Knowledge (XXG)

Real-time polymerase chain reaction

Source 📝

575: 3374: 242: 43: 708:
often challenging, because only very few genes show equal levels of expression across a range of different conditions or tissues. Although cycle threshold analysis is integrated with many commercial software systems, there are more accurate and reliable methods of analysing amplification profile data that should be considered in cases where reproducibility is a concern.
878:
amplification. Using taxonomic markers (ribosomal genes) and qPCR can help determine the amount of microorganisms in a sample, and can identify different families, genera, or species based on the specificity of the marker. Using functional markers (protein-coding genes) can show gene expression within a community, which may reveal information about the environment.
151: 140: 491:, and after each cycle, the intensity of fluorescence is measured with a detector; the dye only fluoresces when bound to the dsDNA (i.e., the PCR product). This method has the advantage of only needing a pair of primers to carry out the amplification, which keeps costs down; multiple target sequences can be monitored in a tube by using different types of dyes. 325:) in several samples. Quantitative PCR can also be applied to the detection and quantification of DNA in samples to determine the presence and abundance of a particular DNA sequence in these samples. This measurement is made after each amplification cycle, and this is the reason why this method is called real time PCR (that is, immediate or simultaneous PCR). 712:
use knowledge about the polymerase amplification process to generate estimates of the original sample concentration. An extension of this approach includes an accurate model of the entire PCR reaction profile, which allows for the use of high signal-to-noise data and the ability to validate data quality prior to analysis.
373:) have been developed. Some have been developed for quantifying total gene expression, but the most common are aimed at quantifying the specific gene being studied in relation to another gene called a normalizing gene, which is selected for its almost constant level of expression. These genes are often selected from 715:
According to research of Ruijter et al. MAK2 assumes constant amplification efficiency during the PCR reaction. However, theoretical analysis of polymerase chain reaction, from which MAK2 was derived, has revealed that amplification efficiency is not constant throughout PCR. While MAK2 quantification
578:
Distinct fusion curves for a number of PCR products (showing distinct colours). Amplification reactions can be seen for a specific product (pink, blue) and others with a negative result (green, orange). The fusion peak indicated with an arrow shows the peak caused by primer dimers, which is different
441:
The PCR process generally consists of a series of temperature changes that are repeated 25–50 times. These cycles normally consist of three stages: the first, at around 95 °C, allows the separation of the nucleic acid's double chain; the second, at a temperature of around 50–60 °C, allows the binding
360:
to the gene of interest. Although this technique is still used to assess gene expression, it requires relatively large amounts of RNA and provides only qualitative or semi quantitative information of mRNA levels. Estimation errors arising from variations in the quantification method can be the result
602:). The method used is usually PCR with double-stranded DNA-binding dyes as reporters and the dye used is usually SYBR Green. The DNA melting temperature is specific to the amplified fragment. The results of this technique are obtained by comparing the dissociation curves of the analysed DNA samples. 450:
during the change between the alignment stage and the denaturing stage. In addition, in four-step PCR the fluorescence is measured during short temperature phases lasting only a few seconds in each cycle, with a temperature of, for example, 80 °C, in order to reduce the signal caused by the presence
921:
or even intermediate sequences used during the process of engineering the vector. As the process of creating a transgenic plant normally leads to the insertion of more than one copy of the transgene its quantity is also commonly assessed. This is often carried out by relative quantification using a
711:
Mechanism-based qPCR quantification methods have also been suggested, and have the advantage that they do not require a standard curve for quantification. Methods such as MAK2 have been shown to have equal or better quantitative performance to standard curve methods. These mechanism-based methods
510:
reporter probes detect only the DNA containing the sequence complementary to the probe; therefore, use of the reporter probe significantly increases specificity, and enables performing the technique even in the presence of other dsDNA. Using different-coloured labels, fluorescent probes can be used
794:
As the units used to express the results of relative quantification are unimportant the results can be compared across a number of different RTqPCR. The reason for using one or more housekeeping genes is to correct non-specific variation, such as the differences in the quantity and quality of RNA
707:
and permits comparison of expression of a gene of interest among different samples. However, for such comparison, expression of the normalizing reference gene needs to be very similar across all the samples. Choosing a reference gene fulfilling this criterion is therefore of high importance, and
609:
techniques to demonstrate the results of all the samples. This is because, despite being a kinetic technique, quantitative PCR is usually evaluated at a distinct end point. The technique therefore usually provides more rapid results and/or uses fewer reactants than electrophoresis. If subsequent
877:
qPCR may also be used to amplify taxonomic or functional markers of genes in DNA taken from environmental samples. Markers are represented by genetic fragments of DNA or complementary DNA. By amplifying a certain genetic element, one can quantify the amount of the element in the sample prior to
618:
Unlike end point PCR (conventional PCR), real time PCR allows monitoring of the desired product at any point in the amplification process by measuring fluorescence (in real time frame, measurement is made of its level over a given threshold). A commonly employed method of DNA quantification by
265:): The amount of an expressed gene in a cell can be measured by the number of copies of an RNA transcript of that gene present in a sample. In order to robustly detect and quantify gene expression from small amounts of RNA, amplification of the gene transcript is necessary. The 1685:
Ruijter JM, Pfaffl MW, Zhao S, Spiess AN, Boggy G, Blom J, Rutledge RG, Sisti D, Lievens A, De Preter K, Derveaux S, Hellemans J, Vandesompele J (2012). "Evaluation of qPCR curve analysis methods for reliable biomarker discovery: bias, resolution, precision, and implications".
503:(1) In intact probes, reporter fluorescence is quenched. (2) Probes and the complementary DNA strand are hybridized and reporter fluorescence is still quenched. (3) During PCR, the probe is degraded by the Taq polymerase and the fluorescent reporter released. 886:
The agricultural industry is constantly striving to produce plant propagules or seedlings that are free of pathogens in order to prevent economic losses and safeguard health. Systems have been developed that allow detection of small amounts of the DNA of
316:
allowing the generation rate to be measured for one or more specific products. This allows the rate of generation of the amplified product to be measured at each PCR cycle. The data thus generated can be analysed by computer software to calculate
679:
difference of 1. The cycle threshold method makes several assumptions of reaction mechanism and has a reliance on data from low signal-to-noise regions of the amplification profile that can introduce substantial variance during the data analysis.
646:
precedes that of another sample by 3 cycles contained 2 = 8 times more template. However, the efficiency of amplification is often variable among primers and templates. Therefore, the efficiency of a primer-template combination is assessed in a
553:
Polymerisation of a new DNA strand is initiated from the primers, and once the polymerase reaches the probe, its 5'-3'-exonuclease degrades the probe, physically separating the fluorescent reporter from the quencher, resulting in an increase in
385:. This enables researchers to report a ratio for the expression of the genes of interest divided by the expression of the selected normalizer, thereby allowing comparison of the former without actually knowing its absolute level of expression. 500: 873:
Quantitative PCR is also used by microbiologists working in the fields of food safety, food spoilage and fermentation and for the microbial risk assessment of water quality (drinking and recreational waters) and in public health protection.
451:
of primer dimers when a non-specific dye is used. The temperatures and the timings used for each cycle depend on a wide variety of parameters, such as: the enzyme used to synthesize the DNA, the concentration of divalent ions and
2353:
Bouchez, Blieux, Dequiedt, Domaizon, Dufresne, Ferreira, Godon, Hellal, Joulian, Quaiser, Martin-Laurent, Mauffret, Monier, Peyret, Schmitt-Koplin, Sibourg, D’oiron, Bispo, Deportes, Grand, Cuny, Maron, Ranjard (September 2016).
1081:
Pfaffl, MW; Tichopad, A; Prgomet, C; Neuvians, TP (March 2004). "Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations".
1722: 814:. However, research has shown that amplification of the majority of reference genes used in quantifying the expression of mRNA varies according to experimental conditions. It is therefore necessary to carry out an initial 515:, which are undesirable potential by-products in PCR. However, fluorescent reporter probes do not prevent the inhibitory effect of the primer dimers, which may depress accumulation of the desired products in the reaction. 783:. Relative quantification is based on internal reference genes to determine fold-differences in expression of the target gene. The quantification is expressed as the change in expression levels of mRNA interpreted as 2590:
Yeh S.H. Tsai C.Y. Kao J.H. Liu C.J. Kuo T.J. Lin M.W. Huang W.L. Lu S.F. Jih J. Chen D.S. Others (2004). "Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting …".
610:
electrophoresis is required it is only necessary to test those samples that real time PCR has shown to be doubtful and/or to ratify the results for samples that have tested positive for a specific determinant.
534:
with a laser. An increase in the product targeted by the reporter probe at each PCR cycle therefore causes a proportional increase in fluorescence due to the breakdown of the probe and release of the reporter.
475:
in PCR, increasing the fluorescence quantum yield of the dye. An increase in DNA product during PCR therefore leads to an increase in fluorescence intensity measured at each cycle. However, dsDNA dyes such as
954:. This quantification is carried out either with reverse transcription or without it, as occurs if the virus becomes integrated in the human genome at any point in its cycle, such as happens in the case of 186:
molecule during the PCR (i.e., in real time), not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively (i.e., above/below a certain amount of DNA molecules).
795:
used, which can affect the efficiency of reverse transcription and therefore that of the whole PCR process. However, the most crucial aspect of the process is that the reference gene must be stable.
2124:
Xiu, Leshan; Binder, Raquel A.; Alarja, Natalie A.; Kochek, Kara; Coleman, Kristen K.; Than, Son T.; Bailey, Emily S.; Bui, Vuong N.; Toh, Teck-Hock; Erdman, Dean D.; Gray, Gregory C. (July 2020).
2941:
Kubista, M; Andrade, JM; Bengtsson, M; Forootan, A; Jonak, J; Lind, K; Sindelka, R; Sjoback, R; Sjogreen, B; Strombom, L; Stahlberg, A; Zoric, N (2006). "The real-time polymerase chain reaction".
913:
given its sensitivity and dynamic range in detecting DNA. Alternatives such as DNA or protein analysis are usually less sensitive. Specific primers are used that amplify not the transgene but the
821:
A number of statistical algorithms have been developed that can detect which gene or genes are most suitable for use under given conditions. Those like geNORM or BestKeeper can compare pairs or
699:
of RNA/DNA from a housekeeping gene in the same sample to normalize for variation in the amount and quality of RNA between different samples. This normalization procedure is commonly called the
557:
Fluorescence is detected and measured in a real-time PCR machine, and its geometric increase corresponding to exponential increase of the product is used to determine the quantification cycle
1489:
Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006). "Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula".
791:
of mRNA). Relative quantification is easier to carry out as it does not require a calibration curve as the amount of the studied gene is compared to the amount of a control reference gene.
897:
and other species, mixed in with the DNA of the host plant. Discrimination between the DNA of the pathogen and the plant is based on the amplification of ITS sequences, spacers located in
775:
by two common methods: relative quantification and absolute quantification. Absolute quantification gives the exact number of target DNA molecules by comparison with DNA standards using a
716:
provides reliable estimates of target DNA concentration in a sample under normal qPCR conditions, MAK2 does not reliably quantify target concentration for qPCR assays with competimeters.
348:. Northern blotting is often used to estimate the expression level of a gene by visualizing the abundance of its mRNA transcript in a sample. In this method, purified RNA is separated by 1334:"Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions" 1730: 522:
of fluorescence at the opposite end of the probe. The close proximity of the reporter to the quencher prevents detection of its fluorescence; breakdown of the probe by the 5' to 3'
942:. The degree of infection, quantified as the copies of the viral genome per unit of the patient's tissue, is relevant in many cases; for example, the probability that the type 1 511:
in multiplex assays for monitoring several target sequences in the same tube. The specificity of fluorescent reporter probes also prevents interference of measurements caused by
2779: 3123: 2506:
Holst-Jensen, Arne; Rønning, Sissel B.; Løvseth, Astrid; Berdal, Knut G. (2003). "PCR technology for screening and quantification of genetically modified organisms (GMOs)".
446:
carried out by the DNA polymerase. Due to the small size of the fragments the last step is usually omitted in this type of PCR as the enzyme is able to replicate the DNA
1785:
S. Dhanasekaran; T. Mark Doherty; John Kenneth; TB Trials Study Group (March 2010). "Comparison of different standards for real-time PCR-based absolute quantification".
3302: 2400: 938:
and treatment. The use of qPCR allows both the quantification and genotyping (characterization of the strain, carried out using melting curves) of a virus such as the
3262: 230: 31: 901:
gene's coding area, which are characteristic for each taxon. Field-based versions of this technique have also been developed for identifying the same pathogen.
3290: 2013: 426:
with the capacity to illuminate each sample with a beam of light of at least one specified wavelength and detect the fluorescence emitted by the excited
2414:
Baldwin, B.G. (1992). "Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositaogy".
1283:"Development and Validation of an Externally Standardized Quantitative Insulin-like Growth Factor-1 RT-PCR Using LightCycler SYBR Green I Technology" 853:
has significantly improved the diagnosis of infectious diseases, and is deployed as a tool to detect newly emerging diseases, such as new strains of
642:
During the exponential amplification phase, the quantity of the target DNA template (amplicon) doubles every cycle. For example, a DNA sample whose C
393: 3320: 3116: 280:
In order to amplify small amounts of DNA, the same methodology is used as in conventional PCR using a DNA template, at least one pair of specific
107: 985:
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009).
79: 3243: 2628:"The Probability of in Vivo Reactivation of Herpes Simplex Virus Type 1 Increases with the Number of Latently Infected Neurons in the Ganglia" 1127:"Relative Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR" 487:
In real-time PCR with dsDNA dyes the reaction is prepared as usual, with the addition of fluorescent dsDNA dye. Then the reaction is run in a
3092: 3018: 2328: 1316: 1060: 1035: 692: 684: 672: 656: 632: 558: 1534:"Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR" 3331: 627:
of the signal noise above background. The number of cycles at which the fluorescence exceeds the threshold is called the threshold cycle (C
86: 2882:"Detection of specific polymerase chain reaction product by utilizing the 50 !30 exonuclease activity of Thermus aquaticus DNA polymerase" 736:. Uses of the technique in industry include the quantification of microbial load in foods or on vegetable matter, the detection of GMOs ( 3296: 3280: 430:. The thermal cycler is also able to rapidly heat and chill samples, thereby taking advantage of the physicochemical properties of the 357: 3404: 3109: 2102: 93: 3314: 3268: 2843:
Higuchi, R.; Dollinger, G.; Walsh, P.S.; Griffith, R. (1992). "Simultaneous amplification and detection of specific DNA-sequences".
2794: 126: 463:
Real-time PCR technique can be classified by the chemistry used to detect the PCR product, specific or non-specific fluorochromes.
64: 57: 3274: 2097: 2970:
Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. (1993). "Kinetic PCR: Real time monitoring of DNA amplification reactions".
764:
does not allow precise quantification. For example, over the 20–40 cycles of a typical PCR, the amount of DNA product reaches a
75: 3399: 737: 1332:
Ponchel F; Toomes C; Bransfield K; Leong F.T; Douglas S.H; Field S.L; Bell S.M; Combaret V; Puisieux A; Mighell A.J (2003).
3409: 3364: 1179:"Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes" 811: 530:
breaks the reporter-quencher proximity and thus allows unquenched emission of fluorescence, which can be detected after
195: 3153: 757: 584: 488: 349: 293: 2041: 3394: 370: 281: 211: 2294: 2273: 53: 3132: 540: 417: 266: 179: 100: 966:(CMV) which is seen in patients who are immunosuppressed following solid organ or bone marrow transplantation. 519: 2451:"Faster, Simpler, More-Specific Methods for Improved Molecular Detection of Phytophthora ramorum in the Field" 269:(PCR) is a common method for amplifying DNA; for RNA-based PCR the RNA sample is first reverse-transcribed to 3163: 1963:
Thellin, O; Zorzi, W; Lakaye, B; De Borman, B; Coumans, B; Henne, G; Grisar, T; Igout, A; Heinen, E (1999).
671:
is then used to determine the efficiency of amplification, which is 100% if a dilution of 1:2 results in a
2320: 341: 802:
using qualitative or semi-quantitative studies such as the visual examination of RNA gels, northern blot
484:). This can potentially interfere with, or prevent, accurate monitoring of the intended target sequence. 3233: 2810:"Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays" 2551:"… -Time Quantitative Polymerase Chain Reaction Methods for Four Genetically Modified Maize Varieties …" 2394: 963: 918: 788: 765: 274: 3194: 583:
Real-time PCR permits the identification of specific, amplified DNA fragments using analysis of their
3045: 2893: 2462: 2098:"How is the COVID-19 Virus Detected using real time reverse transcription–polymerase chain reaction?" 1639: 1443: 943: 889: 862: 337: 171: 987:"The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments" 3218: 3158: 1746:"The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression" 914: 850: 842: 729: 547: 452: 353: 285: 3351: 3223: 3213: 3208: 2995: 2911: 2868: 2531: 2375: 1608: 1514: 1177:
Vandesompele, J; De Preter, K; Pattyn, F; Poppe, B; Van Roy, N; De Paepe, A; Speleman, F (2002).
1107: 624: 1385:"Product Differentiation by Analysis of DNA Melting Curves during the Polymerase Chain Reaction" 2677:"MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumours" 3198: 3088: 3071: 3014: 2987: 2958: 2929: 2860: 2831: 2757: 2739: 2698: 2657: 2608: 2572: 2523: 2488: 2431: 2324: 2255: 2204: 2155: 2078: 2033: 1994: 1945: 1910: 1859: 1841: 1802: 1767: 1703: 1667: 1600: 1565: 1506: 1471: 1407: 1365: 1312: 1263: 1210: 1156: 1099: 1056: 1031: 1008: 939: 799: 784: 776: 668: 620: 374: 270: 175: 2295:"rRT-PCR, a method to confirm Wuhan coronavirus case – Artificial Intelligence for Chemistry" 748:
Quantifying gene expression by traditional DNA detection methods is unreliable. Detection of
3256: 3061: 3053: 2979: 2950: 2919: 2901: 2852: 2821: 2747: 2729: 2688: 2647: 2639: 2600: 2562: 2515: 2478: 2470: 2423: 2367: 2245: 2235: 2194: 2186: 2145: 2137: 2068: 2025: 1984: 1976: 1937: 1900: 1890: 1849: 1833: 1794: 1757: 1744:
Overbergh, L.; Giulietti, A.; Valckx, D.; Decallonne, R.; Bouillon, R.; Mathieu, C. (2003).
1695: 1657: 1647: 1592: 1555: 1545: 1498: 1461: 1451: 1399: 1355: 1345: 1305: 1253: 1245: 1200: 1190: 1146: 1138: 1091: 998: 826: 780: 190:
Two common methods for the detection of PCR products in real-time PCR are (1) non-specific
3248: 3189: 959: 606: 442:
of the primers with the DNA template; the third, at between 68 and 72 °C, facilitates the
388:
The most commonly used normalizing genes are those that code for the following molecules:
382: 366: 362: 333: 289: 258: 250: 203: 191: 1095: 958:(human papillomavirus), where some of its variants are associated with the appearance of 3049: 2897: 2466: 1643: 1447: 467:
Non-specific detection: real-time PCR with double-stranded DNA-binding dyes as reporters
3378: 3228: 3203: 3101: 2805: 2483: 2450: 2250: 2223: 2199: 2174: 2150: 2125: 1854: 1821: 1762: 1745: 1662: 1627: 1560: 1533: 1466: 1431: 1282: 822: 733: 652: 527: 443: 435: 423: 378: 352:, transferred to a solid matrix (such as a nylon membrane), and probed with a specific 329: 301: 3066: 3029: 2752: 2717: 2652: 2627: 1980: 1905: 1878: 1583:
Nolan T, Hands RE, Bustin SA (2006). "Quantification of mRNA using real-time RT-PCR".
1360: 1333: 1258: 1229: 1205: 1178: 1151: 1126: 930:
Viruses can be present in humans due to direct infection or co-infections which makes
779:. It is therefore essential that the PCR of the sample and the standard have the same 3388: 3285: 2924: 2881: 2427: 2355: 2175:"Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing" 1195: 898: 761: 753: 531: 405: 345: 3057: 2643: 2535: 2379: 1612: 1518: 518:
The method relies on a DNA-based probe with a fluorescent reporter at one end and a
3346: 3034:(ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes" 2999: 2872: 838: 810:
era, it is possible to carry out a more detailed estimate for many organisms using
803: 772: 574: 512: 507: 481: 431: 309: 217:
The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (
207: 2190: 2057:"Validation of housekeeping genes for normalizing RNA expression in real-time PCR" 1111: 768:
that is not directly correlated with the amount of target DNA in the initial PCR.
724:
There are numerous applications for quantitative polymerase chain reaction in the
455:
triphosphates (dNTPs) in the reaction and the bonding temperature of the primers.
1652: 1628:"A Mechanistic Model of PCR for Accurate Quantification of Quantitative PCR Data" 1456: 1384: 1003: 986: 480:
will bind to all dsDNA PCR products, including nonspecific PCR products (such as
3341: 1699: 858: 818:
sound methodological study in order to select the most suitable reference gene.
619:
real-time PCR relies on plotting fluorescence against the number of cycles on a
523: 427: 401: 297: 246: 241: 42: 3373: 2604: 2029: 1941: 1311:(3rd ed.). Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. 3181: 2954: 2675:
Peter M. Rosty C. Couturier J. Radvanyi F. Teshima H. Sastre-garau X. (2006).
2519: 2371: 2141: 1798: 1502: 815: 725: 623:. A threshold for detection of DNA-based fluorescence is set 3–5 times of the 477: 313: 229:
be used for reverse transcription–qPCR. The acronym "RT-PCR" commonly denotes
143: 2743: 2567: 2550: 1879:"Validating internal controls for quantitative plant gene expression studies" 1845: 1249: 922:
control gene from the treated species that is only present as a single copy.
849:
and genetic abnormalities. The introduction of qualitative PCR assays to the
2906: 2734: 2274:"FDA-cleared RT-PCR Assays and Other Molecular Assays for Influenza Viruses" 2012:
Radonic, A; Thulke, S; Mackay, IM; Landt, O; Siegert, W; Nitsche, A (2004).
935: 931: 854: 648: 199: 3075: 2962: 2835: 2761: 2702: 2693: 2676: 2612: 2576: 2527: 2492: 2259: 2208: 2159: 2082: 2037: 1998: 1949: 1914: 1895: 1863: 1806: 1771: 1707: 1671: 1604: 1596: 1569: 1550: 1510: 1475: 1403: 1369: 1350: 1214: 1160: 1142: 1103: 1012: 499: 2991: 2933: 2864: 2826: 2809: 2661: 2435: 2055:
Dheda, K; Huggett, JF; Bustin, SA; Johnson, MA; Rook, G; Zumla, A (2004).
1432:"Robust Quantification of Polymerase Chain Reactions Using Global Fitting" 1411: 1267: 1051:
Watson, J D; Baker, T A; Bell, S P; Gann, A; Levine, M; Losick, R (2004).
150: 139: 3308: 2983: 2474: 1964: 1837: 951: 447: 2856: 2240: 798:
The selection of these reference genes was traditionally carried out in
2915: 2014:"Guideline for reference gene selection for quantitative real-time PCR" 397: 389: 2073: 2056: 233:
and not real-time PCR, but not all authors adhere to this convention.
1989: 947: 846: 807: 305: 2716:
Mackay, Ian M.; Arden, Katherine E.; Nitsche, Andreas (2002-03-15).
2126:"A RT-PCR assay for the detection of coronaviruses from four genera" 1532:
Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ (2006).
934:
difficult using classical techniques and can result in an incorrect
17: 3008: 691:
for an RNA or DNA from the gene of interest is subtracted from the
1026:
Logan, Julie; Edwards, Kirstin & Saunders, Nick, eds. (2009).
740:) and the quantification and genotyping of human viral pathogens. 664: 573: 498: 240: 149: 138: 30:
For reverse transcription polymerase chain reaction (RT-PCR), see
2880:
Holland, P.M.; Abramson, R.D.; Watson, R.; Gelfand, D.H. (1991).
1928:
McGettigan, Paul A (2013). "Transcriptomics in the RNA-seq era".
1230:"Optimization of the annealing temperature for DNA amplification 909:
qPCR using reverse transcription (RT-qPCR) can be used to detect
550:
stage of the PCR both probe and primers anneal to the DNA target.
749: 605:
Unlike conventional PCR, this method avoids the previous use of
218: 3105: 955: 910: 894: 472: 262: 183: 36: 651:
experiment with serial dilutions of DNA template to create a
631:) or, according to the MIQE guidelines, quantification cycle 312:
of the fluorophore after it has been excited at the required
2356:"Molecular Microbiology Methods For Environmental Diagnosis" 1820:
Bar, Tzachi; Kubista, Mikael; Tichopad, Ales (2011-10-19).
1965:"Housekeeping genes as internal standards: use and limits" 1430:
Carr, A. C.; Moore, S. D. (2012). Lucia, Alejandro (ed.).
837:
Diagnostic qualitative PCR is applied to rapidly detect
2549:
Brodmann P.D; Ilg E.C; Berthoud H; Herrmann A. (2002).
2224:"COVID-19: molecular and serological detection methods" 198:
with any double-stranded DNA and (2) sequence-specific
3309:
Co-amplification at lower denaturation temperature PCR
962:. Real-time PCR has also brought the quantization of 3362: 495:
Specific detection: fluorescent reporter probe method
336:. Older methods were used to measure mRNA abundance: 1055:(Fifth ed.). San Francisco: Benjamin Cummings. 471:
A DNA-binding dye binds to all double-stranded (ds)
365:
and many other factors. For this reason a number of
3330: 3242: 3180: 3140: 806:or semi-quantitative PCR (PCR mimics). Now, in the 182:(PCR). It monitors the amplification of a targeted 3085:Real-Time PCR: Current Technology and Applications 3010:Quantitative Real-time PCR in Applied Microbiology 2449:Tomlinson, J. A.; Barker, I.; Boonham, N. (2007). 2317:Quantitative Real-time PCR in Applied Microbiology 1304: 1028:Real-Time PCR: Current Technology and Applications 154:Melting curve produced at the end of real-time PCR 2780:"La PCR en temps réel: principes et applications" 946:reactivates is related to the number of infected 261:by turnover of gene transcripts (single stranded 3303:Multiplex ligation-dependent probe amplification 225:be used for quantitative real-time PCR and that 3263:Reverse transcription polymerase chain reaction 1877:Brunner, AM; Yakovlev, IA; Strauss, SH (2004). 1383:Ririe K.M; Rasmussen R.P; Wittwer C.T. (1997). 231:reverse transcription polymerase chain reaction 32:reverse transcription polymerase chain reaction 1172: 1170: 825:for a matrix of different reference genes and 214:of the probe with its complementary sequence. 3117: 3083:Logan J; Edwards K; Saunders N, eds. (2009). 210:reporter, which permits detection only after 8: 2399:: CS1 maint: multiple names: authors list ( 980: 978: 146:fluorescence chart produced in real-time PCR 3291:Overlap extension polymerase chain reaction 1822:"Validation of kinetics similarity in qPCR" 1425: 1423: 1421: 1303:Sambrook, Joseph; Russel, David W. (2001). 1125:Pfaffl, MW; Horgan, GW; Dempfle, L (2002). 905:Detection of genetically modified organisms 221:) guidelines propose that the abbreviation 3124: 3110: 3102: 2348: 2346: 2344: 2342: 2340: 1626:Boggy G, Woolf PJ (2010). Ravasi T (ed.). 3065: 2923: 2905: 2825: 2751: 2733: 2692: 2651: 2566: 2482: 2249: 2239: 2198: 2149: 2072: 1988: 1904: 1894: 1853: 1761: 1723:"PEMF For Treatment Of Corneal Disorders" 1661: 1651: 1559: 1549: 1465: 1455: 1359: 1349: 1257: 1228:Rychlik W, Spencer WJ, Rhoads RE (1990). 1204: 1194: 1150: 1002: 127:Learn how and when to remove this message 27:Laboratory technique of molecular biology 3028:Wawrik, B; Paul, JH; Tabita, FR (2002). 1292:(3) – via gene-quantification.org. 1076: 1074: 1072: 579:from the expected amplification product. 394:glyceraldehyde-3-phosphate dehydrogenase 3369: 3321:Random amplification of polymorphic DNA 974: 3257:Quantitative polymerase chain reaction 2508:Analytical and Bioanalytical Chemistry 2455:Applied and Environmental Microbiology 2392: 1307:Molecular Cloning: A Laboratory Manual 926:Clinical quantification and genotyping 771:Real-time PCR can be used to quantify 546:As the reaction commences, during the 332:are modern methodologies for studying 63:Please improve this article by adding 2416:Molecular Phylogenetics and Evolution 841:that are diagnostic of, for example, 76:"Real-time polymerase chain reaction" 7: 2787:Reviews in Biology and Biotechnology 2222:Dhamad, AE; Abdal Rhida, MA (2020). 377:as their functions related to basic 3297:Multiplex polymerase chain reaction 3281:Touchdown polymerase chain reaction 1930:Current Opinion in Chemical Biology 543:), and the reporter probe is added. 160:real-time polymerase chain reaction 2103:International Atomic Energy Agency 1750:Journal of Biomolecular Techniques 1096:10.1023/b:bile.0000019559.84305.47 539:The PCR is prepared as usual (see 422:Real-time PCR is carried out in a 25: 3315:Digital polymerase chain reaction 3269:Inverse polymerase chain reaction 3030:"Real-time PCR quantification of 2096:Jawerth, Nicole (27 March 2020). 744:Quantification of gene expression 683:To quantify gene expression, the 3372: 3275:Nested polymerase chain reaction 1787:Journal of Immunological Methods 1196:10.1186/gb-2002-3-7-research0034 851:clinical microbiology laboratory 257:Cells in all organisms regulate 41: 3058:10.1128/aem.68.8.3771-3779.2002 2644:10.1128/JVI.72.8.6888-6892.1998 2360:Environmental Chemistry Letters 728:. It is commonly used for both 170:when used quantitatively) is a 738:genetically modified organisms 300:is added to this mixture in a 1: 2555:Journal of AOAC International 2191:10.1128/CMR.19.1.165-256.2006 2179:Clinical Microbiology Reviews 1981:10.1016/s0168-1656(99)00163-7 1053:Molecular Biology of the Gene 249:in order to detect levels of 65:secondary or tertiary sources 2778:Elyse; Houde, Alain (2002). 2428:10.1016/1055-7903(92)90030-K 2130:Journal of Clinical Virology 1653:10.1371/journal.pone.0012355 1457:10.1371/journal.pone.0037640 1004:10.1373/clinchem.2008.112797 383:constitutive gene expression 296:. A substance marked with a 294:thermo-stable DNA polymerase 2718:"Real-time PCR in virology" 2173:Espy, M.J. (January 2006). 1700:10.1016/j.ymeth.2012.08.011 882:Detection of phytopathogens 812:transcriptomic technologies 570:Fusion temperature analysis 350:agarose gel electrophoresis 3426: 3087:. Caister Academic Press. 3013:. Caister Academic Press. 2886:Proc. Natl. Acad. Sci. USA 2605:10.1016/j.jhep.2004.06.031 2030:10.1016/j.bbrc.2003.11.177 2018:Biochem Biophys Res Commun 1942:10.1016/j.cbpa.2012.12.008 1030:. Caister Academic Press. 415: 288:triphosphates, a suitable 29: 3405:Polymerase chain reaction 3133:Polymerase chain reaction 2955:10.1016/j.mam.2005.12.007 2793:(2): 2–11. Archived from 2520:10.1007/s00216-003-1767-7 2372:10.1007/s10311-016-0581-3 2142:10.1016/j.jcv.2020.104391 1799:10.1016/j.jim.2010.01.004 1503:10.1007/s00109-006-0097-6 893:, an oomycete that kills 418:Polymerase chain reaction 267:polymerase chain reaction 206:that are labelled with a 180:polymerase chain reaction 3038:Appl. Environ. Microbiol 1281:Pfaffl, Michael (2000). 781:amplification efficiency 663:with each dilution. The 489:real-time PCR instrument 381:survival normally imply 319:relative gene expression 2907:10.1073/pnas.88.16.7276 2315:Filion, M, ed. (2012). 1727:lemuriatechnologies.com 1392:Analytical Biochemistry 459:Chemical classification 2722:Nucleic Acids Research 2694:10.1038/sj.onc.1209625 2568:10.1093/jaoac/85.3.646 2321:Caister Academic Press 1896:10.1186/1471-2229-4-14 1826:Nucleic Acids Research 1597:10.1038/nprot.2006.236 1551:10.1186/1471-2199-7-25 1404:10.1006/abio.1996.9916 1351:10.1186/1472-6750-3-18 1250:10.1093/nar/18.21.6409 580: 504: 369:systems (often called 342:RNase protection assay 254: 155: 147: 52:relies excessively on 3400:Laboratory techniques 2827:10.1677/jme.0.0250169 2735:10.1093/nar/30.6.1292 2626:Sawtell N.M. (1998). 2593:Journal of Hepatology 1084:Biotechnology Letters 964:human cytomegalovirus 789:reverse transcription 756:or PCR products on a 577: 502: 371:normalization methods 328:Quantitative PCR and 275:reverse transcriptase 244: 153: 142: 3410:Real-time technology 2984:10.1038/nbt0993-1026 2475:10.1128/AEM.00161-07 1143:10.1093/nar/30.9.e36 944:herpes simplex virus 890:Phytophthora ramorum 869:Microbiological uses 787:(cDNA, generated by 338:differential display 172:laboratory technique 3050:2002ApEnM..68.3771W 3007:Filion, M. (2012). 2898:1991PNAS...88.7276H 2857:10.1038/nbt0492-413 2632:Journal of Virology 2467:2007ApEnM..73.4040T 2241:10.7717/peerj.10180 1644:2010PLoSO...512355B 1448:2012PLoSO...737640C 843:infectious diseases 585:melting temperature 453:deoxyribonucleotide 286:deoxyribonucleotide 245:Real time PCR uses 1838:10.1093/nar/gkr778 991:Clinical Chemistry 625:standard deviation 581: 505: 375:housekeeping genes 361:of DNA integrity, 308:for measuring the 255: 156: 148: 3395:Molecular biology 3360: 3359: 3094:978-1-904455-39-4 3020:978-1-908230-01-0 2892:(16): 7276–7280. 2687:(44): 5985–5993. 2461:(12): 4040–4047. 2330:978-1-908230-01-0 2297:. 24 January 2020 2074:10.2144/04371RR03 1318:978-0-87969-576-7 1244:(21): 6409–6412. 1238:Nucleic Acids Res 1131:Nucleic Acids Res 1062:978-0-321-22368-5 1037:978-1-904455-39-4 940:hepatitis B virus 800:molecular biology 785:complementary DNA 777:calibration curve 669:linear regression 655:of the change in 621:logarithmic scale 565:in each reaction. 363:enzyme efficiency 271:complementary DNA 176:molecular biology 137: 136: 129: 111: 16:(Redirected from 3417: 3377: 3376: 3368: 3170:Final elongation 3126: 3119: 3112: 3103: 3098: 3079: 3069: 3044:(8): 3771–3779. 3024: 3003: 2978:(9): 1026–1030. 2966: 2943:Mol. Aspects Med 2937: 2927: 2909: 2876: 2839: 2829: 2814:J Mol Endocrinol 2801: 2799: 2784: 2766: 2765: 2755: 2737: 2728:(6): 1292–1305. 2713: 2707: 2706: 2696: 2672: 2666: 2665: 2655: 2638:(8): 6888–6892. 2623: 2617: 2616: 2587: 2581: 2580: 2570: 2546: 2540: 2539: 2503: 2497: 2496: 2486: 2446: 2440: 2439: 2411: 2405: 2404: 2398: 2390: 2388: 2386: 2350: 2335: 2334: 2312: 2306: 2305: 2303: 2302: 2291: 2285: 2284: 2278: 2270: 2264: 2263: 2253: 2243: 2219: 2213: 2212: 2202: 2170: 2164: 2163: 2153: 2121: 2115: 2114: 2112: 2110: 2093: 2087: 2086: 2076: 2052: 2046: 2045: 2040:. Archived from 2009: 2003: 2002: 1992: 1975:(2–3): 197–200. 1960: 1954: 1953: 1925: 1919: 1918: 1908: 1898: 1874: 1868: 1867: 1857: 1832:(4): 1395–1406. 1817: 1811: 1810: 1782: 1776: 1775: 1765: 1741: 1735: 1734: 1729:. Archived from 1721:Bruce Gelerter. 1718: 1712: 1711: 1682: 1676: 1675: 1665: 1655: 1623: 1617: 1616: 1591:(3): 1559–1582. 1580: 1574: 1573: 1563: 1553: 1529: 1523: 1522: 1486: 1480: 1479: 1469: 1459: 1427: 1416: 1415: 1389: 1380: 1374: 1373: 1363: 1353: 1329: 1323: 1322: 1310: 1300: 1294: 1293: 1287: 1278: 1272: 1271: 1261: 1225: 1219: 1218: 1208: 1198: 1174: 1165: 1164: 1154: 1122: 1116: 1115: 1078: 1067: 1066: 1048: 1042: 1041: 1023: 1017: 1016: 1006: 982: 863:diagnostic tests 526:activity of the 412:Basic principles 354:DNA or RNA probe 323:mRNA copy number 204:oligonucleotides 192:fluorescent dyes 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 3425: 3424: 3420: 3419: 3418: 3416: 3415: 3414: 3385: 3384: 3383: 3371: 3363: 3361: 3356: 3334: 3326: 3299:(multiplex PCR) 3246: 3238: 3176: 3136: 3130: 3095: 3082: 3027: 3021: 3006: 2969: 2949:(2–3): 95–125. 2940: 2879: 2842: 2804: 2797: 2782: 2777: 2774: 2769: 2715: 2714: 2710: 2674: 2673: 2669: 2625: 2624: 2620: 2589: 2588: 2584: 2548: 2547: 2543: 2505: 2504: 2500: 2448: 2447: 2443: 2413: 2412: 2408: 2391: 2384: 2382: 2352: 2351: 2338: 2331: 2314: 2313: 2309: 2300: 2298: 2293: 2292: 2288: 2276: 2272: 2271: 2267: 2221: 2220: 2216: 2172: 2171: 2167: 2123: 2122: 2118: 2108: 2106: 2095: 2094: 2090: 2054: 2053: 2049: 2011: 2010: 2006: 1962: 1961: 1957: 1927: 1926: 1922: 1876: 1875: 1871: 1819: 1818: 1814: 1784: 1783: 1779: 1743: 1742: 1738: 1720: 1719: 1715: 1684: 1683: 1679: 1625: 1624: 1620: 1582: 1581: 1577: 1531: 1530: 1526: 1497:(11): 901–910. 1488: 1487: 1483: 1429: 1428: 1419: 1387: 1382: 1381: 1377: 1331: 1330: 1326: 1319: 1302: 1301: 1297: 1285: 1280: 1279: 1275: 1227: 1226: 1222: 1176: 1175: 1168: 1124: 1123: 1119: 1080: 1079: 1070: 1063: 1050: 1049: 1045: 1038: 1025: 1024: 1020: 984: 983: 976: 972: 960:cervical cancer 928: 907: 884: 871: 835: 833:Diagnostic uses 823:geometric means 746: 722: 704: 696: 688: 676: 660: 645: 636: 630: 616: 607:electrophoresis 592: 572: 562: 497: 469: 461: 420: 414: 367:standardization 334:gene expression 290:buffer solution 259:gene expression 251:gene expression 239: 133: 122: 116: 113: 70: 68: 62: 58:primary sources 46: 35: 28: 23: 22: 15: 12: 11: 5: 3423: 3421: 3413: 3412: 3407: 3402: 3397: 3387: 3386: 3382: 3381: 3358: 3357: 3355: 3354: 3349: 3344: 3338: 3336: 3328: 3327: 3325: 3324: 3318: 3312: 3306: 3300: 3294: 3288: 3283: 3278: 3272: 3266: 3260: 3253: 3251: 3240: 3239: 3237: 3236: 3231: 3226: 3221: 3216: 3211: 3206: 3201: 3192: 3186: 3184: 3178: 3177: 3175: 3174: 3171: 3168: 3167: 3166: 3161: 3156: 3148: 3147:Initialization 3144: 3142: 3138: 3137: 3131: 3129: 3128: 3121: 3114: 3106: 3100: 3099: 3093: 3080: 3025: 3019: 3004: 2967: 2938: 2877: 2851:(4): 413–417. 2845:Bio-Technology 2840: 2820:(2): 169–193. 2802: 2800:on 2009-06-12. 2773: 2770: 2768: 2767: 2708: 2667: 2618: 2599:(4): 659–666. 2582: 2561:(3): 646–653. 2541: 2514:(8): 985–993. 2498: 2441: 2406: 2366:(4): 423–441. 2336: 2329: 2307: 2286: 2265: 2214: 2185:(3): 165–256. 2165: 2116: 2088: 2067:(1): 112–119. 2047: 2044:on 2013-08-02. 2024:(4): 856–862. 2004: 1955: 1920: 1883:BMC Plant Biol 1869: 1812: 1793:(1–2): 34–39. 1777: 1736: 1733:on 2014-06-09. 1713: 1677: 1618: 1575: 1524: 1481: 1417: 1398:(2): 154–160. 1375: 1338:BMC Biotechnol 1324: 1317: 1295: 1273: 1220: 1183:Genome Biology 1166: 1117: 1068: 1061: 1043: 1036: 1018: 997:(4): 611–622. 973: 971: 968: 927: 924: 906: 903: 883: 880: 870: 867: 834: 831: 745: 742: 734:basic research 721: 718: 702: 694: 686: 674: 658: 653:standard curve 643: 634: 628: 615: 612: 590: 571: 568: 567: 566: 560: 555: 551: 544: 528:Taq polymerase 496: 493: 468: 465: 460: 457: 444:polymerization 436:DNA polymerase 424:thermal cycler 416:Main article: 413: 410: 406:ribosomal RNAs 330:DNA microarray 304:that contains 302:thermal cycler 238: 235: 202:consisting of 135: 134: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3422: 3411: 3408: 3406: 3403: 3401: 3398: 3396: 3393: 3392: 3390: 3380: 3375: 3370: 3366: 3353: 3350: 3348: 3345: 3343: 3340: 3339: 3337: 3333: 3329: 3322: 3319: 3316: 3313: 3310: 3307: 3304: 3301: 3298: 3295: 3292: 3289: 3287: 3286:Hot start PCR 3284: 3282: 3279: 3276: 3273: 3271:(inverse PCR) 3270: 3267: 3264: 3261: 3258: 3255: 3254: 3252: 3250: 3245: 3241: 3235: 3232: 3230: 3227: 3225: 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3196: 3193: 3191: 3188: 3187: 3185: 3183: 3179: 3172: 3169: 3165: 3162: 3160: 3157: 3155: 3152: 3151: 3149: 3146: 3145: 3143: 3139: 3134: 3127: 3122: 3120: 3115: 3113: 3108: 3107: 3104: 3096: 3090: 3086: 3081: 3077: 3073: 3068: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3033: 3026: 3022: 3016: 3012: 3011: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2977: 2973: 2972:Biotechnology 2968: 2964: 2960: 2956: 2952: 2948: 2944: 2939: 2935: 2931: 2926: 2921: 2917: 2913: 2908: 2903: 2899: 2895: 2891: 2887: 2883: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2846: 2841: 2837: 2833: 2828: 2823: 2819: 2815: 2811: 2807: 2803: 2796: 2792: 2788: 2781: 2776: 2775: 2771: 2763: 2759: 2754: 2749: 2745: 2741: 2736: 2731: 2727: 2723: 2719: 2712: 2709: 2704: 2700: 2695: 2690: 2686: 2682: 2678: 2671: 2668: 2663: 2659: 2654: 2649: 2645: 2641: 2637: 2633: 2629: 2622: 2619: 2614: 2610: 2606: 2602: 2598: 2594: 2586: 2583: 2578: 2574: 2569: 2564: 2560: 2556: 2552: 2545: 2542: 2537: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2502: 2499: 2494: 2490: 2485: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2445: 2442: 2437: 2433: 2429: 2425: 2421: 2417: 2410: 2407: 2402: 2396: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2349: 2347: 2345: 2343: 2341: 2337: 2332: 2326: 2322: 2318: 2311: 2308: 2296: 2290: 2287: 2282: 2275: 2269: 2266: 2261: 2257: 2252: 2247: 2242: 2237: 2233: 2229: 2225: 2218: 2215: 2210: 2206: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2169: 2166: 2161: 2157: 2152: 2147: 2143: 2139: 2135: 2131: 2127: 2120: 2117: 2105: 2104: 2099: 2092: 2089: 2084: 2080: 2075: 2070: 2066: 2062: 2061:BioTechniques 2058: 2051: 2048: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2008: 2005: 2000: 1996: 1991: 1986: 1982: 1978: 1974: 1970: 1966: 1959: 1956: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1921: 1916: 1912: 1907: 1902: 1897: 1892: 1888: 1884: 1880: 1873: 1870: 1865: 1861: 1856: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1816: 1813: 1808: 1804: 1800: 1796: 1792: 1788: 1781: 1778: 1773: 1769: 1764: 1759: 1755: 1751: 1747: 1740: 1737: 1732: 1728: 1724: 1717: 1714: 1709: 1705: 1701: 1697: 1693: 1689: 1681: 1678: 1673: 1669: 1664: 1659: 1654: 1649: 1645: 1641: 1638:(8): e12355. 1637: 1633: 1629: 1622: 1619: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1579: 1576: 1571: 1567: 1562: 1557: 1552: 1547: 1543: 1539: 1538:BMC Mol. Biol 1535: 1528: 1525: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1485: 1482: 1477: 1473: 1468: 1463: 1458: 1453: 1449: 1445: 1442:(5): e37640. 1441: 1437: 1433: 1426: 1424: 1422: 1418: 1413: 1409: 1405: 1401: 1397: 1393: 1386: 1379: 1376: 1371: 1367: 1362: 1357: 1352: 1347: 1343: 1339: 1335: 1328: 1325: 1320: 1314: 1309: 1308: 1299: 1296: 1291: 1284: 1277: 1274: 1269: 1265: 1260: 1255: 1251: 1247: 1243: 1239: 1235: 1233: 1224: 1221: 1216: 1212: 1207: 1202: 1197: 1192: 1188: 1184: 1180: 1173: 1171: 1167: 1162: 1158: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1118: 1113: 1109: 1105: 1101: 1097: 1093: 1090:(6): 509–15. 1089: 1085: 1077: 1075: 1073: 1069: 1064: 1058: 1054: 1047: 1044: 1039: 1033: 1029: 1022: 1019: 1014: 1010: 1005: 1000: 996: 992: 988: 981: 979: 975: 969: 967: 965: 961: 957: 953: 949: 945: 941: 937: 933: 925: 923: 920: 916: 912: 904: 902: 900: 899:ribosomal RNA 896: 892: 891: 881: 879: 875: 868: 866: 864: 860: 856: 852: 848: 844: 840: 839:nucleic acids 832: 830: 828: 824: 819: 817: 816:statistically 813: 809: 805: 801: 796: 792: 790: 786: 782: 778: 774: 773:nucleic acids 769: 767: 763: 762:Southern blot 759: 755: 754:northern blot 751: 743: 741: 739: 735: 731: 727: 719: 717: 713: 709: 706: 698: 690: 681: 678: 670: 666: 662: 654: 650: 640: 638: 626: 622: 613: 611: 608: 603: 601: 597: 594:value, from m 593: 587:(also called 586: 576: 569: 564: 556: 554:fluorescence. 552: 549: 545: 542: 538: 537: 536: 533: 529: 525: 521: 516: 514: 513:primer dimers 509: 501: 494: 492: 490: 485: 483: 479: 474: 466: 464: 458: 456: 454: 449: 445: 439: 437: 433: 432:nucleic acids 429: 425: 419: 411: 409: 407: 403: 399: 395: 391: 386: 384: 380: 376: 372: 368: 364: 359: 358:complementary 355: 351: 347: 346:northern blot 343: 339: 335: 331: 326: 324: 320: 315: 311: 307: 303: 299: 295: 291: 287: 283: 278: 276: 272: 268: 264: 260: 252: 248: 243: 236: 234: 232: 228: 224: 220: 215: 213: 212:hybridization 209: 205: 201: 197: 193: 188: 185: 181: 178:based on the 177: 173: 169: 165: 164:real-time PCR 161: 152: 145: 141: 131: 128: 120: 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: –  77: 73: 72:Find sources: 66: 60: 59: 55: 50:This article 48: 44: 39: 38: 33: 19: 3347:Kjell Kleppe 3277:(nested PCR) 3244:Optimization 3154:Denaturation 3084: 3041: 3037: 3031: 3009: 2975: 2971: 2946: 2942: 2889: 2885: 2848: 2844: 2817: 2813: 2795:the original 2790: 2786: 2772:Bibliography 2725: 2721: 2711: 2684: 2680: 2670: 2635: 2631: 2621: 2596: 2592: 2585: 2558: 2554: 2544: 2511: 2507: 2501: 2458: 2454: 2444: 2419: 2415: 2409: 2395:cite journal 2383:. Retrieved 2363: 2359: 2316: 2310: 2299:. Retrieved 2289: 2280: 2268: 2231: 2227: 2217: 2182: 2178: 2168: 2133: 2129: 2119: 2107:. Retrieved 2101: 2091: 2064: 2060: 2050: 2042:the original 2021: 2017: 2007: 1972: 1969:J Biotechnol 1968: 1958: 1933: 1929: 1923: 1886: 1882: 1872: 1829: 1825: 1815: 1790: 1786: 1780: 1756:(1): 33–43. 1753: 1749: 1739: 1731:the original 1726: 1716: 1694:(1): 32–46. 1691: 1687: 1680: 1635: 1631: 1621: 1588: 1584: 1578: 1541: 1537: 1527: 1494: 1490: 1484: 1439: 1435: 1395: 1391: 1378: 1341: 1337: 1327: 1306: 1298: 1289: 1276: 1241: 1237: 1231: 1223: 1186: 1182: 1134: 1130: 1120: 1087: 1083: 1052: 1046: 1027: 1021: 994: 990: 929: 908: 888: 885: 876: 872: 836: 820: 804:densitometry 797: 793: 770: 747: 723: 720:Applications 714: 710: 700: 682: 641: 617: 604: 599: 595: 588: 582: 517: 506: 486: 482:primer dimer 470: 462: 440: 421: 387: 327: 322: 318: 310:fluorescence 279: 273:(cDNA) with 256: 247:fluorophores 226: 222: 216: 189: 167: 163: 159: 157: 123: 114: 104: 97: 90: 83: 71: 51: 3352:Alice Chien 3342:Kary Mullis 2422:(1): 3–16. 2109:16 February 1936:(1): 4–11. 1585:Nat. Protoc 1189:(7): 1–12. 859:coronavirus 524:exonuclease 508:Fluorescent 428:fluorophore 402:cyclophilin 298:fluorophore 208:fluorescent 196:intercalate 3389:Categories 3335:and people 3311:(COLD-PCR) 3182:Polymerase 3173:Final hold 3164:Elongation 3135:techniques 2806:Bustin, SA 2301:2020-01-26 2234:: e10180. 2136:: 104391. 1290:Biochemica 1137:(9): e36. 970:References 919:terminator 730:diagnostic 726:laboratory 600:emperature 532:excitation 478:SYBR Green 314:wavelength 237:Background 200:DNA probes 144:SYBR Green 87:newspapers 54:references 3159:Annealing 3141:Procedure 2744:0305-1048 1990:2268/3661 1846:0305-1048 1544:(1): 25. 1491:J Mol Med 936:prognosis 932:diagnosis 649:titration 548:annealing 117:July 2018 3293:(OE-PCR) 3265:(RT-PCR) 3249:variants 3076:12147471 2963:16460794 2836:11013345 2808:(2000). 2762:11884626 2703:16682952 2681:Oncogene 2613:15464248 2577:12083257 2536:43681211 2528:12733008 2493:17449689 2380:88827291 2260:33083156 2209:16418529 2160:32403008 2083:15283208 2038:14706621 1999:10617337 1950:23290152 1915:15317655 1864:22013160 1807:20109462 1772:12901609 1708:22975077 1672:20814578 1632:PLOS ONE 1613:10108148 1605:17406449 1570:16889665 1519:10427299 1511:16972087 1476:22701526 1436:PLOS ONE 1370:14552656 1232:in vitro 1215:12184808 1161:11972351 1104:15127793 1013:19246619 915:promoter 614:Modeling 520:quencher 448:amplicon 379:cellular 356:that is 3379:Biology 3332:History 3317:(dePCR) 3046:Bibcode 3000:5714001 2992:7764001 2934:1871133 2916:2357665 2894:Bibcode 2873:1684150 2865:1368485 2662:9658140 2484:1932743 2463:Bibcode 2436:1342921 2281:cdc.gov 2251:7547594 2200:1360278 2151:7192118 1855:3287174 1763:2279895 1688:Methods 1663:2930010 1640:Bibcode 1561:1557526 1467:3365123 1444:Bibcode 1412:9056205 1268:2243783 952:ganglia 950:in the 948:neurons 827:tissues 766:plateau 705:-method 667:of the 398:albumin 390:tubulin 306:sensors 282:primers 227:RT-qPCR 101:scholar 3365:Portal 3323:(RAPD) 3305:(MLPA) 3259:(qPCR) 3190:Klenow 3150:Cycle 3091:  3074:  3067:123995 3064:  3017:  2998:  2990:  2961:  2932:  2922:  2914:  2871:  2863:  2834:  2760:  2753:101343 2750:  2742:  2701:  2660:  2653:109900 2650:  2611:  2575:  2534:  2526:  2491:  2481:  2434:  2385:11 May 2378:  2327:  2258:  2248:  2207:  2197:  2158:  2148:  2081:  2036:  1997:  1948:  1913:  1906:515301 1903:  1889:: 14. 1862:  1852:  1844:  1805:  1770:  1760:  1706:  1670:  1660:  1611:  1603:  1568:  1558:  1517:  1509:  1474:  1464:  1410:  1368:  1361:270040 1358:  1344:: 18. 1315:  1266:  1259:332522 1256:  1213:  1206:126239 1203:  1159:  1152:113859 1149:  1112:977404 1110:  1102:  1059:  1034:  1011:  847:cancer 808:genome 596:elting 404:, and 292:and a 103:  96:  89:  82:  74:  2996:S2CID 2925:52277 2912:JSTOR 2869:S2CID 2798:(PDF) 2783:(PDF) 2532:S2CID 2376:S2CID 2277:(PDF) 2228:PeerJ 1609:S2CID 1515:S2CID 1388:(PDF) 1286:(PDF) 1108:S2CID 861:, in 752:on a 665:slope 194:that 166:, or 108:JSTOR 94:books 3247:and 3219:Vent 3197:and 3089:ISBN 3072:PMID 3032:rbcL 3015:ISBN 2988:PMID 2959:PMID 2930:PMID 2861:PMID 2832:PMID 2758:PMID 2740:ISSN 2699:PMID 2658:PMID 2609:PMID 2573:PMID 2524:PMID 2489:PMID 2432:PMID 2401:link 2387:2020 2325:ISBN 2256:PMID 2205:PMID 2156:PMID 2111:2023 2079:PMID 2034:PMID 1995:PMID 1946:PMID 1911:PMID 1860:PMID 1842:ISSN 1803:PMID 1768:PMID 1704:PMID 1668:PMID 1601:PMID 1566:PMID 1507:PMID 1472:PMID 1408:PMID 1366:PMID 1313:ISBN 1264:PMID 1211:PMID 1157:PMID 1100:PMID 1057:ISBN 1032:ISBN 1009:PMID 911:GMOs 895:oaks 857:and 750:mRNA 732:and 434:and 344:and 321:(or 223:qPCR 219:MIQE 168:qPCR 80:news 18:QPCR 3234:Tfu 3229:Tli 3224:Pwo 3214:Pfu 3209:Tth 3204:Taq 3062:PMC 3054:doi 2980:doi 2951:doi 2920:PMC 2902:doi 2853:doi 2822:doi 2748:PMC 2730:doi 2689:doi 2648:PMC 2640:doi 2601:doi 2563:doi 2516:doi 2512:375 2479:PMC 2471:doi 2424:doi 2368:doi 2246:PMC 2236:doi 2195:PMC 2187:doi 2146:PMC 2138:doi 2134:128 2069:doi 2026:doi 2022:313 1985:hdl 1977:doi 1938:doi 1901:PMC 1891:doi 1850:PMC 1834:doi 1795:doi 1791:354 1758:PMC 1696:doi 1658:PMC 1648:doi 1593:doi 1556:PMC 1546:doi 1499:doi 1462:PMC 1452:doi 1400:doi 1396:245 1356:PMC 1346:doi 1254:PMC 1246:doi 1201:PMC 1191:doi 1147:PMC 1139:doi 1092:doi 999:doi 956:HPV 855:flu 760:or 758:gel 541:PCR 473:DNA 263:RNA 184:DNA 174:of 56:to 3391:: 3199:T7 3195:T4 3070:. 3060:. 3052:. 3042:68 3040:. 3036:. 2994:. 2986:. 2976:11 2974:. 2957:. 2947:27 2945:. 2928:. 2918:. 2910:. 2900:. 2890:88 2888:. 2884:. 2867:. 2859:. 2849:10 2847:. 2830:. 2818:25 2816:. 2812:. 2789:. 2785:. 2756:. 2746:. 2738:. 2726:30 2724:. 2720:. 2697:. 2685:25 2683:. 2679:. 2656:. 2646:. 2636:72 2634:. 2630:. 2607:. 2597:41 2595:. 2571:. 2559:85 2557:. 2553:. 2530:. 2522:. 2510:. 2487:. 2477:. 2469:. 2459:73 2457:. 2453:. 2430:. 2418:. 2397:}} 2393:{{ 2374:. 2364:14 2362:. 2358:. 2339:^ 2323:. 2319:. 2279:. 2254:. 2244:. 2230:. 2226:. 2203:. 2193:. 2183:19 2181:. 2177:. 2154:. 2144:. 2132:. 2128:. 2100:. 2077:. 2065:37 2063:. 2059:. 2032:. 2020:. 2016:. 1993:. 1983:. 1973:75 1971:. 1967:. 1944:. 1934:17 1932:. 1909:. 1899:. 1885:. 1881:. 1858:. 1848:. 1840:. 1830:40 1828:. 1824:. 1801:. 1789:. 1766:. 1754:14 1752:. 1748:. 1725:. 1702:. 1692:59 1690:. 1666:. 1656:. 1646:. 1634:. 1630:. 1607:. 1599:. 1587:. 1564:. 1554:. 1540:. 1536:. 1513:. 1505:. 1495:84 1493:. 1470:. 1460:. 1450:. 1438:. 1434:. 1420:^ 1406:. 1394:. 1390:. 1364:. 1354:. 1340:. 1336:. 1288:. 1262:. 1252:. 1242:18 1240:. 1236:. 1209:. 1199:. 1185:. 1181:. 1169:^ 1155:. 1145:. 1135:30 1133:. 1129:. 1106:. 1098:. 1088:26 1086:. 1071:^ 1007:. 995:55 993:. 989:. 977:^ 917:, 865:. 845:, 829:. 701:ΔC 693:(C 685:(C 673:(C 657:(C 639:. 633:(C 559:(C 438:. 408:. 400:, 396:, 392:, 340:, 284:, 277:. 158:A 67:. 3367:: 3125:e 3118:t 3111:v 3097:. 3078:. 3056:: 3048:: 3023:. 3002:. 2982:: 2965:. 2953:: 2936:. 2904:: 2896:: 2875:. 2855:: 2838:. 2824:: 2791:2 2764:. 2732:: 2705:. 2691:: 2664:. 2642:: 2615:. 2603:: 2579:. 2565:: 2538:. 2518:: 2495:. 2473:: 2465:: 2438:. 2426:: 2420:1 2403:) 2389:. 2370:: 2333:. 2304:. 2283:. 2262:. 2238:: 2232:8 2211:. 2189:: 2162:. 2140:: 2113:. 2085:. 2071:: 2028:: 2001:. 1987:: 1979:: 1952:. 1940:: 1917:. 1893:: 1887:4 1866:. 1836:: 1809:. 1797:: 1774:. 1710:. 1698:: 1674:. 1650:: 1642:: 1636:5 1615:. 1595:: 1589:1 1572:. 1548:: 1542:7 1521:. 1501:: 1478:. 1454:: 1446:: 1440:7 1414:. 1402:: 1372:. 1348:: 1342:3 1321:. 1270:. 1248:: 1234:" 1217:. 1193:: 1187:3 1163:. 1141:: 1114:. 1094:: 1065:. 1040:. 1015:. 1001:: 703:t 697:) 695:q 689:) 687:q 677:) 675:q 661:) 659:q 644:q 637:) 635:q 629:t 598:t 591:m 589:T 563:) 561:q 253:. 162:( 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 61:. 34:. 20:)

Index

QPCR
reverse transcription polymerase chain reaction

references
primary sources
secondary or tertiary sources
"Real-time polymerase chain reaction"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

SYBR Green

laboratory technique
molecular biology
polymerase chain reaction
DNA
fluorescent dyes
intercalate
DNA probes
oligonucleotides
fluorescent
hybridization
MIQE
reverse transcription polymerase chain reaction

fluorophores

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.