 667: 625: 624: 620: 610: 608: 600: 599: 595: 541: 540: 536: 532: 494: 487: 480: 473: 470: 463: 458: 452: 450:Safety Concerns 418: 413: 400: 357: 351: 334: 284: 253: 250: 249: 248: 246: 238: 229: 194: 161: 106:Schottky diodes 94: 89: 17: 12: 11: 5: 2714: 2712: 2704: 2703: 2698: 2693: 2683: 2682: 2676: 2675: 2673: 2672: 2660: 2647: 2644: 2643: 2640: 2639: 2637: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2604:Solar Frontier 2601: 2596: 2591: 2586: 2581: 2579:Hanwha Q CELLS 2576: 2570: 2568: 2564: 2563: 2561: 2560: 2554: 2552: 2545: 2539: 2538: 2535: 2534: 2532: 2531: 2526: 2524:United Kingdom 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2459:Czech Republic 2456: 2451: 2446: 2441: 2436: 2431: 2425: 2423: 2417: 2416: 2414: 2413: 2408: 2403: 2398: 2392: 2390: 2386: 2385: 2383: 2382: 2377: 2371: 2369: 2360: 2352: 2351: 2348: 2347: 2345: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2284: 2278: 2276: 2272: 2271: 2269: 2268: 2262: 2260: 2256: 2255: 2253: 2252: 2247: 2245:Qinetiq Zephyr 2242: 2237: 2232: 2227: 2222: 2216: 2214: 2210: 2209: 2207: 2206: 2201: 2196: 2191: 2186: 2181: 2175: 2173: 2172:Land transport 2169: 2168: 2166: 2165: 2160: 2155: 2150: 2145: 2140: 2137: 2132: 2127: 2122: 2117: 2112: 2107: 2102: 2099: 2097:Solar backpack 2094: 2089: 2084: 2079: 2073: 2071: 2064: 2060: 2059: 2056: 2055: 2053: 2052: 2047: 2042: 2037: 2032: 2027: 2022: 2017: 2011: 2009: 2005: 2004: 2002: 2001: 1999:Synchronverter 1996: 1991: 1989:Solar shingles 1986: 1981: 1976: 1971: 1966: 1961: 1959:Solar inverter 1956: 1951: 1946: 1940: 1938: 1934: 1933: 1931: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1875: 1869: 1867: 1858: 1850: 1849: 1846: 1845: 1843: 1842: 1837: 1831: 1829: 1825: 1824: 1822: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1785: 1783: 1779: 1778: 1776: 1775: 1770: 1765: 1760: 1755: 1750: 1745: 1740: 1735: 1730: 1729: 1728: 1718: 1716:Solar constant 1713: 1708: 1703: 1697: 1695: 1688: 1684: 1683: 1678: 1676: 1675: 1668: 1661: 1653: 1647: 1646: 1641:ScienceDaily, 1639: 1629: 1619: 1610: 1609:External links 1607: 1605: 1604: 1590: 1580: 1559: 1538: 1525: 1513: 1491: 1464:(8): 822–828. 1447: 1425: 1413: 1388: 1371: 1268:(18): 186601. 1252: 1243: 1234: 1221: 1202: 1192: 1183: 1176: 1156: 1118: 1109: 1068: 1046: 1009:(8): 796–801. 986: 949:(9): 577–582. 929: 895: 868:(5): 515–522. 845: 810: 774: 752: 735: 700: 665: 638:(1): 115–120. 618: 593: 533: 531: 528: 527: 526: 521: 516: 511: 506: 500: 499: 485: 469: 466: 461: 456: 451: 448: 447: 446: 435: 431: 427: 417: 414: 412: 409: 399: 396: 353:Main article: 350: 347: 333: 330: 283: 282:Multi-junction 280: 276:heterojunction 251: 237: 234: 228: 225: 193: 190: 160: 157: 93: 90: 88: 85: 73:solar spectrum 15: 13: 10: 9: 6: 4: 3: 2: 2713: 2702: 2699: 2697: 2694: 2692: 2689: 2688: 2686: 2671: 2670: 2661: 2659: 2658: 2649: 2648: 2645: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2571: 2569: 2565: 2559: 2556: 2555: 2553: 2549: 2546: 2544: 2540: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2426: 2424: 2422: 2418: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2393: 2391: 2387: 2381: 2378: 2376: 2373: 2372: 2370: 2368: 2364: 2361: 2359: 2353: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2280: 2279: 2277: 2273: 2267: 2264: 2263: 2261: 2257: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2217: 2215: 2213:Air transport 2211: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2189:Solar roadway 2187: 2185: 2182: 2180: 2179:Solar vehicle 2177: 2176: 2174: 2170: 2164: 2161: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2100: 2098: 2095: 2093: 2092:Solar charger 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2074: 2072: 2068: 2065: 2061: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2012: 2010: 2006: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1984:Solar tracker 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1941: 1939: 1935: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1870: 1868: 1866: 1862: 1859: 1857: 1851: 1841: 1838: 1836: 1833: 1832: 1830: 1826: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1786: 1784: 1780: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1727: 1724: 1723: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1701:Photovoltaics 1699: 1698: 1696: 1692: 1689: 1685: 1681: 1680:Photovoltaics 1674: 1669: 1667: 1662: 1660: 1655: 1654: 1651: 1644: 1640: 1637: 1633: 1630: 1627: 1623: 1620: 1617: 1613: 1612: 1608: 1601: 1594: 1591: 1584: 1581: 1569: 1563: 1560: 1548: 1542: 1539: 1535: 1529: 1526: 1523: 1517: 1514: 1502: 1495: 1492: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1451: 1448: 1436: 1429: 1426: 1422: 1417: 1414: 1403:on 2022-01-23 1402: 1398: 1392: 1389: 1385: 1381: 1375: 1372: 1368: 1362: 1358: 1354: 1350: 1345: 1340: 1336: 1332: 1329:(5): 865–71. 1328: 1324: 1317: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1276: 1271: 1267: 1263: 1256: 1253: 1247: 1244: 1238: 1235: 1231: 1225: 1222: 1218: 1214: 1211: 1206: 1203: 1196: 1193: 1187: 1184: 1179: 1173: 1169: 1168: 1160: 1157: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1113: 1110: 1104: 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1069: 1057: 1050: 1047: 1042: 1038: 1033: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 993: 991: 987: 982: 978: 974: 970: 965: 960: 956: 952: 948: 944: 936: 934: 930: 925: 921: 917: 913: 906: 899: 896: 891: 887: 883: 879: 875: 871: 867: 863: 856: 849: 846: 841: 837: 833: 829: 825: 821: 814: 811: 806: 802: 798: 794: 790: 786: 778: 775: 763: 756: 753: 749: 745: 739: 736: 731: 727: 723: 719: 715: 711: 704: 701: 696: 692: 688: 684: 680: 676: 669: 666: 661: 657: 653: 649: 645: 641: 637: 633: 629: 622: 619: 607: 603: 597: 594: 589: 585: 580: 575: 571: 567: 562: 557: 553: 549: 548:Nanomaterials 545: 538: 535: 529: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 501: 497: 496:Energy portal 491: 486: 483: 477: 472: 467: 465: 449: 444: 440: 436: 432: 428: 424: 423: 422: 415: 410: 408: 404: 398:Non-oxidizing 397: 395: 393: 388: 386: 383:In 2010, the 381: 379: 378:lead selenide 375: 370: 365: 361: 356: 348: 346: 343: 340: 331: 329: 327: 323: 319: 315: 310: 308: 304: 300: 296: 292: 288: 281: 279: 277: 273: 269: 263: 261: 257: 243: 235: 233: 226: 224: 222: 217: 213: 209: 207: 204: 199: 191: 189: 187: 181: 179: 173: 170: 166: 158: 156: 153: 151: 147: 142: 140: 134: 132: 128: 124: 119: 115: 111: 107: 103: 99: 98:semiconductor 91: 86: 84: 81: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 21: 2696:Quantum dots 2668: 2655: 2634:Yingli Solar 2614:Sungen Solar 2589:Motech Solar 2543:PV companies 2504:South Africa 2322:Solar Splash 2063:Applications 1994:Solar mirror 1882: 1854:Photovoltaic 1632:Berkeley Lab 1593: 1583: 1572:. Retrieved 1562: 1551:. Retrieved 1541: 1528: 1516: 1505:. Retrieved 1503:. Gizmag.com 1494: 1461: 1457: 1450: 1439:. Retrieved 1437:. Gizmag.com 1428: 1416: 1405:. Retrieved 1401:the original 1391: 1384:Newscientist 1383: 1378:Jeff Hecht, 1374: 1326: 1323:Nano Letters 1322: 1265: 1261: 1255: 1246: 1237: 1224: 1205: 1195: 1186: 1166: 1159: 1126: 1122: 1112: 1085: 1081: 1071: 1060:. Retrieved 1049: 1006: 1002: 946: 942: 915: 911: 898: 865: 861: 848: 823: 819: 813: 788: 784: 777: 766:. Retrieved 764:. Optics.org 755: 747: 738: 713: 709: 703: 678: 674: 668: 635: 631: 621: 609:. Retrieved 605: 596: 554:(21): 2889. 551: 547: 537: 514:Nanoparticle 453: 419: 405: 401: 389: 382: 366: 362: 358: 344: 335: 314:lead sulfide 311: 293: 289: 285: 264: 239: 236:DSSC efforts 230: 218: 214: 210: 195: 186:spin coating 182: 178:lead sulfide 174: 162: 159:Quantum dots 154: 143: 135: 114:p-n junction 95: 78:As of 2022, 77: 41:quantum dots 32: 28: 26: 2691:Solar cells 2629:Trina Solar 2574:First Solar 2514:Switzerland 2494:Netherlands 2332:Tour de Sol 2030:Fill factor 1969:Solar cable 1944:Solar panel 1865:Solar cells 1088:(7): 3490. 1058:. Rdmag.com 918:: 377–381. 791:: 827–835. 785:Nano Energy 203:hydrocarbon 167:and due to 165:Bohr radius 2685:Categories 2551:By country 2421:By country 2356:Generation 2266:Solar boat 2115:Solar Tuki 2101:Solar tree 2087:Solar lamp 2070:Appliances 1694:Technology 1574:2020-02-06 1553:2020-02-06 1507:2014-06-22 1441:2014-06-22 1407:2007-12-14 1062:2014-08-24 768:2014-06-22 681:(3): 510. 530:References 421:industry. 192:Production 87:Background 80:efficiency 37:solar cell 2429:Australia 2406:Solar Ark 2312:Solar Cup 2204:Sunmobile 2184:Solar car 1782:Materials 1339:CiteSeerX 959:CiteSeerX 890:247707535 710:Physica E 660:1386-9477 570:2079-4991 390:In 2005, 367:In 2004, 339:Amorphous 307:telluride 260:ruthenium 2657:Category 2619:Sunpower 2609:Solyndra 2584:JA Solar 2519:Thailand 2439:Bulgaria 1687:Concepts 1486:24907929 1361:15884885 1300:15169518 1213:Archived 1121:films". 1041:24859641 981:22842552 805:98282021 588:37947733 579:10648425 468:See also 318:infrared 65:bandgaps 2669:Commons 2624:Suntech 2499:Romania 2469:Germany 2434:Belgium 2358:systems 1828:History 1638:, 2005. 1466:Bibcode 1331:Bibcode 1308:4186651 1280:Bibcode 1151:4340159 1131:Bibcode 1090:Bibcode 1032:4110173 1011:Bibcode 951:Bibcode 870:Bibcode 828:Bibcode 718:Bibcode 683:Bibcode 640:Bibcode 303:cadmium 227:History 206:ligands 127:voltage 123:current 118:bandgap 102:exciton 45:silicon 35:) is a 2474:Greece 2464:France 2444:Canada 1856:system 1484:  1359:  1341:  1306:  1298:  1174:  1149:  1123:Nature 1039:  1029:  979:  961:  888:  803:  750:, 1997 658:  611:22 May 586:  576:  568:  460:CuInSe 326:nickel 316:as an 221:iodide 110:doping 2599:Sharp 2509:Spain 2489:Japan 2484:Italy 2479:India 2454:China 2449:Chile 1319:(PDF) 1304:S2CID 1270:arXiv 1147:S2CID 908:(PDF) 886:S2CID 858:(PDF) 801:S2CID 455:AgBiS 55:) or 1482:PMID 1357:PMID 1296:PMID 1172:ISBN 1037:PMID 977:PMID 656:ISSN 613:2022 584:PMID 566:ISSN 439:BIPV 392:NREL 322:gold 305:and 270:and 61:CdTe 53:CIGS 33:QDSC 2594:REC 1474:doi 1349:doi 1288:doi 1139:doi 1127:353 1098:doi 1027:PMC 1019:doi 969:doi 920:doi 916:161 878:doi 836:doi 793:doi 726:doi 691:doi 648:doi 574:PMC 556:doi 462:2−X 247:TiO 2687:: 2529:US 1634:, 1624:, 1480:. 1472:. 1462:13 1460:. 1382:, 1355:. 1347:. 1337:. 1325:. 1321:. 1302:. 1294:. 1286:. 1278:. 1266:92 1264:. 1145:. 1137:. 1125:. 1096:. 1086:67 1084:. 1080:. 1035:. 1025:. 1017:. 1007:13 1005:. 1001:. 989:^ 975:. 967:. 957:. 945:. 932:^ 914:. 910:. 884:. 876:. 866:17 864:. 860:. 834:. 824:99 822:. 799:. 789:13 787:. 746:, 724:. 714:14 712:. 689:. 679:32 677:. 654:. 646:. 636:14 634:. 630:. 604:. 582:. 572:. 564:. 552:13 550:. 546:. 380:. 75:. 47:, 27:A 1672:e 1665:t 1658:v 1602:. 1577:. 1556:. 1510:. 1488:. 1476:: 1468:: 1444:. 1410:. 1363:. 1351:: 1333:: 1327:5 1310:. 1290:: 1282:: 1272:: 1180:. 1153:. 1141:: 1133:: 1119:2 1106:. 1100:: 1092:: 1065:. 1043:. 1021:: 1013:: 983:. 971:: 953:: 947:7 926:. 922:: 892:. 880:: 872:: 842:. 838:: 830:: 807:. 795:: 771:. 732:. 728:: 720:: 697:. 693:: 685:: 662:. 650:: 642:: 615:. 590:. 558:: 457:2 372:" 252:2 137:( 59:( 51:( 31:(

Index


solar cell
quantum dots
silicon
copper indium gallium selenide
CIGS
cadmium telluride
CdTe
bandgaps
multi-junction solar cells
solar spectrum
efficiency
semiconductor
exciton
Schottky diodes
doping
p-n junction
bandgap
current
voltage
detailed balance calculation
Shockley–Queisser limit
amorphous silicon
indium gallium arsenide
Bohr radius
quantum mechanics
lead sulfide
spin coating
molecular beam epitaxy
hydrocarbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.