Knowledge

Rubidium–strontium dating

Source 📝

67:/Ca ratios, the minerals will have had different starting Rb/Sr ratios, and the final Sr/Sr ratio will not have increased as much in the minerals poorer in Rb. Typically, Rb/Sr increases in the order plagioclase, hornblende, K-feldspar, biotite, muscovite. Therefore, given sufficient time for significant production (ingrowth) of radiogenic Sr, measured Sr/Sr values will be different in the minerals, increasing in the same order. Comparison of different minerals in a rock sample thus allows scientists to infer the original Sr/Sr ratio and determine the age of the rock. 157:), which is low in K (and hence Rb) but high in Sr (as this substitutes for Ca), which proportionally enriches the melt in K and Rb. This then causes orthoclase and biotite, both K rich minerals into which Rb can substitute, to precipitate. The resulting Rb–Sr ratios and Rb and Sr abundances of both the whole rocks and their component minerals will be markedly different. This, thus, allows a different rate of radiogenic Sr to evolve in the separate rocks and their component minerals as time progresses. 138:. Each of these minerals has a different initial rubidium/strontium ratio dependent on their potassium content, the concentration of Rb and K in the melt and the temperature at which the minerals formed. Rubidium substitutes for potassium within the lattice of minerals at a rate proportional to its concentration within the melt. 655: 734:
The important concept in isotopic tracing is that Sr derived from any mineral through weathering reactions will have the same Sr/Sr as the mineral. Although this is a potential source of error for terrestrial rocks, it is irrelevant for lunar rocks and meteorites, as there are no chemical weathering
62:
The ratio Sr/Sr in a mineral sample can be accurately measured using a mass spectrometer. If the amount of Sr and Rb isotopes in the sample when it formed can be determined, the age can be calculated from the increase in Sr/Sr. Different minerals that crystallized from the same silicic melt will all
730:
The Rb–Sr dating method has been used extensively in dating terrestrial and lunar rocks, and meteorites. If the initial amount of Sr is known or can be extrapolated, the age can be determined by measurement of the Rb and Sr concentrations and the Sr/Sr ratio. The dates indicate the true age of the
58:
daughter, Sr, produced in this decay process is the only one of the four naturally occurring strontium isotopes that was not produced exclusively by stellar nucleosynthesis predating the formation of the Solar System. Over time, decay of Rb increases the amount of radiogenic Sr while the amount of
764:
Strontium isotope stratigraphy relies on recognised variations in the Sr/Sr ratio of seawater over time. The application of Sr isotope stratigraphy is generally limited to carbonate samples for which the Sr seawater curve is well defined. This is well known for the Cenozoic time-scale but, due to
755:
because the Sr/Sr of a skeleton, sea shell or indeed a clay artefact is directly comparable to the source rocks upon which it was formed or upon which the organism lived. Thus, by measuring the current-day Sr/Sr ratio (and often the Nd–Nd ratios as well) the geological fingerprint of an object or
765:
poorer preservation of carbonate sequences in the Mesozoic and earlier, it is not completely understood for older sequences. In older sequences diagenetic alteration combined with greater uncertainties in estimating absolute ages due to lack of overlap between other geochronometers (for example
716:
to a result requires studying the metasomatic and thermal history of the rock, any metamorphic events, and any evidence of fluid movement. A Rb–Sr date which is at variance with other geochronometers may not be useless, it may be providing data on an event which is not representing the age of
83:
produces similar overall chemistry. Scientists can also estimate from Sr/Sr when crust rock was first formed from magma extracted from the mantle, even if the rock is subsequently metamorphosed or even melted and recrystallized. This provides clues to the age of the Earth's continents.
74:
that, during partial melting of the mantle, prefers to join the magmatic melt rather than remain in mantle minerals. As a result, Rb is enriched in crustal rocks relative to the mantle, and Sr/Sr is higher for crust rock than mantle rock. This allows scientists to distinguish
489: 981:
Veizer, Ján; Buhl, Dieter; Diener, Andreas; Ebneth, Stefan; Podlaha, Olaf G; Bruckschen, Peter; Jasper, Torsten; Korte, Christoph; Schaaf, Michael; Ala, Davin; Azmy, Karem (August 1997). "Strontium isotope stratigraphy: potential resolution and event correlation".
426: 1114: 165:
The age of a sample is determined by analysing several minerals within multiple subsamples from different parts of the original sample. The Sr/Sr ratio for each subsample is plotted against its Rb/Sr ratio on a graph called an
295: 300: 650:{\displaystyle {\frac {^{87}{\text{Sr}}}{^{86}{\text{Sr}}}}=\left({\frac {^{87}{\text{Sr}}}{^{86}{\text{Sr}}}}\right)_{0}+{\frac {^{87}{\text{Rb}}}{^{86}{\text{Sr}}}}(e^{\lambda t}-1)} 484: 447: 665:
Rb–Sr dating relies on correctly measuring the Rb–Sr ratio of a mineral or whole rock sample, plus deriving an accurate Sr/Sr ratio for the mineral or whole rock sample.
694:
One of the major drawbacks (and, conversely, the most important use) of utilizing Rb and Sr to derive a radiometric date is their relative mobility, especially in
657:
is the isochron equation. After measurements of Rubidum and Strontium concentration in the mineral we can easily determine the age, the t value, of the sample.
876:"Sm–Nd and Rb–Sr Chronology of Continental Crust Formation: Times of addition to continents of chemically fractionated mantle-derived materials are determined" 170:. If these form a straight line then the subsamples are consistent, and the age probably reliable. The slope of the line dictates the age of the sample. 843:"Crustal Age Domains and the Evolution of the Continental Crust in the Mozambique Belt of Tanzania: Combined Sm–Nd, Rb–Sr, and Pb–Pb Isotopic Evidence" 798:
Hawkesworth, C. J.; Vollmer, R. (1979). "Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics".
184: 705:
Conversely, these fluids may metasomatically alter a rock, introducing new Rb and Sr into the rock (generally during potassic alteration or calcic (
709:) alteration. Rb–Sr can then be used on the altered mineralogy to date the time of this alteration, but not the date at which the rock formed. 668:
Several preconditions must be satisfied before a Rb–Sr date can be considered as representing the time of emplacement or formation of a rock.
1098: 1075: 938: 63:
have the same initial Sr/Sr as the parent melt. However, because Rb substitutes for K in minerals and these minerals have different
1023: 698:
fluids. Rb and Sr are relatively mobile alkaline elements and as such are relatively easily moved around by the hot, often
1129: 766: 683:
must have formed in chemical equilibrium with one another or in the case of sediments, be deposited at the same time;
672:
The system must have remained closed to Rb and Sr diffusion from the time at which the rock formed or fell below the
142: 421:{\displaystyle _{38}^{87}{\text{Sr}}(t)=~_{38}^{87}{\text{Sr}}(0)+~_{37}^{87}{\text{Rb}}(e^{\lambda t}-1)\ ,} 456: 80: 807: 71: 430: 297:, we obtain the expression which describes the growth of strontium-87 from the decay of rubidium-87: 79:
produced by melting of crust rock from magma produced by melting of mantle rock, even if subsequent
673: 1139: 903: 875: 823: 778: 55: 39: 1134: 1094: 1086: 1071: 1055: 934: 895: 450: 174: 167: 1063: 991: 963: 926: 887: 854: 815: 748: 95: 50:(Sr, Sr). One of the two naturally occurring isotopes of rubidium, Rb, decays to Sr with a 680: 99: 1034: 17: 811: 146: 995: 769:) leads to greater uncertainties in the exact shape of the Sr isotope seawater curve. 1123: 1014: 967: 827: 907: 752: 695: 687: 111: 891: 290:{\displaystyle {\ce {^{87}_{37}Rb->~_{38}^{87}Sr~+e^{-}\ +{\bar {\nu }}_{e}}}} 1067: 1016:
Seawater isotope records, crustal evolution, tectonics and atmospheric evolution
930: 744: 859: 842: 178: 127: 123: 1022:. Seventh Annual V.M. Goldschmidt Conference. Tucson, AZ. pp. 103–104. 699: 135: 91: 64: 51: 47: 35: 899: 690:
which could have disturbed the Rb–Sr system either thermally or chemically
150: 119: 43: 756:
skeleton can be measured, allowing migration patterns to be determined.
819: 154: 131: 115: 88: 118:
that contains several major Sr-bearing minerals including plagioclase
706: 208: 76: 954:
Elderfield, H. (October 1986). "Strontium isotope stratigraphy".
42:
of rocks and minerals from their content of specific isotopes of
731:
minerals only if the rocks have not been subsequently altered.
702:
hydrothermal fluids present during metamorphism or magmatism.
486:
as a constant, since it is stable and not radiogenic. Hence,
34:
method (Rb–Sr) is a radiometric dating technique, used by
679:
The minerals which are taken from a rock to construct an
283: 1115:
CSIRO Petroleum – Global Sr Seawater Isotope Evolution
492: 459: 433: 303: 187: 453:
of rubidium. Furthermore, we consider the number of
1093:. Jones & Bartlett Learning. pp. 383–385. 921:Bowen, Robert (1994). "Rubidium-Strontium Dating". 874:McCulloch, M. T.; Wasserburg, G. J. (2 June 1978). 841:Moller, A.; Mezger, K.; Schenk, V. (1 April 1998). 27:
Radiometric dating technique for rocks and minerals
649: 478: 441: 420: 289: 984:Palaeogeography, Palaeoclimatology, Palaeoecology 956:Palaeogeography, Palaeoclimatology, Palaeoecology 149:assemblage of plagioclase and hornblende (i.e.; 87:Development of this process was aided by German 145:would see a granite melt begin crystallizing a 8: 1013:Jacobsen, S.B.; Wills, J.; Yin, Q. (1997). 1054:Attendorn, H.-G.; Bowen, R. N. C. (1997). 743:Initial Sr/Sr ratios are a useful tool in 858: 800:Contributions to Mineralogy and Petrology 676:(generally considered to be 650 °C); 629: 614: 608: 598: 592: 586: 577: 565: 559: 549: 543: 537: 521: 515: 505: 499: 493: 491: 460: 458: 434: 432: 394: 382: 376: 371: 350: 344: 339: 318: 312: 307: 302: 282: 277: 266: 265: 252: 233: 228: 214: 209: 203: 188: 186: 790: 1060:Radioactive and Stable Isotope Geology 686:The rock must not have undergone any 110:For example, consider the case of an 59:other Sr isotopes remains unchanged. 7: 479:{\displaystyle {\ce {^{86}_{38}Sr}}} 1035:"Periodic table – strontium" 175:universal law of radioactive decay 25: 735:reactions in those environments. 1087:"Rubidium–Strontium Systematics" 1029:from the original on 2022-10-09. 141:The ideal scenario according to 98:, who later went on to discover 442:{\displaystyle {\ce {\lambda}}} 923:Isotopes in the Earth Sciences 760:Strontium isotope stratigraphy 644: 622: 409: 387: 361: 355: 329: 323: 271: 1: 1085:Walther, John Victor (2009). 996:10.1016/S0031-0182(97)00054-0 892:10.1126/science.200.4345.1003 968:10.1016/0031-0182(86)90007-6 70:In addition, Rb is a highly 54:of 49.23 billion years. The 1068:10.1007/978-94-011-5840-4_7 1056:"Rubidium–strontium dating" 931:10.1007/978-94-009-2611-0_4 177:and the following rubidium 1156: 1091:Essentials of geochemistry 474: 202: 32:rubidium–strontium dating 18:Rubidium-strontium dating 467: 461: 195: 189: 860:10.1093/petroj/39.4.749 717:formation of the rock. 143:Bowen's reaction series 651: 480: 443: 422: 291: 1039:Resources on Isotopes 652: 481: 444: 423: 292: 81:magma differentiation 1062:. pp. 159–191. 1041:. USGS. January 2004 925:. pp. 162–200. 847:Journal of Petrology 739:Isotope geochemistry 490: 457: 431: 301: 185: 72:incompatible element 886:(4345): 1003–1011. 812:1979CoMP...69..151H 674:closure temperature 381: 349: 317: 285: 238: 221: 161:Calculating the age 1130:Radiometric dating 820:10.1007/BF00371858 779:Radiometric dating 647: 476: 439: 418: 367: 335: 304: 287: 264: 224: 102:in December 1938. 1100:978-0-7637-5922-3 1077:978-94-010-6467-5 940:978-94-010-7678-4 620: 617: 601: 571: 568: 552: 527: 524: 508: 466: 465: 464: 414: 385: 370: 353: 338: 321: 280: 274: 260: 251: 244: 241: 227: 222: 194: 193: 192: 38:to determine the 16:(Redirected from 1147: 1104: 1081: 1050: 1048: 1046: 1030: 1028: 1021: 1000: 999: 978: 972: 971: 951: 945: 944: 918: 912: 911: 871: 865: 864: 862: 838: 832: 831: 795: 714:age significance 712:Thus, assigning 661:Sources of error 656: 654: 653: 648: 637: 636: 621: 619: 618: 615: 613: 612: 603: 602: 599: 597: 596: 587: 582: 581: 576: 572: 570: 569: 566: 564: 563: 554: 553: 550: 548: 547: 538: 528: 526: 525: 522: 520: 519: 510: 509: 506: 504: 503: 494: 485: 483: 482: 477: 475: 462: 448: 446: 445: 440: 438: 427: 425: 424: 419: 412: 402: 401: 386: 383: 380: 375: 368: 354: 351: 348: 343: 336: 322: 319: 316: 311: 296: 294: 293: 288: 286: 284: 281: 278: 276: 275: 267: 258: 257: 256: 249: 242: 239: 237: 232: 225: 223: 220: 219: 218: 204: 190: 96:Fritz Strassmann 21: 1155: 1154: 1150: 1149: 1148: 1146: 1145: 1144: 1120: 1119: 1111: 1101: 1084: 1078: 1053: 1044: 1042: 1033: 1026: 1019: 1012: 1009: 1007:Further reading 1004: 1003: 980: 979: 975: 953: 952: 948: 941: 920: 919: 915: 873: 872: 868: 840: 839: 835: 797: 796: 792: 787: 775: 762: 741: 728: 723: 663: 625: 605: 604: 589: 588: 556: 555: 540: 539: 533: 532: 512: 511: 496: 495: 488: 487: 455: 454: 429: 428: 390: 299: 298: 248: 210: 183: 182: 163: 108: 100:nuclear fission 28: 23: 22: 15: 12: 11: 5: 1153: 1151: 1143: 1142: 1137: 1132: 1122: 1121: 1118: 1117: 1110: 1109:External links 1107: 1106: 1105: 1099: 1082: 1076: 1051: 1031: 1008: 1005: 1002: 1001: 990:(1–4): 65–77. 973: 946: 939: 913: 866: 853:(4): 749–783. 833: 806:(2): 151–165. 789: 788: 786: 783: 782: 781: 774: 771: 761: 758: 740: 737: 727: 724: 722: 719: 692: 691: 684: 677: 662: 659: 646: 643: 640: 635: 632: 628: 624: 611: 607: 595: 591: 585: 580: 575: 562: 558: 546: 542: 536: 531: 518: 514: 502: 498: 473: 470: 451:decay constant 437: 417: 411: 408: 405: 400: 397: 393: 389: 379: 374: 366: 363: 360: 357: 347: 342: 334: 331: 328: 325: 315: 310: 306: 273: 270: 263: 255: 247: 236: 231: 217: 213: 207: 201: 198: 162: 159: 107: 104: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1152: 1141: 1138: 1136: 1133: 1131: 1128: 1127: 1125: 1116: 1113: 1112: 1108: 1102: 1096: 1092: 1088: 1083: 1079: 1073: 1069: 1065: 1061: 1057: 1052: 1040: 1036: 1032: 1025: 1018: 1017: 1011: 1010: 1006: 997: 993: 989: 985: 977: 974: 969: 965: 961: 957: 950: 947: 942: 936: 932: 928: 924: 917: 914: 909: 905: 901: 897: 893: 889: 885: 881: 877: 870: 867: 861: 856: 852: 848: 844: 837: 834: 829: 825: 821: 817: 813: 809: 805: 801: 794: 791: 784: 780: 777: 776: 772: 770: 768: 759: 757: 754: 750: 746: 738: 736: 732: 726:Geochronology 725: 720: 718: 715: 710: 708: 703: 701: 697: 689: 685: 682: 678: 675: 671: 670: 669: 666: 660: 658: 641: 638: 633: 630: 626: 609: 606: 593: 590: 583: 578: 573: 560: 557: 544: 541: 534: 529: 516: 513: 500: 497: 471: 468: 452: 435: 415: 406: 403: 398: 395: 391: 377: 372: 364: 358: 345: 340: 332: 326: 313: 308: 305: 268: 261: 253: 245: 234: 229: 215: 211: 205: 199: 196: 180: 176: 171: 169: 160: 158: 156: 152: 148: 144: 139: 137: 133: 129: 125: 121: 117: 113: 105: 103: 101: 97: 93: 90: 85: 82: 78: 73: 68: 66: 60: 57: 53: 49: 45: 41: 37: 33: 19: 1090: 1059: 1043:. Retrieved 1038: 1015: 987: 983: 976: 962:(1): 71–90. 959: 955: 949: 922: 916: 883: 879: 869: 850: 846: 836: 803: 799: 793: 763: 753:paleontology 742: 733: 729: 713: 711: 707:albitisation 704: 696:hydrothermal 693: 688:metasomatism 667: 664: 172: 164: 140: 112:igneous rock 109: 86: 69: 61: 31: 29: 1045:10 November 745:archaeology 1124:Categories 785:References 700:carbonated 449:being the 179:beta decay 173:Given the 128:hornblende 124:K-feldspar 114:such as a 56:radiogenic 36:scientists 1140:Strontium 828:128876101 749:forensics 639:− 631:λ 436:λ 404:− 396:λ 272:¯ 269:ν 254:− 216:− 212:β 136:muscovite 92:Otto Hahn 52:half-life 48:strontium 46:(Rb) and 1135:Rubidium 1024:Archived 908:40675318 900:17740673 773:See also 681:isochron 206:→ 168:isochron 151:tonalite 147:cumulate 120:feldspar 89:chemists 44:rubidium 880:Science 808:Bibcode 155:diorite 132:biotite 116:granite 106:Example 1097:  1074:  937:  906:  898:  826:  413:  369:  337:  259:  243:  226:  134:, and 1027:(PDF) 1020:(PDF) 904:S2CID 824:S2CID 77:magma 1095:ISBN 1072:ISBN 1047:2016 935:ISBN 896:PMID 767:U–Th 751:and 721:Uses 94:and 30:The 1064:doi 992:doi 988:132 964:doi 927:doi 888:doi 884:200 855:doi 816:doi 153:or 40:age 1126:: 1089:. 1070:. 1058:. 1037:. 986:. 960:57 958:. 933:. 902:. 894:. 882:. 878:. 851:39 849:. 845:. 822:. 814:. 804:69 802:. 747:, 616:Sr 610:86 600:Rb 594:87 567:Sr 561:86 551:Sr 545:87 523:Sr 517:86 507:Sr 501:87 472:86 469:38 463:Sr 384:Rb 378:87 373:37 352:Sr 346:87 341:38 320:Sr 314:87 309:38 240:Sr 235:87 230:38 200:87 197:37 191:Rb 181:: 130:, 126:, 122:, 1103:. 1080:. 1066:: 1049:. 998:. 994:: 970:. 966:: 943:. 929:: 910:. 890:: 863:. 857:: 830:. 818:: 810:: 645:) 642:1 634:t 627:e 623:( 584:+ 579:0 574:) 535:( 530:= 416:, 410:) 407:1 399:t 392:e 388:( 365:+ 362:) 359:0 356:( 333:= 330:) 327:t 324:( 279:e 262:+ 250:e 246:+ 65:K 20:)

Index

Rubidium-strontium dating
scientists
age
rubidium
strontium
half-life
radiogenic
K
incompatible element
magma
magma differentiation
chemists
Otto Hahn
Fritz Strassmann
nuclear fission
igneous rock
granite
feldspar
K-feldspar
hornblende
biotite
muscovite
Bowen's reaction series
cumulate
tonalite
diorite
isochron
universal law of radioactive decay
beta decay
decay constant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.